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Abstract—Timely and effective incident response is key to
managing the growing frequency of cyberattacks. However,
identifying the right response actions for complex systems is a
major technical challenge. A promising approach to mitigate
this challenge is to use the security knowledge embedded in
large language models (LLMs) to assist security operators during
incident handling. Recent research has demonstrated the poten-
tial of this approach, but current methods are mainly based on
prompt engineering of frontier LLMs, which is costly and prone
to hallucinations. We address these limitations by presenting
a novel way to use an LLM for incident response planning
with reduced hallucination. Our method includes three steps:
fine-tuning, information retrieval, and lookahead planning. We
prove that our method generates response plans with a bounded
probability of hallucination and that this probability can be
made arbitrarily small at the expense of increased planning time
under certain assumptions. Moreover, we show that our method
is lightweight and can run on commodity hardware. We evaluate
our method on logs from incidents reported in the literature. The
experimental results show that our method a) achieves up to 22%
shorter recovery times than frontier LLMs and b) generalizes to
a broad range of incident types and response actions.

I. INTRODUCTION

INCIDENT response refers to the coordinated actions taken
to contain, mitigate, and recover from cyberattacks. Today,

incident response is largely a manual process carried out by
security operators [1]. While this approach can be effective,
it is often slow, labor-intensive, and requires significant skills.
For example, a recent study reports that organizations take an
average of 73 days to respond and recover from an incident
[2]. Reducing this delay requires better decision-support tools
to assist operators during incident handling. Currently, the
standard approach to assisting operators relies on response
playbooks [3], which comprise predefined rules for handling
specific incidents. However, playbooks still rely on security
experts for configuration and are therefore difficult to keep
aligned with evolving threats and system architectures [4].

To overcome these limitations, an emerging direction of
research is to leverage the security knowledge encoded in
large language models (LLMs) to generate effective response
actions [6]–[12]. These actions can then be used as suggestions
to security operators. Although this approach remains largely
confined to academic settings for now, it is beginning to see
commercial adoption, as exemplified by IBM’s recent launch of
an LLM-based response service [13]. Most of the LLM-based
methods proposed in the literature so far are based on prompt
engineering of frontier LLMs, such as OPENAI O3 [14]. While
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Fig. 1: The three steps of our method for incident response planning: 1. fine-
tuning of a (lightweight) large language model (LLM); 2. retrieval of relevant
threat intelligence; and 3. decision-theoretic planning and chain-of-thought
(COT [5]) reasoning to select effective responses and filter hallucinations.

this approach has shown promise, it is costly and relies on
an external LLM provider (e.g., GOOGLE or OPENAI), which
limits flexibility. Another important concern with this approach
is that frontier LLMs are not specialized for incident response,
which makes them particularly prone to hallucinations [15],
i.e., they may generate response actions that appear plausible
but are incorrect or unrelated to the incident.

In this paper, we present a novel method that addresses
these limitations and provides a principled way to use an
LLM as decision support for incident response; see Fig. 1. Our
method includes three main steps: (i) instruction fine-tuning of
a lightweight LLM to align it with the phases and objectives
of incident response; (ii) retrieval-augmented generation (RAG)
to ground the LLM in current threat information and system
knowledge; and (iii) decision-theoretic planning and chain-of-
thought (COT) reasoning to generate effective response actions.

We evaluate our method based on log data from incidents
reported in the literature. The results show that our method
surpasses the performance of frontier LLMs (e.g., GEMINI
2.5 [16], [17]) by up to 22% while being far less resource-
intensive. Moreover, we show that our method performs com-
parably to the PPO reinforcement learning method [18], despite
not relying on incident-specific training like PPO does. We
also present an ablation study assessing the contribution of
the individual steps of our method. We show that all steps
contribute to its performance, with fine-tuning and planning
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having the greatest impact. In addition to the empirical results,
we present a theoretical analysis that establishes a probabilistic
upper bound on the hallucination probability of our method.

Our contributions can be summarized as follows:
• We develop a novel method for incident response that

integrates a lightweight LLM with instruction fine-tuning,
information retrieval, and decision-theoretic planning.

• We derive a probabilistic upper bound on the hallucina-
tion probability of our method. Under certain assump-
tions, this bound can be made arbitrarily small at the
expense of increased planning time.

• We evaluate our method on logs from incidents reported
in the literature. The results show that our method a)
achieves up to 22% shorter recovery times than frontier
LLMs; b) generalizes to a broad range of incidents and
responses; and c) performs comparably to a reinforcement
learning method that is pretrained for each incident.

• We release the first LLM fine-tuned for incident response,
together with a dataset of 68, 000 incidents and the
corresponding responses. We also provide source code
and a video demonstration of a decision-support system
for incident response that implements our method [19].

II. RELATED WORK

Since the early 2000s, there has been broad interest in devel-
oping systems that can assist security operators during incident
response [20], [21]. Traditional decision-support systems are
based on playbooks that map incident scenarios to sequences
of response actions [20], [22], such as those provided by
SPLUNK [23], CISA [24], and OASIS [25]. Although playbooks
can be effective, they rely on security experts for configuration.
As a consequence, they are difficult to keep up-to-date with
evolving security threats and system architectures [4]. Another
common critique of playbooks is that they consist of generic
response actions that are difficult for non-experts to interpret
and execute effectively [3]. Several research efforts have aimed
to address these limitations by automating the generation
of effective incident response strategies and functions. Four
predominant approaches to such automation have emerged:
decision-theoretic [26], reinforcement learning [27], game-
theoretic [28]–[30], and LLM-based approaches [6].

The first three approaches share a common requirement:
they need a perfect simulator (model) that captures how the
system evolves in response to attacks and defensive actions.
The simulator enables the computation of optimal response
strategies (according to the model) through numerical opti-
mization techniques. For example, a standard benchmark in
this line of research is CAGE-2 [31], which simulates an ad-
vanced persistent threat on an enterprise network. State-of-the-
art methods evaluated on this benchmark include dynamic pro-
gramming [32], reinforcement learning [33], and tree search
[34], all of which rely on a simulator. While these approaches
can be effective when high-fidelity simulators are available,
such simulators are rarely available in practice. Furthermore,
the resulting response strategies are limited in scope as they are
trained on a narrow set of attack vectors and response options.
For instance, the CAGE-2 simulation is limited to around 20
attacker actions and defensive countermeasures [34].

A promising approach to address this drawback is to use
large language models (LLMs) to automatically generate ef-
fective response actions based on system logs. This approach
is not limited to a predefined set of actions and eliminates the
need for a simulator. Early studies in this direction include
[6]–[12], and [13]. Notably, the work in [13] is a commercial
product by IBM. While these works report encouraging results,
they have three key limitations: they do not provide a theo-
retical analysis, they do not address the risk of hallucinations,
and most of them require API access to frontier LLMs.

Our method differs from prior work in several ways. It does
not rely on a simulator or a manually-designed playbook, is
lightweight enough to run on commodity hardware, has re-
duced hallucination, is accompanied by a theoretical analysis,
and combines fine-tuning with retrieval-augmented generation
(RAG); see Table 1. Moreover, ours is the only LLM-based
method that is fully open-source (code, weights, and data).

Method Theory RAG Fine-tuning Lightweight LLM Req. simulator Manual

OURS (Fig. 1) ✓ ✓ ✓ ✓ ✓ ✗ ✗
[6],[7]–[11] ✗ ✗ ✗ ✗ ✓ ✗ ✗
[13] ✗ ? ? ? ✓ ✗ ✗
[12] ✗ ✓ ✗ ✗ ✓ ✗ ✗
[32], [34], [35] ✓ ✗ ✗ ✓ ✗ ✓ ✗
[33],[27], [36]–[38] ✗ ✗ ✗ ✓ ✗ ✓ ✗
[22], [39], [40] ✗ ✗ ✗ ✓ ✗ ✗ ✓

TABLE 1: Comparison between our method and related approaches, which
can be grouped into three categories: those relying on playbooks (white
row), those relying on a simulator for numerical optimization (red rows), and
those using LLMs (blue rows). Compared to other LLM-based approaches,
our method (green row) is the only method that does not depend on frontier
LLMs, is lightweight enough to run on commodity hardware, has reduced
hallucination probability, and is accompanied by a theoretical analysis.

