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Abstract—It is difficult for individuals and organizations to
protect personal information without a fundamental understand-
ing of relative privacy risks. By analyzing over 5,000 empirical
identity theft and fraud cases, this research identifies which types
of personal data are exposed, how frequently exposures occur,
and what the consequences of those exposures are. We construct
an Identity Ecosystem graph—a foundational, graph-based model
in which nodes represent personally identifiable information (PII)
attributes and edges represent empirical disclosure relationships
between them (e.g., the probability that one PII attribute is
exposed due to the exposure of another). Leveraging this graph
structure, we develop a privacy risk prediction framework that
uses graph theory and graph neural networks to estimate the
likelihood of further disclosures when certain PII attributes are
compromised. The results show that our approach effectively
answers the core question: Can the disclosure of a given identity
attribute possibly lead to the disclosure of another attribute?

Index Terms—privacy protection, risk prediction, link pre-
diction algorithm, graph neural networks, graph convolutional
networks, deep learning, identity graph

I. INTRODUCTION

Different individuals and organizations have different sets
of personally identifiable information (PII), and therefore
have different perspectives on which PII attributes are more
vulnerable, more valuable, and in greater need of protection.
An individual’s PII includes personal data in four different
categories—What you Know (e.g., name, address, phone num-
ber, mother’s maiden name), What you Have (e.g., driver’s
license, Social Security Card, employee ID, passport), What
you Are (e.g., fingerprint, voice, facial image), and What
you Do (e.g., patterns of life such as websites visited, GPS
locations visited, phone logs) [1].

Protecting PII data can be costly and time-consuming. Re-
search has uncovered various strategies to reduce risks of unin-
tended data disclosure [2], including statistical disclosure limi-
tation (SDL) techniques commonly used by national statistical
agencies before releasing public-use data sets. Meanwhile,
research about data self-destruction focuses on protecting data
privacy for users who choose cloud services [3] [4]. With
numerous methodologies for protecting privacy, this paper
focuses on the first step of privacy protection: determining
which set of data to protect. Protecting the most valuable
and risky (i.e., likely to be exposed) set of PII promises
to be a more effective and efficient method of protecting a

person’s personal, sensitive data. This is because individuals
and institutions usually have limited time, energy, and financial
resources allocated for privacy protection.

This research is based on the premise that if individuals
and organizations have a more fundamental understanding and
a more accurate evaluation of privacy risks resulting from
disclosing PII, they will be in a better position to protect that
information. Additionally, better risk analysis of personal data
sharing will inform a wide range of information security and
privacy applications.

This research determines which data requires the most
protection by evaluating the consequences of exposing the
respective data. Specifically, it analyzes the privacy risks
incurred when an individual or an organization shares or loses
a respective PII attribute. We primarily seek to answer the
question: Could the disclosure of a given PII attribute,
such as date of birth, lead to the disclosure of another
attribute, such as ATM PIN? PII attributes have respective
risk values associated with them [1] [5]. By evaluating the risk
scores of the possible disclosed PII attributes, we can provide
a quantified prediction of privacy risks based on empirical data
of disclosures.

To provide these predictions of quantified privacy risks,
we leverage graph theory. Many well-studied networks, such
as transportation networks and social networks, are analyzed
using graphs [6] [7]. Similar to those networks, there exist con-
nections and relationships among PII attributes. This research
represents each PII attribute as a node in the graph. The direc-
tional graph edges represent the disclosure/exposure relation-
ship between two PII attributes—specifically, the probability
that the disclosure of one PII attribute (e.g., date of birth) could
lead to the exposure of another PII attribute (e.g., address).
We name this graph of PII nodes with disclosure/exposure
directional edges the Identity Ecosystem graph.

After constructing an Identity Ecosystem graph, we created
and trained three different link prediction models. We also
developed a risk score calculation model. Together, the Identity
Ecosystem graphs, the link prediction algorithms, and the risk
score calculation model form a comprehensive risk prediction
framework.

Suppose an individual has lost PII attributes A1 and B2 and
wants to determine which other PII attributes become highly
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risky as a result. The pipeline of the risk prediction framework
is outlined below:

• The individual provides a risk score threshold ([0, 100]
scale) to indicate the level of risk of concern. The default
risk score threshold is 0, meaning all potentially disclosed
attributes are considered.

• The individual provides the PII attributes A1 and B2 that
were stolen or lost.

• The PII attribute set is defined as all nodes in the Identity
Ecosystem graph except for A1 and B2.

• The risk prediction model—composed of a link prediction
module and a risk score calculation module—takes A1,
B2, the risk score threshold, and the PII attribute set as
input, and outputs the PII attributes that may be disclosed
and have risk scores above the threshold.

Figure 1 uses an example of risk score threshold 75 to
explain the pipeline. In general, the contributions of this paper
include:

• We propose a way to construct Identity Ecosystem
graphs; we also provide a way to customize the Identity
Ecosystem graphs with different sizes and personal needs.
(Section III).

• We create and train three different link prediction models
(Section IV-B, IV-C, and IV-D).

• We conduct thorough testing experiments with different
sizes of identity Ecosystem graphs to show the perfor-
mance of the three link prediction models. (Section V).

• We construct a risk score calculation model (Section VI).

Fig. 1. Pipeline of the Risk Prediction Framework: from a Query to PII
Attribute Risk Prediction Results.

II. RELATED WORK

Privacy protection and risk assessment is an important
research topic for many market sectors that collect, store
and analyze personal identity information. Researchers have
developed a lot of data mining techniques to find odd pat-
terns in data and identity fraudulent transactions [8]. The

applications of machine learning and data mining algorithms
can help market sectors such as financial services, healthcare,
transportation and more to prevent the loss of money and time.

For instance, paper [9] provides a method to assess privacy
risks for medical big data. The researchers also apply Fuzzy
C-means clustering algorithm to cluster the users into different
groups, assign different permissions, and improve the users’
access control accuracy.

Despite plenty of research addressing privacy risk assess-
ment, there is limited research on finding the connections
among different aspects of personal data. This paper not only
fills the gap of finding the inter-connections between personal
data but also uses graphs to model and predict the interactions
of personal data to uncover risks in sharing this data.

In relation to the graph-based models utilized in this project,
the methods of link prediction play an important role. Link
prediction is commonly used for detecting missing links or
adding future connections. There are some simple methodolo-
gies based on node similarity such as Jaccard’s coefficient [10]
and Adamic/Adar measure [11]. These simple techniques are
computational efficient but cannot perform well on a lot of
graphs. Therefore, more and more researchers seek the help
of machine learning algorithms [12] [13] [14].

The framework of this paper combines both simple similar-
ity properties/scores and supervised learning algorithms. It can
answer the questions about identity information risk prediction
efficiently.

III. EXPERIMENTAL SETUP – CONSTRUCTING THE
IDENTITY ECOSYSTEM GRAPH MODEL

Now let’s explore the Identity Ecosystem first – its content,
its privacy risks analytics and its new prediction capabilities
offered in this paper to help individuals to protect their
personal information from unintended and harmful disclosure.
The Center for Identity at The University of Texas at Austin
(UT CID) first introduced an Identity Ecosystem graph [1].
The UTCID Identity Ecosystem graph uses nodes to represent
PII attributes (i.e. personal data) and connects the nodes based
on various types of relationships between PII attributes (Figure
2). It should be noted that while the paper [1] presents various
types of relationships, the “probability of disclosure” relation-
ship is the one leveraged in the privacy risk prediction research
presented in this paper. Figure 1 displays the UTCID Identity
Ecosystem graph with the nodes colored by Type (What you
Know, What you Have, What you Are, What you Do) and
nodes sized by value, where the value of a PII attribute node
is calculated based on the degree to which that PII attribute
was monetized in over 5000 (and counting) identity theft and
fraud cases analyzed in the Identity Threat Assessment and
Prediction project (ITAP) [1] [5]. For simplification purpose,
we call the set of identity theft and fraud cases collected by
the ITAP project “UTCID ITAP dataset”.

In this paper, we reconstruct the UTCID Identity Ecosystem
graph and only keep a minimal set of graph features in order
to predict the PII disclosure risks efficiently. In the real-world
news stories regarding identity theft and fraud cases, it is
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Fig. 2. UTCID Identity Ecosystem Graph Representing PII Attributes and
Their Relationships

common that we might only know what the thieves used to
steal the PII attribute and what the PII attributes that are lost.
If we can use a minimal set of information to predict the
PII disclosure risks accurately, then we do not need to waste
money and time to collect other information. The construction
of the new Identity Ecosystem graphs follows the principles
below.