Lastly, we note that a growing body of research applies
LLMs to security use cases other than incident response,
such as penetration testing [41], [42], security assistants [43],
scanning [44], [45], threat hunting [46], verification [47],
piracy [48], detection [49], fuzzing [50], [51], API design [52],
network operations [53], threat intelligence [54], and decom-
pilation [55]. Compared to these works, the main novelty of
our method lies in its approach to reducing hallucinations.

III. THE INCIDENT RESPONSE PROBLEM

Incident response involves selecting a sequence of actions
that restores a networked system to a secure and operational
state after a cyberattack. These actions should analyze the
scope of the attack, secure forensic evidence, contain and
evict the attacker, harden the system to prevent recurrence,
and restore critical services. Examples of response actions
include redirecting network flows, updating access control
policies, patching vulnerabilities, shutting down compromised
systems, and restarting operational services. From a security
engineering perspective [56], incident response fits within the
broader cyber resilience framework by operationalizing the
response and recovery phase after a cyberattack [57].

Figure 3 illustrates the phases of incident response. Follow-
ing the attack is a response time interval, which represents the
delay between the attack and the first response. This phase is
followed by a recovery time interval, during which response
actions are deployed. When selecting these actions, the goal
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Fig. 2: The two phases of our method. In the first phase [cf. a)], an LLM is fine-tuned offline on a dataset of logs from 68,000 incidents paired with response
plans and chain-of-thought reasoning steps [5]. In the second phase [cf. b)], system logs and threat intelligence are processed online by the fine-tuned LLM
and used to generate N candidate responses. These responses are then evaluated via a planning procedure, which selects the most effective response.

is to restore the system to a secure and operational state as
quickly as possible while minimizing operational costs. A key
challenge to achieving this goal is that the information about
the attack is often limited to partial indicators of compromise
(e.g., log files and alerts), while the full scope and severity
of the attack are unknown [58]. Another major difficulty is
that even short delays in initiating the response can lead to
significant costs. For example, in the event of a ransomware
attack, a delay of just a few minutes may allow the malware
to encrypt systems or spread laterally across the network [59].
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Fig. 3: Phases and performance metrics of the incident response problem.

IV. OUR METHOD FOR INCIDENT RESPONSE PLANNING

Motivated by the challenges described above, we develop a
method for using an LLM as decision support during incident
handling, i.e., to help security operators identify and exe-
cute effective response actions quickly. Broadly speaking, our
method takes as input a description of an incident (e.g., system
logs, security alerts, and threat intelligence) and produces as
output a sequence of recommended response actions. The main
challenge in generating such recommendations is to ensure
that the response actions are effective despite the possibility
that the LLM hallucinates. In the following subsections, we
describe the steps we take to address this challenge.

A. Overview of Our Approach and System Architecture

Our method consists of three main steps: (i) supervised fine-
tuning of a lightweight LLM to align it with the objectives of
incident response; (ii) retrieval-augmented generation (RAG)
to ground the LLM in current threat information and system
knowledge; and (iii) decision-theoretic planning to synthesize

effective response actions. These steps can be divided into two
phases: an offline phase for fine-tuning and an online phase
for information retrieval and response generation; see Fig. 2.

The first step of our method is to fine-tune a lightweight
LLM for incident response. We conduct this fine-tuning by
training the LLM on a labeled dataset of incident logs paired
with corresponding response actions and reasoning steps. This
training enables the LLM to learn typical patterns of incident
handling. For example, it learns the logical dependencies
between different phases of the response process, such as
containment and eviction. Another benefit of fine-tuning is
that it can reduce hallucinations; see e.g., [60].

Remark 1. We call an LLM lightweight if it has significantly
fewer parameters than a typical frontier LLM. For the exper-
imental results reported in this paper, we use the DEEPSEEK-
R1-14B LLM, which has 14 billion parameters. This parameter
count is small in comparison with that of the frontier LLM
DEEPSEEK-R1, which has 671 billion parameters [61].

Once fine-tuned, the LLM can provide decision support for
incident response by generating a sequence of recommended
response actions when prompted with details about an in-
cident. However, because the LLM is trained on historical
incident data, it cannot generate response actions that relate
to newly discovered vulnerabilities or attack techniques. To
address this limitation, we augment the system logs with
additional threat information retrieved online. Specifically, we
automatically extract indicators of compromise from the logs
(e.g., hostnames and vulnerability identifiers) and use them to
retrieve relevant information from external sources, such as
threat intelligence APIs and vulnerability databases. We then
append this information to the logs before prompting the LLM.
In addition to improving the quality of the response, several
empirical studies have shown that such retrieval-augmented
generation also reduces the probability of hallucinations [62].

Lastly, instead of directly selecting the response action
generated by the fine-tuned LLM, we use the LLM to generate
several candidate actions and select the one that is least likely
to be hallucinated. In particular, we evaluate each candidate

3



action by using the LLM to simulate possible outcomes of the
action, after which we select the action that leads to the short-
est expected recovery time. This lookahead planning enforces
a form of self-consistency [63], where actions are validated
against the LLM’s predicted outcomes. Such validation has
been shown in prior work to reduce hallucinations; see e.g.,
[64], [65], and [66]. We provide a theoretical justification for
why this procedure can reduce hallucination in §V.

Each of these three steps (fine-tuning, information retrieval,
and planning) is detailed below, starting with fine-tuning.

B. Instruction Fine-Tuning

Our goal with fine-tuning is to make the pre-trained LLM
generate appropriate response actions when prompted with
system logs describing an incident. In this context, we view the
pre-trained LLM as a probabilistic model that takes as input
a sequence of tokens x = x1,x2, . . . ,xn and predicts the
probability distribution over the subsequent token as

pθ(xn+1 | x1,x2, . . . ,xn), (1)

where θ denotes the model parameters.
The next-token prediction in (1) allows us to generate

response actions as follows. We start by concatenating a de-
scription of the incident (e.g., system logs) with an instruction
to generate a response action. We then pass the resulting
text through a tokenizer that converts it into a sequence of
tokens x = x1, . . . ,xn. Next, we feed these tokens into
the LLM to generate the next token by sampling from (1).
Subsequently, we append the generated token to the prompt
and feed the entire sequence back into the LLM to predict
the next token. We repeat this process autoregressively until
the LLM generates a special end-of-sequence token, which is
produced when the LLM determines that the response action
is complete, i.e., when the action has been fully specified.

Remark 2. We place no restrictions on the form of a response
action. It may be a single command, a compound procedure,
or any other textual description, depending on the incident.

To steer the LLM toward generating effective responses,
we fine-tune it using supervised learning on a dataset of
68, 000 instruction-answer pairs D = (xi,yi)

K

i=1, where each
instruction xi consists of information related to an incident
and a task for the LLM to perform. The associated answer yi

describes the correct steps to complete the task, paired with
a sequence of chain-of-thought (COT [5]) reasoning steps that
explain the answer. We use two types of instructions: action-
generation instructions and state-prediction instructions.

In the first case, the vector xi represents an instruction
to generate a response to an incident. In the latter case, xi

represents an instruction to assess the current status of the inci-
dent response process. For example, the instruction may be to
determine whether the attack has been contained, whether the
system has been hardened to prevent recurrence, or whether
forensic evidence has been secured. See Appendix D for the
prompt templates and details on how we construct the dataset.

Remark 3. We do not fine-tune the LLM for a specific incident
scenario. Rather, the training dataset spans a diverse set of

incidents, log formats, and response types, enabling the LLM
to generalize across a wide range of incident scenarios.

Given the training dataset D, we fine-tune the LLM
by iteratively sampling a batch of instruction-answer pairs
(x1,y1), . . . , (xM ,yM ) and updating its parameters via gra-
dient descent based on the cross-entropy loss

L = − 1

M

M∑
i=1

mi∑
k=1

ln pθ
(
yi
k | xi,yi

1, . . . ,y
i
k−1

)
, (2)

where mi is the length of the vector yi. We denote the fine-
tuned parameter vector by θ′ to distinguish it from θ.

Figure 4 displays the training loss curves when fine-tuning
the DEEPSEEK-R1-14B LLM [61]. We run the experiment on
4×RTX 8000 GPUs and compare a higher learning rate (blue)
with a lower one (red). We observe that the higher learning rate
results in convergence to a lower loss. Additional experimental
details and hyperparameters can be found in Appendix C.

0 100 200 300 400 500 600 700 800

1

1.5
Learning rate 0.00095
Learning rate 0.000095

Training time (min)

Training loss [cf. (2)]

Fig. 4: Loss curves when fine-tuning the DEEPSEEK-R1-14B [61] LLM under
two different learning rates. The solid lines indicate the mean loss and the
shaded lines represent the loss on specific batches of training examples; cf. (2).

C. Retrieval-Augmented Response Generation (RAG)

While the fine-tuned LLM can generate effective response
actions, its outputs depend on the distribution of incidents
seen during training. This presents a limitation as the LLM is
trained on historical data that may not reflect the most recent
threat landscape. To address this challenge, we use indicators
of compromise (e.g., vulnerability identifiers or hostnames)
in the system logs to retrieve relevant threat intelligence from
external sources. By incorporating such information at the time
of action generation, the LLM can adapt its responses to reflect
up-to-date threat information and system knowledge [67].

As an example, consider a scenario where the LLM is trained
on data available only up to 2020. Suppose that the LLM is
prompted with information about an incident that relates to
a vulnerability discovered after 2020, e.g., CVE-2021-44228
[68]. In this case, the LLM may not have sufficient information
to generate effective response actions, as illustrated below.

• WITHOUT RAG. Prompted only with the logs, the LLM
generates the action: “isolate host” as it has no knowledge
about the nature of the vulnerability CVE-2021-44228.

• WITH RAG. The system retrieves information about spe-
cific mitigations for CVE-2021-44228. When provided
with this information, the LLM generates a response
action with targeted mitigations for CVE-2021-44228,
thereby reducing the time to recover from the incident.
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D. Incident Response Planning

Having fine-tuned the LLM to produce response actions from
incident logs, we now address the challenge of selecting the
most effective action. Although the LLM can produce effective
actions in many cases, it may also hallucinate and generate
ineffective actions. To reduce the risk of such hallucinations,
our method includes a planning procedure where we use the
LLM to generate multiple candidate actions and then select the
action least likely to be hallucinated, as described below.

System model. We formulate incident response planning as
a stochastic shortest path problem. In this formulation, the
response process evolves over a sequence of time steps t =
0, 1, . . . , T and the goal is to generate a sequence of actions
a0,a1, . . . ,aT−1 that quickly recovers the system from the
incident. In other words, the goal is to minimize the recovery
time T . To formalize this goal, we model the progress toward
system recovery with a recovery state. We define this state
based on the MITRE D3FEND [69] taxonomy as follows.

Definition 1 (Recovery state). The recovery state is a vector

st = (sIt, s
S
t , s

F
t , s

E
t , s

H
t , s

R
t ), (3)

where each component is a binary variable indicating whether
a specific stage of response is completed. In particular,

• Containment: sIt = 1 if the attack has been isolated and
stopped from spreading; sIt = 0 otherwise.

• Assessment: sSt = 1 if the scope and severity of the attack
have been determined; sSt = 0 otherwise.

• Preservation: sFt = 1 if forensic evidence related to the
incident has been preserved; sFt = 0 otherwise.

• Eviction: sEt = 1 if the attacker’s access has been
revoked and potential malicious code or processes have
been removed from the system; sEt = 0 otherwise.

• Hardening: sHt = 1 if the system has been hardened to
prevent recurrence of the same attack; sHt = 0 otherwise.

• Restoration: sRt = 1 if services have been restarted and
user access has been restored; sRt = 0 otherwise.

Given this definition of the recovery state, we define the
recovery time to be the number of time steps until the terminal
recovery state s = (1, 1, 1, 1, 1, 1) is reached. Since both the
system and the attacker may behave stochastically, we model
the recovery time as a random variable, as defined below.

Definition 2 (Recovery time). The recovery time T is a
random variable that takes on values in the set {1, 2, . . .}
and represents the time to reach the terminal state, i.e.,

T = inf{t | t > 0, st = (1, 1, 1, 1, 1, 1)}.

To illustrate the preceding definitions, we show two possible
state trajectories s0, s1, . . . , sT in Fig. 5. As shown in the
figure, several response actions may achieve the same effect
on the recovery state. For example, the severity of the attack
can be determined in several ways. Moreover, certain response
actions can lead to shorter recovery times by skipping inter-
mediate steps. For instance, in the event of a denial of service
(DOS) attack, containment and eviction can often be achieved
simultaneously by appropriate filtering of the network traffic.

s0

s1, s2

s3 s′3

s4

s5

s6

sT

ISOLATE

INITIATE

ASSESS

PRESERVE

EVICT

HARDEN

RESTORE

sI sSsFsEsHsR

(1, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(1, 1, 0, 0, 0, 0)

(1, 1, 1, 0, 0, 0)

(1, 1, 1, 1, 0, 0)

(1, 1, 1, 1, 1, 0)

(1, 1, 1, 1, 1, 1)

logs indicates anomalous
activity on a host

a0: segment network
to isolate host

a1: malware
scan (failed)

a2: analyze logs
(found malicious process)

a′2: analyze processes
(found malicious process)

a3: memory dump

a4: stop process

a5: upgrade
affected software

a′5: live-patch
vulnerability

a6: restart service

Fig. 5: Two example evolutions of the recovery state st; cf. (3). The first
recovery trajectory involves the actions a0,a1,a2,a3,a4,a5,a6 and the
second trajectory involves the actions a0,a1,a′

2,a3,a4,a′
5.

This single action both isolates the attack (sIt = 1) and revokes
attacker access (sEt = 1). In contrast, an advanced persistent
threat (APT) typically requires multiple actions to complete
these stages. For example, containment may involve isolating
compromised hosts (sIt = 1) and eviction may require malware
removal or credential rotation (sEt = 1). Thus, the recovery
time T for an APT is typically longer than for a DOS attack.

Response generation. Because the recovery state contains
information about the attacker, it is generally not known with
certainty. However, the LLM can predict the state based on
the available system logs and threat intelligence, which we
denote by I. Such predictions allow us to generate a response
plan through auto-regressive sampling as follows. We start by
generating the first action as a0 ∼ pθ′(· | s0, I), where the
initial state is s0 = (0, 0, 0, 0, 0, 0). Subsequently, we evaluate
the effect of the action by predicting the next recovery state as
s̃1 ∼ pθ′(· | s0,a0, I). We then repeat the same procedure to
generate the next action as a1 ∼ pθ′(· | s̃1, I). This iterative
procedure continues until the LLM predicts that the terminal
recovery state s̃t = (1, 1, 1, 1, 1, 1) has been reached.

Remark 4. To instruct the LLM whether to generate an action
or to predict the state, we append an instruction to the prompt.
For brevity, we do not explicitly denote this instruction in the
equations. Our prompt templates are available at [19].

The expected time to recover from the incident when using
response actions generated by the LLM depends on the current
recovery state st (which captures the effects of previous
actions) and the type of incident, as characterized by the vector
I. We formally define this recovery time-to-go as follows.

5



Definition 3 (Recovery time-to-go). Given an incident de-
scribed by I, the expected recovery time-to-go from the state
s when executing actions generated by the LLM pθ′ is

J(s) =

{
0 if s = (1, 1, 1, 1, 1, 1),

Eat∼pθ′ (·|s̃t,I) {T | s0 = s, I} otherwise.