We still use nodes to represent PII attribute. Directed edges
between PII attributes A and B, arrow A → B means an
event disclosing node A leads to a disclosure of node B. Each
edge is assigned with a weight. Overall, an arrow A → B
with a weight wi means an event disclosing node A may lead
to a disclosure of node B and such a disclosure happened
wi times according to the empirical ITAP data of collected
identity theft and fraud cases [12]. Figure 2 shows an example
of visualization based on a simplified use case. The thickness
of an edge visually shows a weight, frequency of the specific
exposure (e.g. A → B with wi). Figure 3 shows an example
ecosystem graph with three identity attributes. The example
graph below tells us:

• Disclosure of “name” attribute may lead to the disclosure
of “bank account” with probability of 0.3 (calculation:
3/(3+7) = 0.3).

• Disclosure of “name” attribute may lead to the disclo-
sure of “birth date” with probability of 0.7 (calculation:
7/(3+7) = 0.7).

Fig. 3. An Example Identity Ecosystem Graph with Three Nodes.

Throughout the entire paper, we will use the Identity
Ecosystem graphs which are constructed based on the rules
above to analyze and predict PII attribute disclosure and
consequently privacy risks.

To collect and structure the data necessary to execute
the proposed risk prediction, two steps are required. First,

we need to “preprocess” the UTCID ITAP dataset. For the
inputs and outputs of the identity theft and fraud cases in the
ITAP dataset, only identity-related information is retained. For
each case, inputs are the data used by the actors to conduct
the identity theft and fraud. Outputs include the consequent
data that are acquired, stolen or otherwise exposed by the
conclusion of the identity theft and fraud actions.

The second step is to construct the Identity Ecosystem
graphs. We previously introduced the graph construction rules
in the previous paragraphs with a small example graph (e.g.
Figure 2, a graph with three nodes and two edges). Here, we
will further explain the rules completely by using multiple
input and output identity attributes.

Suppose there is a reported identity crime case. From
the case, we can extract three input identity attributes –
“bank account”, “name” and “Social Security Number”. The
corresponding output identity attributes are “credit card” and
“debit card”. If we construct an Identity Ecosystem graph
based on this single case, five nodes and six directed edges
can be added to this graph. The five nodes are “bank account”,
“name”, “Social Security Number”, “credit card” and “debit
card” respectively. The six edges are listed below:

• From “bank account” to “credit card”.
• From “bank account” to “debit card”.
• From “name” to “credit card”.
• From “name” to “debit card”.
• From “Social Security Number” to “credit card”.
• From “Social Security Number” to “debit card”.
Since this graph is created from the single identity criminal

case, every edge in the graph has a weight 1 since each input-
output attribute pair appears only once (given this scope of
only one case).

Now let us consider a more complicated situation. Imagine
we have three collected identity criminal cases (Case 1, 2
and 3). In the Case 1, the input identity attributes are “bank
account”, “name” and “Social Security Number” and the
corresponding output attributes are “credit card” and “debit
card”. In the Case 2, the inputs are “bank account” and “Social
Security Number” and the outputs are “birth date”, “credit
history” and “credit card”. For the Case 3, the input is “Social
Security Number” and the output is “bank account”.

For the three cases described above, there are seven unique
identity attributes: “bank account”, “name”, “Social Security
Number”, “credit card”, “debit card”, “birth date” and “credit
history”. Based on the three cases, the relationships among the
seven attributes are shown below:

• From “bank account” to “credit card” (weight: 2).
• From “bank account” to “debit card” (weight: 1).
• From “bank account” to “birth date” (weight: 1).
• From “bank account” to “credit history” (weight: 1).
• From “name” to “credit card” (weight: 1).
• From “name” to “debit card” (weight: 1).
• From “Social Security Number” to “credit card” (weight:

2).
• From “Social Security Number” to “debit card” (weight:

1).
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• From “Social Security Number” to “birth date” (weight:
1).

• From “Social Security Number” to “credit history”
(weight: 1).

• From “Social Security Number” to “bank account”
(weight: 1).

The weights reflect the occurrence frequencies for the input-
output pairs among the identity theft and fraud cases. Figure
4 shows the graph visualization of this three-case example
above.

The largest Identity Ecosystem graph we construct in this
paper relies on 5,636 identity theft and fraud cases from
the UTCID ITAP dataset. Following the procedures given
above, the graph constructed from these 5,636 criminal cases
contains 1,634 nodes and 18,522 edges. We denote this graph
as Ggrand.

We can build Identity Ecosystem graphs in different sizes.
For instance, the UTCID ITAP dataset includes identity theft
and fraud cases from a wide range of market sectors impacting
a wide range of victim demographics involving different types
of PII with differing values and losses. We are able to filter
for different case parameters (e.g. victim age, market sector,
losses) to focus our analysis. For example, if we filter for cases
with losses greater than $10,000, we will generate a smaller
Identity Ecosystem graph with 761 nodes and 6,413 edges.
We use Gbig loss to represent this filtered graph.