Given this definition, we say that a response action is
hallucinated if it has no effect on the expected recovery time-
to-go. In other words, it does not contribute any progress
toward recovery. This notion is formally defined below.

Definition 4 (Hallucinated response action). A response action
at is hallucinated if it leads to a recovery state with the same
expected recovery time-to-go as the current state, i.e.,

J(st)− Est+1 {J(st+1) | at, st, I} = 0, for all st ∈ S̃,

where S̃ denotes the set of all states except (1, 1, 1, 1, 1, 1).

This definition implies that hallucinations can be avoided by
iteratively generating actions until one is found that reduces
the expected recovery time-to-go. However, this approach to
reducing hallucinations is not feasible in practice, as com-
puting the recovery time requires knowledge of the attacker’s
behavior. An alternative approach is to involve a security op-
erator to manually assess whether each action is hallucinated.
While feasible, this approach defeats the purpose of using an
LLM in the first place, namely to assist security operators.

To circumvent these limitations, we adopt a different ap-
proach, known as self-verification [65]. Following this ap-
proach, we estimate the recovery time-to-go of response
actions using the LLM itself. This verification enforces a form
of self-consistency [63], where actions are validated against the
LLM’s predicted outcomes. Such validations have been shown
to reduce hallucinations (see e.g., [64] and [66]) and form the
basis for our planning algorithm, as described below. (For a
theoretical justification for why this approach can reduce the
probability of hallucinated response actions, see §V.)

Planning algorithm. At each time t of the response, we use
the LLM to generate N candidate actions AN

t = {a1t , . . . ,aNt }.
Then, for each action ait, we use the LLM to simulate a
recovery trajectory s̃t+1,at+1 . . . , by sampling actions and
updating the state until s̃T = (1, 1, 1, 1, 1, 1). We then use
the length of the simulated trajectory as an estimate of the
expected recovery time-to-go. We define this estimate as

Q̃(s̃t,a
i
t) ≈ 1 +

∑
st+1∈S

pθ′(st+1 | s̃t,ait, I)J̃(st+1),

where J̃ is the estimated recovery time-to-go function.
Finally, we select the action with the shortest expected

recovery time-to-go according to the estimate, i.e.,

ãt ∈ argmin
ai
t∈AN

t

Q̃(s̃t,a
i
t). (4)

This planning procedure is illustrated conceptually in Fig. 6
and the pseudocode is listed in Alg. 1. In the next section,
we analyze the theoretical properties of this procedure and
establish conditions under which it reduces hallucination. We
also derive a bound on its hallucination probability.

I, s̃t a2t

a1t

a3t

Q̃(s̃t,a
1
t ) = 4

Q̃(s̃t,a
2
t ) = 3

Q̃(s̃t,a
3
t ) = 3LLM pθ′

Recovery trajectory

Likely hallucination

Fig. 6: Our planning procedure to circumvent hallucinations. At each time
step of the response, we prompt the LLM with the incident description I
and the current (predicted) recovery state s̃t to generate N candidate actions
(here N = 3). We then estimate the expected recovery time-to-go [denoted
by Q̃(s̃t,ai

t)] of each action ai
t by using the LLM to simulate possible

recovery trajectories. If an action is hallucinated (per Def. 4), then it does not
make progress toward recovery and thus leads to a longer recovery trajectory.
Therefore, we select the action that leads to the shortest predicted recovery
trajectory (either a2

t or a3
t in this example); cf. (4). This planning allows us

to circumvent hallucinations under certain conditions, see §V-A for details.

Algorithm 1: Incident response planning with an LLM.

1 Input: LLM pθ′ , system logs I, # actions N , # samples M .
2 Output: A response plan ρ, i.e., a sequence of response actions.
3 Initialize s̃0 ← (0, 0, 0, 0, 0, 0), ρ← ∅, t← 0.
4 while s̃t ̸= (1, 1, 1, 1, 1, 1) do
5 Sample a1

t , . . . ,a
N
t from pθ′ (· | s̃t, I).

6 for i = 1, 2, . . . , N do
7 Q̃(s̃t,ai

t) =
1
M

∑M
k=1 RECOVERY-TIME(s̃t,ai

t, I).
8 end
9 Select action ãt ∈ argminai

t
Q̃(s̃t,ai

t), ρ← ρ ∪ {(t, ãt)}.
10 Update the state as s̃t+1 ∼ pθ′ (· | s̃t, ãt, I), t← t+ 1.
11 end
12 return ρ.
13 Procedure RECOVERY-TIME (s̃, a, I)
14 Predict the state as s̃′ ∼ pθ′ (· | s̃,a, I).
15 if s̃′ = (1, 1, 1, 1, 1, 1) then
16 return 1.
17 end
18 else
19 Sample a′ from pθ′ (· | s̃′, I).
20 return 1 + RECOVERY-TIME(s̃′,a′, I).
21 end
22 end

V. ANALYSIS OF THE HALLUCINATION PROBABILITY

To analyze the probability that our method generates a
hallucinated response action, we distinguish between two
cases: (i) at least one of the N candidate actions is non-
hallucinated; and (ii) all N actions are hallucinated; cf. (4). In
the following, we establish a sufficient condition under which
hallucinations are avoided in case (i), and derive a probabilistic
upper bound on the probability that case (ii) occurs.

A. Sufficient Conditions for Filtering Hallucinations

The purpose of the minimization (4) is to filter hallucinated
actions, i.e., actions that do not affect the recovery time. This
filtering is effective when the lookahead simulations [cf. lines
13–22 in Alg. 1] accurately reflect that hallucinated actions
have no beneficial impact on the expected recovery time.
However, because these simulations rely on the LLM to predict
action outcomes, the filtering is inherently imperfect. Conse-
quently, the effectiveness of the planning step [cf. (4)] depends
on two key factors: (i) the degree to which hallucinated and
non-hallucinated actions can be distinguished based on their
impact on expected recovery time; and (ii) the accuracy of the
LLM’s predictions of the resulting recovery state st; cf. Def. 1.
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To quantify these two factors, let A denote the set of all
possible response actions (as defined by the vocabulary of the
LLM) and let A(s, I) be the subset of non-hallucinated actions
for the incident described by I, given the recovery state s.
Moreover, let δ denote the minimal change in the recovery
time-to-go when taking a non-hallucinated action, i.e.,

δ = min
{
J(st)− Est+1

{J(st+1) | a, st, I}
∣∣ a ∈ A(s, I)

}
.

In view of Def. 4, we have δ > 0.
Similarly, let η denote the total variation between the LLM’s

predictions and the true system dynamics (denoted by P ), i.e.,∑
s′∈S

∣∣pθ′(s′ | s,a, I)− P (s′ | s,a, I)
∣∣ ≤ η, ∀s ∈ S̃,a ∈ A,

where S is the set of all recovery states and S̃ is the set of non-
terminal recovery states, i.e., S̃ = S \ {(1, 1, 1, 1, 1, 1)}. Note
that the parameter η is upper bounded by 2, i.e., 0 ≤ η ≤ 2.

Given the parameters δ and η, we have the following result.

Proposition 1. Assuming that a) the number of sample tra-
jectories M in Alg. 1 is sufficiently large so that the empirical
mean approximates the true expectation and b) that both the
expected recovery time and the LLM’s predicted recovery time
are finite, i.e., ∥J∥∞ < ∞ and ∥J̃∥∞ < ∞. If at least one
action in the set AN

t [cf. (4)] is non-hallucinated and

δ > 2η∥J∥∞
(
∥J̃∥∞ + 1

)
,

then the action selected by Alg. 1 will be non-hallucinated.

We present the proof of Prop. 1 in Appendix A. This
proposition provides a sufficient condition under which the
minimization (4) effectively filters hallucinated actions. The
main condition of the proposition is that δ (which captures
the degree to which hallucinations and non-hallucinations
can be distinguished) is sufficiently large in comparison with
the inaccuracy of the LLM’s predictions, as quantified by η.
While these parameters are likely unknown in practice, they
can be estimated offline. For instance, δ can be estimated
based on a curated set of incidents with known recovery
outcomes. Similarly, η can be estimated by comparing the
LLM’s predictions with traces of historical incidents.

If at least one action in the set AN
t [cf. (4)] would always

be non-hallucinated, Prop. 1 would imply a condition that
provides a guarantee of avoiding hallucinations. However, in
practice, it is possible that all actions in AN

t are hallucinated,
in which case the lookahead minimization (4) will not help.
We quantify the probability of this event in the next subsection.

B. Upper Bound on the Hallucination Probability

To complement the above condition for filtering halluci-
nations, we now analyze the hallucination probability. The
main difficulty in this analysis is that the LLM’s propensity to
hallucinate is not known a priori. For this reason, we base our
analysis on empirical observations of its behavior.

To obtain such empirical observations, we start by using
the LLM to generate L sample actions. We then verify how
many of those actions are hallucinated to estimate the LLM’s
hallucination probability h. We denote this estimate by h. Due

to sampling variability, this estimate may differ substantially
from the probability h. To address this possibility, we establish
a bound that quantifies how likely it is for the estimate h to
deviate from the hallucination probability h by more than a
given threshold ϵ, as stated in the following proposition.

Proposition 2. Let h denote the true (but unknown) halluci-
nation probability of the LLM and let h denote the empirical
probability based on L samples. We have

P (h ≥ h+ ϵ) ≤ e−2ϵ2L,

where ϵ > 0 is a configurable parameter.

Proof. We model the process of generating L actions and
verifying which of them are hallucinated as L independent
and identically distributed Bernoulli trials, represented by the
random variables X1, X2, . . . , XL. We have Xi = 1 if the
ith sampled action is hallucinated; Xi = 0 otherwise. Hence,
h = 1

L

∑L
i=1 Xi. Applying Hoeffding’s inequality, we have

P (h ≥ h+ ϵ) ≤ e−2ϵ2L.

This proposition implies that the probability that all actions
in the set AN

t [cf. (4)] are hallucinated (i.e., hN ) can be
controlled with a certain confidence when the conditions of
Prop. 1 hold by increasing N . Moreover, the confidence
increases exponentially with the number of samples L used
to estimate the hallucination probability, as shown in Fig. 7.

20 40 60 80 100

0.5

1

ϵ = 0.1
ϵ = 0.15
ϵ = 0.2

Confidence 1− e−2ϵ2L

Number of samples L
2 4 6 8 10

0.2

0.4

0.6
(h+ ϵ) = 0.4

(h+ ϵ) = 0.5

(h+ ϵ) = 0.6

Upper bound on hN

Number of candidate actions N

Fig. 7: Illustration of Prop. 2. Here L is the number of samples for estimating
the hallucination probability and N is the number of candidate actions; cf. (4).

VI. SUMMARY OF OUR METHOD

In summary, our method for using an LLM as decision
support during incident handling consists of three main steps:

1) Offline instruction fine-tuning of a lightweight LLM.
• We fine-tune the LLM via supervised learning on a

dataset of logs from 68, 000 incidents paired with
response plans and chain-of-thought reasoning steps.

2) Online information retrieval.
• Before prompting the LLM with system logs to generate

candidate response actions, we enrich the logs with
threat intelligence retrieved from external sources.

3) Online lookahead planning via Alg. 1.
• Instead of directly executing the action generated by

the fine-tuned LLM, we generate several candidate
actions and select the one that leads to the shortest
predicted recovery time, which reduces the probability
of hallucinations under certain conditions; cf. Prop. 1.
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Dataset System Attacks Logs

CTU-Malware-2014 [70] WINDOWS XP SP2 servers Various malwares and ransomwares, e.g., CRYPTODEFENSE [71]. SNORT alerts [72]
CIC-IDS-2017 [73] WINDOWS and LINUX servers Denial-of-service, web attacks, heartbleed, SQL injection, etc. SNORT alerts [72]
AIT-IDS-V2-2022 [74] LINUX and WINDOWS servers/hosts Multi-stage attack with reconnaissance, cracking, and escalation. WAZUH alerts [75]
CSLE-IDS-2024 [26] LINUX servers SAMBACRY, SHELLSHOCK, exploit of CVE-2015-1427, etc. SNORT alerts [72]

TABLE 2: The datasets of cyberattacks and logs used for the experimental evaluation.

VII. EXPERIMENTAL EVALUATION OF OUR METHOD

In this section, we present an experimental evaluation of
our method. We start by comparing its performance with that
of frontier LLMs based on log data from incidents reported in
the literature. We then compare the performance of our method
with that of a popular reinforcement learning method, namely
proximal policy optimization (PPO) [18]. Our main evaluation
metric is the recovery time T , as defined in Def. 21.

We instantiate our method with the DEEPSEEK-R1-14B LLM
[61], which we fine-tune using the procedure described in
§IV-B. Further, we implement the RAG pipeline described
in §IV-C using the open threat exchange (OTX) API [76].
Finally, we instantiate the planning procedure described in
Alg. 1 with N = 3 candidate actions and M = 3 samples; cf.
(4). Additional experimental details and hyperparameters are
provided in Appendices C–D. We provide source code, model
parameters, and a video demonstration of our method in [19].

A. Comparison with Frontier LLMs

We compare our method with three frontier LLMs:
DEEPSEEK-R1 [61], GEMINI 2.5 [16], and OPENAI O3 [14].
Compared to these models, the main difference is that our
method is significantly more lightweight; see Table 3.

Method Number of parameters Context window size

OUR METHOD 14 billion 128, 000
DEEPSEEK-R1 [61] 671 billion [61] 128, 000
GEMINI 2.5 [16] unknown (≥ 100 billion) 1 million
OPENAI O3 [14] unknown (≥ 100 billion) 200, 000

TABLE 3: Comparison between our method and frontier LLMs in terms of
the number of model parameters and context window size.

Evaluation datasets. The evaluation is based on log data
from 25 incidents across 4 different datasets published in the
literature, namely CTU-Malware-2014 [70], CIC-IDS-2017
[73], AIT-IDS-V2-2022 [74], and CSLE-IDS-2024 [26]; see
Table 2 and Fig. 8. We also include 5 false-positive incidents.
Each incident contains log data and a brief system description.
Given this data, the task of the LLM is to generate effective
response actions, which we compare against the ground truth.
The prompt templates and the datasets are available in [19].

We provide a (condensed) example of an incident and the
ground truth response from the CTU-Malware-2014 dataset
[70] below. In this example, the (ground truth) response plan
consists of T = 6 response actions. Hence, the shortest
possible recovery time an LLM can achieve when evaluated

1To penalize unnecessary responses in the evaluation, we increment the
recovery time by two instead of one if an action includes unnecessary steps.

IMPACT 5
4INITIAL ACCESS
4COMMAND AND CONTROL

3EXECUTION
3COLLECTION
3LATERAL MOVEMENT

2PRIVILEGE ESCALATION
2EXFILTRATION

1RECONNAISSANCE

Fig. 8: Number of occurrences of different MITRE ATT&CK TACTICS [77]
among the incidents in the evaluation datasets.

on this example is 6. However, if the LLM generates a plan
that includes unnecessary response actions, then the recovery
time will be longer than 6. It is also possible that the generated
actions fail to fully recover the system from the incident. We
report such cases separately in the evaluation results.

Example incident from the CTU-Malware-2014 dataset [70].

System description (condensed): Two subnetworks (A and B) are
connected via a switch that is also connected to the Internet. All
servers run WINDOWS XP SP2. Their IPs and configurations are...

Snort alert logs (condensed):
[120:3:2] (http_inspect) NO CONTENT-LENGTH..
[1:31033:6] MALWARE Win.Trojan.Cryptodefence..
{TCP} 147.32.84.165:1057 -> 222.88.205.195:443
[129:5:1] Bad segment, adjusted size..
[139:1:1] (spp_sdf) SDF..