Fig. 4. An Example of Identity Ecosystem Graph Construction Using Three
Cases.

IV. LINK PREDICTION ALGORITHMS

To answer a question like Could the disclosure of a given
identity attribute possibly leads to the disclosure of another
identity attribute of concern, we convert the question to the
task of link prediction [15] and risk score calculation as Figure
1 shows. For link prediction task, we want to determine if a

directed edge exists given an initial PII attribute (input) and a
target PII attribute (output).

Suppose an Identity Ecosystem graph GTX is constructed
based on some identity theft and fraud cases that occurred in
Texas. If an individual who lives in Texas was involved in
a breach and the individual is informed their driver’s license
number was disclosed, with the knowledge of GTX , the link
prediction algorithms can help this individual check to deter-
mine if there is a possible link (privacy risks) that may exist
between their “driver’s license number” and “bank account”
or a link between “driver license number” and “credit card”.
In general, the link prediction algorithms can check if there
are possible links between the initially exposed PII attributes
to the remaining PII attributes in an Identity Ecosystem graph.
An overview of link prediction algorithms is shown as Figure
9 [15] [16] in Appendix A.

Based on experimental results investigating ten bench-
mark homogeneous graphs (i.e. Ecoli [17], FB15K [18]),
GNN-based link prediction algorithms show superiority over
similarity-based algorithms [19]. Additional research shows
that graph convolutional networks (GCN) and Word2Vec +
Multi-layer Perceptron (MLP) have significant advantages
regarding computation efficiency compared with Exponential
Random graphs-based approaches for link prediction tasks
while maintaining good prediction performance [20]. More-
over, since the nodes of an Identity Ecosystem graph are PII
attributes and carry background information about individuals’
identity, a big concern for non-learning-based approaches is
that it would be difficult to apply the context information
with those methods. Given how large an Identity Ecosystem
graph can be and how important it is to make accurate privacy
risk predictions, creating an efficient and high-accuracy link
prediction algorithm is necessary. We also need to take the
link structure complexity into account for the link prediction
algorithm. Therefore, we narrow the link prediction algorithm
choices to GNN-based and general deep-learning based mod-
els which we highlight with red boxes in Figure 9. In the
following subsections, we will discuss the features of the
Identity Ecosystem graphs that we use to feed to the deep
models. We will also explain the three link prediction models
that we propose and create.

A. Semantic Processing for PII Attribute Nodes

The nodes of Identity Ecosystem graphs are composed of
PII attributes. PII attributes, as we explained in the beginning
of the paper, use natural languages to represent identity and
privacy related information. Namely, the PII attributes are
composed of words. In this paper, we only focus on the English
words. We can find explanation for every word that exists
in English with dictionaries. Hence, we define the “context
information” of PII attributes as the word-by-word explanation
of each attribute. We also call the process of converting the
simple PII attributes to complex word-by-word explanation
“semantic processing”. Our hypothesis is that: Similar to the
inherent node properties of the Identity Ecosystem graphs
(such as node degrees, node centrality and so on), the semantic
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information is also an important feature of nodes and can help
us make predictions about whether or not a link between two
nodes exists. We will use our proposed new model in Section
4.4 to verify our hypothesis.

The semantic processing toolkit we use is the Natural
Language Processing Toolkit (NLTK) [21]. For each node
in the Identity Ecosystem graphs, the processing procedures
are: Get the words of the PII attribute; Iteratively process
each word via NLTK synsets and definition functions to
derive some explanation for each word, then, concatenate the
explanation of all words of the PII attribute into one string of
paragraph.

Furthermore, we use BERT uncased base model [22] to
obtain the embedding of context information associated with
each node. There are many embedding techniques. Since our
focus is not about which embedding approach will give us
better performance on PII attribute embedding, we will not
test other embedding techniques in this paper. Our point is to
utilize the context information of PII attributes and prove that
the context information can improve the performance on link
prediction algorithms. We define the embeddings of context
information generated with the BERT encoder as the “semantic
embeddings”.