Incident summary: Server 147.32.84.165 is infected with the
WIN.TROJAN.CRYPTODEFENCE ransomware. Alerts show the server
is making outbound command and control (C2) connections to
222.88.205.195. This indicates that the ransomware is active and
may be preparing to encrypt files or has already begun doing so.

Response actions (condensed):
1. Disconnect the Ethernet cable of the infected server at
147.32.84.165 to sever its network connection. Concurrently,
configure a rule on the main switch/firewall to block all outbound
traffic to the C2 server 222.88.205.195.

2. Analyze the central switch to scan all network traffic from
both subnetworks A and B for any other hosts attempting to make
connections to the malicious IP 222.88.205.195.

3. Before altering the infected server, create a complete bit-for-bit
forensic image of its hard drive. This preserves the ransomware
executable, encrypted files, and other evidence for future analysis.

4. Wipe the hard drive of 147.32.84.165. If other infected machines
were discovered, they must also be taken offline and wiped.

5. Upgrade all servers from WINDOWS XP SP2 (which is obsolete)
to a modern operating system that receives security patches.

6. Restore the server’s data from a trusted backup. Once the server is
rebuilt with a modern operating system, reconnect it to the network
and closely monitor for any anomalous activity.
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Fig. 9: Evaluation results (↓ better): comparison between our method and
frontier LLMs. Bar colors relate to different methods; bar groups indicate
performance metrics; numbers and error bars indicate the mean and the
standard deviation from 5 evaluations with different random seeds.

1 1.5 2 2.5 3 3.5 4

200

400 Sequential implementation
Parallel implementation

Planning time (sec)

Number of candidate actions N

Fig. 10: Time required (per time step) to execute Alg. 1 for varying number
of candidate actions N . The average planning times were computed based on
5 executions with RTX 8000 GPUs.

Evaluation results. The results are summarized in Table 4 and
Fig. 9. Across all evaluation datasets, our method achieves the
shortest average recovery time. On average, the recovery time
of our method is 13.46 compared to 16.21 for the next best
method. Among the frontier LLMs, we observe that GEMINI
2.5 performs best on average, whereas the difference between
OPENAI O3 and DEEPSEEK-R1 is not statistically significant.

Scalability analysis. Figure 10 shows the compute time per
time step of Alg. 1 for varying number of candidate actions
N . We observe that the planning time increases linearly with
N when the actions are evaluated sequentially. However,

Method Recovery time % Ineffective actions % Failed recovery

Average

OUR METHOD 13.46± 1.09 8.40± 0.75 3.00± 0.41
GEMINI 2.5 [16] 16.21± 1.25 11.12± 0.88 3.30± 0.49
OPENAI O3 [14] 17.28± 1.60 12.26± 1.10 4.21± 0.68
DEEPSEEK-R1 [61] 17.09± 1.43 11.99± 1.04 4.48± 0.59

CTU-Malware-2014 [70]

OUR METHOD 14.22± 1.41 9.14± 0.99 3.59± 0.78
GEMINI 2.5 [16] 19.51± 1.00 14.33± 0.88 3.29± 0.50
OPENAI O3 [14] 18.42± 1.30 13.47± 1.07 5.29± 0.70
DEEPSEEK-R1 [61] 14.39± 1.09 9.33± 1.05 5.79± 0.57

CIC-IDS-2017 [73]

OUR METHOD 12.78± 1.00 7.64± 0.59 6.11± 0.50
GEMINI 2.5 [16] 13.08± 1.30 8.01± 0.73 7.13± 0.74
OPENAI O3 [14] 12.71± 1.33 7.62± 0.82 7.86± 0.76
DEEPSEEK-R1 [61] 13.34± 1.36 8.28± 0.70 7.95± 0.79

AIT-IDS-V2-2022 [74], [78]

OUR METHOD 14.41± 1.13 9.38± 0.78 1.84± 0.26
GEMINI 2.5 [16] 15.53± 1.29 10.47± 0.86 1.94± 0.33
OPENAI O3 [14] 19.09± 2.40 13.99± 1.54 2.12± 0.85
DEEPSEEK-R1 [61] 19.19± 1.72 14.05± 1.18 2.79± 0.54

CSLE-IDS-2024 [26]

OUR METHOD 12.41± 0.82 7.44± 0.62 0.44± 0.11
GEMINI 2.5 [16] 16.71± 1.40 11.66± 1.04 0.81± 0.40
OPENAI O3 [14] 18.90± 1.36 13.82± 1.15 1.59± 0.39
DEEPSEEK-R1 [61] 21.42± 1.53 16.30± 1.23 1.39± 0.45

TABLE 4: Evaluation results: comparison between our method and frontier
LLMs. Rows relate to different methods; columns indicate performance metrics
(↓ better); blue rows relate to our method (see Fig. 1); the best results are
highlighted in bold; numbers indicate the mean and the standard deviation
from 5 evaluations with different random seeds.

by parallelizing the computation across multiple GPUs, the
planning time remains nearly constant as N increases.

Hallucination analysis. Figure 11 shows the empirical hal-
lucination probability of our method based on L = 30
response actions sampled from the LLM when prompted with
log data from the evaluation datasets. The figure also shows
the theoretical upper bound expressed in Prop. 2.

1 1.5 2 2.5 3 3.5 4

0.2

0.4 Empirical (L = 30 samples)
Theoretical upper bound (confidence 0.99)

Hallucination probability

Number of candidate actions N

Fig. 11: The empirical hallucination probability of our method for varying
number of candidate actions N , as well as the theoretical upper bound on the
hallucination probability hN (assuming the conditions of Prop. 1 hold) with
confidence 0.99, i.e., the right-hand side of the bound in Prop. 2 is 0.01.

We observe in Fig. 11 that the theoretical bound holds
uniformly over the empirical probabilities. However, while the
theoretical bound decreases exponentially with the number of
candidate actions N , the empirical hallucination probability
exhibits an approximately linear decline. This discrepancy
suggests that the conditions of Prop. 1 are not fully satisfied.
This is expected, as we used only M = 3 samples to
estimate the expected recovery times. We chose this value
of M to ensure that the planning could be completed within
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a reasonable time using our limited hardware (QUADRO RTX
8000 GPUS). Increasing M is likely to yield more accurate
estimates and further reduce the probability of hallucinations.

Ablation study. To evaluate the relative importance of each
step of our method (i.e., fine-tuning, RAG, and planning), we
evaluate our method with and without each step. The results
are summarized in Table 5 and Fig. 12. We observe consistent
performance degradations when each step is removed. The
most substantial degradation occurs when fine-tuning is re-
moved, which causes the average recovery time to increase
from 13 to 25. Planning also has a significant impact. Without
planning, the average recovery time jumps from 13 to 21.
Retrieval augmented generation (RAG) contributes as well,
though its effects on the performance are more modest.
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Average CTU-2014 [70] CIC-2017 [73] AIT-2022 [74] CSLE-2024 [26]

Fig. 12: Ablation-study results for the recovery time metric (↓ better). Bars
relate to our method with and without different steps; bar groups indicate the
evaluation dataset; numbers and error bars indicate the mean and the standard
deviation from 5 evaluations with different random seeds.

B. Comparison with Proximal Policy Optimization

Numerous reinforcement learning approaches have been
proposed for incident response, including policy optimization
methods [33], tree search [34], stochastic approximation [79],
and Q-learning [36]; see [80] for an extensive review of the
state of the art. Among these methods, variants of proximal
policy optimization (PPO) [18] dominate recent work. We
therefore use PPO as a representative baseline for comparison.

Experiment setup. We evaluate our method against PPO on
two simulated incidents: an advanced persistent threat from
the CAGE-2 simulation [31], and a network intrusion scenario
from [79]. The evaluation uses the same metrics as in the
comparison with frontier LLMs2. The hyperparameters of PPO

2To align the CAGE-2 scenario with our evaluation metrics, we exclude
decoy-related actions as they target prevention rather than response.

Method Recovery time % Ineffective actions % Failed recovery

Average

OUR METHOD 13.46± 1.09 8.40± 0.75 3.00± 0.41
without RAG 14.68± 1.11 9.58± 0.96 4.13± 0.44
without fine-tuning 25.68± 4.88 20.48± 3.51 12.64± 2.42
without planning 20.87± 1.85 15.91± 1.79 7.75± 0.79

CTU-Malware-2014 [70]

OUR METHOD 14.22± 1.41 9.14± 0.99 3.59± 0.78
without RAG 15.21± 1.51 10.20± 1.27 5.90± 0.84
without fine-tuning 24.12± 4.00 19.19± 2.87 12.12± 2.50
without planning 17.31± 1.80 12.35± 1.61 10.93± 1.03

CIC-IDS-2017 [73]

OUR METHOD 12.78± 1.00 7.64± 0.59 6.11± 0.50
without RAG 13.90± 1.15 8.67± 0.88 7.71± 0.61
without fine-tuning 21.33± 2.89 16.08± 2.26 13.87± 1.88
without planning 16.20± 1.08 11.64± 1.15 9.86± 0.56

AIT-IDS-V2-2022 [74], [78]

OUR METHOD 14.41± 1.13 9.38± 0.78 1.84± 0.26
without RAG 15.46± 1.00 10.33± 0.87 2.16± 0.20
without fine-tuning 29.97± 6.64 24.52± 4.35 14.98± 2.83
without planning 25.18± 2.76 20.01± 2.47 5.39± 1.02

CSLE-IDS-2024 [26]

OUR METHOD 12.41± 0.82 7.44± 0.62 0.44± 0.11
without RAG 14.16± 0.80 9.09± 0.84 0.76± 0.10
without fine-tuning 27.28± 6.00 22.12± 4.56 10.71± 2.50
without planning 24.81± 1.76 19.64± 1.92 4.82± 0.54

TABLE 5: Ablation-study results. Rows relate to different methods; columns
indicate performance metrics (↓ better); blue rows relate to our method (see
Fig. 1); the best results are highlighted in bold; numbers indicate the mean
and the standard deviation from 5 evaluations with different random seeds.

and the prompt templates that we use for the evaluation are
available in Appendix C and [19], respectively.

Evaluation results. The results are presented in Fig. 13. Both
our method and PPO achieve similar performance in terms of
recovery time and failed recoveries across the two simulations.
The only notable performance gap is in the percentage of inef-
fective actions for the CAGE-2 simulation, where our method
performs better. The key difference between our method and
PPO lies in their training requirements: PPO requires incident-
specific training (approximately 10–20 minutes of training per
incident) to reach good performance. In contrast, our method
does not require such training to achieve good performance.

C. Discussion of the Evaluation Results

Our experimental results demonstrate a trade-off between
generality, computational cost, and deployment practicality.
Compared to frontier LLMs, our method is significantly more
lightweight, i.e., it requires fewer parameters and runs effi-
ciently on commodity hardware, yet it achieves consistently
better performance across all evaluation metrics. This perfor-
mance advantage is primarily driven by our fine-tuning and
planning steps, as shown in the ablation study.

When compared to reinforcement learning methods such as
PPO, our method is more computationally costly at inference
time due to the overhead of planning; see Fig. 10. However,
this overhead is offset by a major advantage: our method
requires no incident-specific training. In contrast, PPO must
be retrained for each new incident, which is impractical.
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Fig. 13: Comparison between our method (red curves) and the PPO reinforcement learning method (blue curves) [18]. The first row of plots relates to the
CAGE-2 simulation [31] and the second row relates to the network intrusion simulation from [79]. Columns relate to different evaluation metrics (↓ better).
Curves show the mean value from evaluations with 5 random seeds; shaded areas indicate standard deviations. The x-axes indicate the training time required
by PPO for each simulation. In contrast, our method requires no incident-specific training.

Compared to incident response playbooks [22], our method
provides two clear advantages. First, it does not rely on
domain experts for configuration. Second, it generates more
precise and context-specific response actions. In particular,
current playbooks often prescribe vague actions that are not
directly executable [3], [4]. By contrast, our method produces
executable response actions tailored to the system logs.

On the other hand, the main concern of our method
compared to playbooks is the risk of hallucination. While
our method reduces this risk through fine-tuning, information
retrieval, and planning, it does not eliminate it entirely. Hence,
response actions generated by our method should be subject
to human validation before execution in most cases.

Takeaways. In summary, our main experimental findings are:
• Our method consistently outperforms frontier LLMs

across all evaluation metrics, while being significantly
more lightweight and able to run on commodity hardware.

• Fine-tuning and decision-theoretic planning are key
drivers of performance, RAG is less important.

• Compared to reinforcement learning methods, our method
has higher overhead but avoids incident-specific training.

• In contrast to response playbooks, our method does not
rely on domain experts for configuration and generates
more precise and actionable response plans.

VIII. CONCLUSION

We introduce a novel method that enables the effective
use of a large language model (LLM) to provide decision
support for incident response planning. Our method uses the
LLM for translating system logs into effective response plans
while addressing its limitations through fine-tuning, infor-
mation retrieval, and decision-theoretic planning. We prove
that our method produces incident responses with bounded
hallucination probability; see Prop. 1 and Prop. 2. Under

certain assumptions, this bound can be made arbitrarily small
at the expense of increased planning time. We evaluate our
method on logs from incidents reported in the literature. The
results show that our method a) achieves up to 22% shorter
recovery times than frontier LLMs and b) generalizes to a broad
range of incident types and response actions.

Future work. A primary direction for future work is to
conduct evaluations in operational settings, where security
operators use our method for decision support. Such studies
would provide insights into the practical utility of our method
and how to improve it further. From a theoretical stand-
point, a promising direction of future work is to tighten the
hallucination-probability bound stated in Prop. 2. A possible
approach to tighten this bound is to leverage conformal-
abstention techniques [81]. Another direction for future work
is to extend the system model in §IV-D to include additional
performance metrics beyond recovery time. Moreover, due
to the generality of our method, it is possible to extend
our planning procedure [cf. Alg. 1] in many ways, e.g.,
by incorporating rollout techniques [82] or tree search [34].
Similarly, the information-retrieval step of our method can be
expanded to integrate information from several sources.
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APPENDIX A
PROOF OF PROPOSITION 1

We start by noting that the planning problem in §IV-D
can be viewed as a stochastic shortest path problem on the
graph of recovery states, where the goal is to reach the state
st = (1, 1, 1, 1, 1, 1) as quickly as possible. Consequently, the
problem is well-defined under standard assumptions, see e.g.,
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[83] for details. The main approach for proving Prop. 1 is
to bound the difference in estimated recovery time of a non-
hallucinated action and a hallucinated action. To this end, we
start by stating and proving the following lemma.

Lemma 1. Given the conditions of Prop. 1, we have

∥J̃ − J∥∞ ≤ η∥J̃∥∞∥J∥∞,

where J is the recovery time-to-go function [cf. Def. 3] and
J̃ is the time-to-go function estimated by the LLM.

Proof. We first note that the vocabulary (i.e., the set of tokens)
of any LLM is finite. Therefore, the set of feasible response
actions A is finite. As a consequence, the state predictions
pθ′(s′ | s,a, I) define a transition probability matrix between
(non-terminal) recovery states. We denote this matrix by F̃ and
the corresponding matrix of the real system by F, where F̃ss′

denotes the transition probability between the non-terminal
states s and s′. Similarly, we use J and J̃ to denote the
vectors obtained by applying the functions J and J̃ to the
set of non-terminal recovery states S̃, i.e., all states for which
s ̸= (1, 1, 1, 1, 1, 1), where Js denotes the expected recovery
time-to-go from the non-terminal state s.