To explain the process of converting the PII attributes
written in English words to the semantic embeddings, we will
use a concrete example of the PII attribute “employee cre-
dential” (Figure 5). This example has two words: “employee”
and “credential”. As mentioned previously, the algorithm we
create for processing each word employs NLTK synsets and
definition functions. By applying this algorithm, the context
information for “employee” is “a worker who is hired to
perform a job”. The context information for “credential” is “a
document attesting to the truth of certain stated facts”. Next,
we concatenate the two strings. Therefore, we get the context
information of “employee credential” being “a worker who is
hired to perform a job a document attesting to the truth of
certain stated facts”. The context information is passed to the
pretrained BERT uncased base model [22] and we can get the
semantic embedding of “employee credential”. Note that for
context information associated with each PII attribute node,
the corresponding semantic embedding might have different
length. Since the median of the semantic embedding length
for all nodes in Ggrand is 124, we truncate the semantic
embedding results for those with embedding length greater
than 124 and apply zero paddings to those with embedding
length is smaller than 124.

B. MLP Based Model for Link Prediction – featureMLP

For each node in a directed graph, we can calculate the
basic node properties such as “in degree” and “out degree”.
These properties can be used to measure node similarity. Since
it is possible to have a link between two nodes if they are
similar [23] and there are powerful yet simple classifiers such
as MLP [32] and support vector machine (SVM) [24], the first
model we build is a MLP classifier with basic node properties
according to paper [14]. Another reason for us to use MLP

is to keep some consistency among the deep models we build
for this paper. We call this MLP based link prediction model
“featureMLP”.

The overall model structure is shown as Figure 6. For the
baseline models, the node features (the orange block in Figure
6) we use are:

• in degree, the number of incoming links for each node.
• out degree, the number of outgoing links for each node.
• betweenness centrality [25], a measure of how often a

node lies in the shortest path of two nodes.
• closeness centrality [26], a measure of how close a node

is to all other nodes in a graph.
FeatureMLP is computationally efficient and easy to im-

plement. It uses the low-level node properties to make link
predictions. Despite these advantages, we still need to explore
the graph structural information to deal with the situation
where the accuracy requirement is high. Therefore, we con-
tinue exploring and developing other link prediction models
(Section IV-C and IV-D).

C. GCN Based Model for Link Prediction – featureGCN

Going forward from the first model (featureMLP), we want
to find a way to leveraging the graph structural information.
Therefore, we change the deep model from MLP to a 2-layer
GCN [21].

The model structure is shown as Figure 7. We use two
SAGEConv layers (based on GraphSage [27]) with Pytorch
geometric package [28] to generate node embeddings that
contain local graph structural information. We pair the node
embeddings to get the embeddings for the graph edges.
For each edge embedding, there are two node embeddings
(ne1, ne2). We use element-wise multiplication to get the
aggregation result for each edge embedding (ne1 ∗ ne2). The
final aggregation result is denoted as A1 in Figure 7.

featureGCN leverages the low-level node properties and the
graph structural information at the same time. Therefore, the
prediction made by featureGCN is more reliable. However,
as we mentioned earlier, the semantic information of the PII
attribute also contain useful information. Therefore, a novel
GCN model is needed to use the semantic information.

D. GCN with Semantic Embeddings for Link Prediction -
SeeGCN

As discussed in Section IV-A, we can get the semantic
embeddings for each node of the input graphs. Starting from
the model featureGCN, we need to incorporate and leverage
the semantic embeddings into our framework and show that the
semantic embeddings do help to improve the link prediction
accuracy. The new model structure is shown as Figure 8, and
we name our new model SeeGCN.

For each pair of nodes (n1, n2) from the edges of the input
graphs, we can get the pair of node semantic embeddings
(se1, se2). We call the pair of node semantic embeddings
“edge semantic embedding” of the input graphs. Next, we
aggregate se1 and se2 by concatenation and fully connected
layers. The final aggregation result is denoted as “A2” in
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Fig. 5. The Process of Converting PII Attributes from English Words to the Semantic Embeddings.

Fig. 6. Overview of the Model Structure - featureMLP.

Fig. 7. Overview of the Model Structure - featureGCN.

Figure 8. The “A1” in Figure 8 is the same as the one in
Figure 7. We concatenate A1 and A2 to generate the final
aggregation result A3 in Figure 8.

This new link prediction model effectively integrates low-
level node properties, graph structural information, and seman-
tic information. Moreover, built from featureGCN, this model
is not too complicated to implement.

V. RESULT ANALYSIS

To compare the performance between proposed models
and the baseline models, we test the models on the Ggrand

and Gbig loss graphs which are explained in Section III.
We also randomly sample the collected identity theft and
fraud cases (data from the UTCID ITAP dataset) and build
graphs according to the random samples. We name the graphs
G(#nodes,#edges), where #nodes indicates the number of
nodes in the graph and #edges indicates the total edge
number of the graph. Graphs are constructed by networkX [29]
Python library and converted to Pytorch Geometric data with
the function from networkX in Pytorch Geometric (PyG)
library [28]. The number of training epochs is set to 50 and

the learning rate is set to 0.01. For each graph, we randomly
split its edges into training and validation sets using the
RandomLinkSplit function from the transformer package
of PyG library. The split ratio is (training:validation = 9:1).
The performance of the models is shown as Table I.

graph featureMLP featureGCN seeGCN
Ggrand 0.72 0.84 0.85
Gbig loss 0.54 0.82 0.85

G(1109,9265) 0.84 0.67 0.83
G(451,2054) 0.76 0.83 0.79
G(527,2676) 0.80 0.82 0.81
G(556,3142) 0.79 0.81 0.81
G(1334,12351) 0.72 0.84 0.86
G(1509,15492) 0.68 0.81 0.84
G(1498,15072) 0.50 0.81 0.84
G(1312,12109) 0.73 0.68 0.86

TABLE I
MODEL VALIDATION ACCURACY ON DIFFERENT IDENTITY ECOSYSTEM

GRAPHS.

The table shows the performance of different models with
the best validation accuracy achieved. All models achieve good
accuracy (above 0.7), except that featureMLP got an accuracy
of 0.54 on Gbig loss. It is because the node properties of
Gbig loss is not sufficient to make link predictions. The highest
validation accuracy for each testing graph is bolded.

Overall, it is clear that the link connections of Identity
Ecosystem graphs can be properly predicted with our proposed
models above. Moreover, the semantic embeddings of PII
attributes can help improve the link prediction performance
especially when the graphs are large.

VI. RISK SCORE CALCULATION

For the same PII attribute, people may value it differently.
Some people may spend most of their time on social media.
Some may only check social media occasionally. It is obvious
that people from the former group will assign higher scores
to usernames and passwords associated with their online
accounts. After we get the possible disclosed nodes based
on the link prediction results from Section IV, we can either
assign risk scores manually based on our personal preference
or use some evaluation metrics to help us predict the final
scores.

We propose a risk score calculation technique here. First,
suppose the query is to check the risk scores of nodes related
to the disclosure of Attribute α1. Suppose PII attribute set
which is all nodes in the Identity Ecosystem graph except for

6



Fig. 8. Overview of the Model Structure - seeGCN.

α1 is {n1, n2, n3, ...} where we denote each node in the set
as ni.

We can run the PageRank algorithm [30] on the graph of
interest and obtain the PageRank coefficients, denoted as pri
for each node ni. Second, we can also calculate the reverse
PageRank coefficient for each node by running the reverse
PageRank algorithm on the graph [31], denoted as rpri for
each node ni. The score Si is then defined as the sum of its
forward and reverse PageRank coefficients: Si = pri + rpri.

Next, for each pair of (α1, ni), the link prediction algorithm
will output the link existence probability pi. The final risk
score of ni in the event where A1 is disclosed is RSi = pi∗Si.

To convert the scores of a PII attribute node RSi to a [0, 100]
scale, we can normalize and scale RSi by the equation RSi =
RSi/maxS ∗ 100, where maxS represents the maximum of
RSi among all nodes.

VII. CONCLUSION

The goal of this paper is to analyze and predict the pri-
vacy risks incurred when an individual shares their personal
data. In this paper, we introduce MLP-based and GCN-based
algorithms (featureMLP, featureGCN, seeGCN) to answer the
question Can the disclosure of a given identity attribute
possibly lead to the disclosure of another attribute? This
research posits that an individual who better understands the
risks of sharing respective personal data (identity attributes)
will be better equipped to protect the respective data. Experi-
mental analysis of the link prediction algorithms on different
Identity Ecosystem graphs show that we could answer the

proposed question well by using GCN-based algorithms and
embedding the context information of PII attributes. The Iden-
tity Ecosystem graphs and the proposed privacy risk prediction
framework provides both flexibility and customization.

Our future work is to search and find the optimal GCN
structure based on different graph sizes, explore the direction
of combining GNN and reinforcement learning, and research
better methodologies to integrate the PII attribute semantic
embeddings into the GCN-based models.

APPENDIX A
LINK PREDICTION METHODS OVERVIEW

Figure 9 shows an overview of link prediction algorithms.
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