Since the goal is to minimize the recovery time, we can ex-
press the recovery time-to-go function recursively by defining
a stage cost of 1 for each response action taken. Using this
formulation of the recovery time-to-go, we have

J = 1+ FJ,

J̃ = 1+ F̃J̃,
(5)

where 1 denotes the vector of all ones. Given these Bellman
equations, the difference J̃− J can be written as

J̃− J =
(
1+ F̃J̃

)
− (1+ FJ)

= F̃J̃− FJ

= F̃J̃− FJ+ F̃J− F̃J

= F̃(J̃− J) + (F̃− F)J.

Solving for (J̃− J) gives

J̃− J = F̃(J̃− J) + (F̃− F)J

=⇒ (1− F̃)(J̃− J) = (F̃− F)J

=⇒ J̃− J = (1− F̃)−1(F̃− F)J, (6)

where 1 denotes the identity matrix.
Since ∥J∥∞ and ∥J̃∥∞ are assumed finite, ∥J∥∞ and

∥J̃∥∞ are also finite. As a consequence, the linear systems
in (5) have unique solutions. Consequently, the inverse in (6)
exists. Taking the supremum norm on both sides of the final
expression in (6), we have

∥J̃− J∥∞ = ∥(1− F̃)−1(F̃− F)J∥∞
≤ ∥(1− F̃)−1∥∞∥(F̃− F)J∥∞, (7)

where the last inequality follows from the sub-multiplicative
property of the supremum norm. Hence, it suffices to show
that the right-hand side in (7) is bounded by η∥J̃∥∞∥J∥∞.
We start by showing that ∥(1− F̃)−1∥∞ = ∥J̃∥∞. In view of

(5), we have

J̃ = 1+ F̃J̃

=⇒ (1− F̃)J̃ = 1

=⇒ J̃ = (1− F̃)−11

=⇒ ∥J̃∥∞ = ∥(1− F̃)−11∥∞.

Since ∥J̃∥∞ is assumed finite, the expected time to reach the
terminal state s = (1, 1, 1, 1, 1, 1) from any non-terminal state
s ∈ S̃ is finite. As a consequence, the spectral radius of the
transition matrix between the non-terminal states, i.e., F̃, must
be strictly less than 1. Therefore, we can expand (1 − F̃)−1

using the Neumann series representation as

(1− F̃)−1 =

∞∑
k=0

F̃k.

Because the matrix F̃ is non-negative, all of its powers are also
non-negative. As a consequence, (1 − F̃)−1 is non-negative.
For any non-negative matrix A, we have ∥A∥∞ = ∥A1∥∞.
Consequently, we obtain

∥J̃∥∞ = ∥(1− F̃)−11∥∞
= ∥(1− F̃)−1∥∞. (8)

Now consider the second factor in the right-hand side of (7),
i.e., ∥(F̃− F)J∥∞. Fix any recovery state s. We have∣∣∣∣((

F̃− F
)
J

)
s

∣∣∣∣ =
∣∣∣∣∣∣
∑
s′∈S̃

(
F̃ss′ − Fss′

)
Js′

∣∣∣∣∣∣
(a)

≤
∑
s′∈S̃

∣∣∣F̃ss′ − Fss′

∣∣∣ · |Js′ |

≤

∑
s′∈S̃

∣∣∣F̃ss′ − Fss′

∣∣∣
 ∥J∥∞

≤ η∥J∥∞,

where we use the triangle inequality to move the absolute
value inside the sum and then the fact that |ab| = |a||b| to
obtain (a). Since this bound holds for any state s, we have

∥(F̃− F)J∥∞ ≤ η∥J∥∞.

Substituting this bound and (8) into (7) yields

∥J̃− J∥∞ ≤ ∥(1− F̃)−1∥∞∥(F̃− F)J∥∞
≤ η∥J̃∥∞∥J∥∞.

Since the recovery time-to-go from the terminal state is 0 [cf.
Def. 3], we have ∥J̃ − J∥∞ = ∥J̃ − J∥∞, ∥J̃∥∞ = ∥J̃∥∞,
and ∥J∥∞ = ∥J∥∞. The proof is thus complete.

Given Lemma 1, we are now ready to derive the proof of
Prop. 1. The event that a hallucinated action â is selected over
a non-hallucinated action ã in (4) implies

Q̃(s̃, â) ≤ Q̃(s̃, ã).

To show that this inequality cannot hold under the propo-
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sition’s assumptions, we start by bounding the difference
between Q̃ and Q, where Q(s,a) is the true expected recovery
time-to-go when taking response action a in state s and
Q̃(s,a) is the LLM’s estimate. We have

|Q̃(s,a)−Q(s,a)| =∣∣∣∣ ∑
s′∈S̃

pθ′(s′ | s,a, I)J̃(s′)−
∑
s′∈S̃

P (s′ | s,a, I)J(s′)
∣∣∣∣

=

∣∣∣∣ ∑
s′∈S̃

pθ′(s′ | s,a, I)J̃(s′)−
∑
s′∈S̃

P (s′ | s,a, I)J(s′)+

∑
s′∈S̃

pθ′(s′ | s,a, I)J(s′)−
∑
s′∈S̃

pθ′(s′ | s,a, I)J(s′)
∣∣∣∣

=

∣∣∣∣ ∑
s′∈S̃

pθ′(s′ | s,a, I)
(
J̃(s′)− J(s′)

)
−

∑
s′∈S̃

(
P (s′ | s,a, I)− pθ′(s′ | s,a, I)

)
J(s′)

∣∣∣∣
(a)

≤
∣∣∣∣ ∑
s′∈S̃

pθ′(s′ | s,a, I)
(
J̃(s′)− J(s′)

) ∣∣∣∣+∣∣∣∣ ∑
s′∈S̃

(
P (s′ | s,a, I)− pθ′(s′ | s,a, I)

)
J(s′)

∣∣∣∣
(b)

≤
∑
s′∈S̃

∣∣∣∣pθ′(s′ | s,a, I)
(
J̃(s′)− J(s′)

) ∣∣∣∣+
∑
s′∈S̃

∣∣∣∣(P (s′ | s,a, I)− pθ′(s′ | s,a, I)
)
J(s′)

∣∣∣∣
(c)

≤
∑
s′∈S̃

∣∣∣∣pθ′(s′ | s,a, I)
(
J̃(s′)− J(s′)

) ∣∣∣∣+
∑
s′∈S̃

∣∣∣∣pθ′(s′ | s,a, I)− P (s′ | s,a, I)
∣∣∣∣∥J∥∞

≤ ∥J̃ − J∥∞ + η∥J∥∞
(d)

≤ η∥J̃∥∞∥J∥∞ + η∥J∥∞︸ ︷︷ ︸
=∆

,

where (a)-(b) follow from the triangle inequality; (c) uses
the fact that ∥ab∥∞ ≤ ∥a∥∞∥b∥∞; and (d) follows from
Lemma 1. This bound implies that

Q(s,a)−∆ ≤ Q̃(s,a) ≤ Q(s,a) + ∆. (9)

Now, if a hallucinated action â is selected over a non-
hallucinated action ã in (4), we must have

Q̃(s, â) ≤ Q̃(s, ã).

Combining this inequality with (9), we have

Q(s, â)−∆ ≤ Q̃(s, â)

≤ Q̃(s, ã)

≤ Q(s, ã) + ∆

=⇒ Q(s, â)−Q(s, ã) ≤ 2∆.

(10)

Notation(s) Description

a Response action; cf. §IV-D.
s, s̃ Recovery state [cf. (3)] and predicted state.
I Initial information about the incident (e.g., logs).
T Recovery time; cf. §IV-D.
pθ,θ the token distribution of an LLM and its parameters; cf. (1).
θ′ Fine-tuned parameter vector of an LLM; cf. §IV-B.
D Instruction dataset for fine-tuning; cf. §IV-B.
x,y Instruction and desired output; cf. §IV-B.
N Number of candidate actions to evaluate; cf. §IV-D.
M Number of samples to estimate expected values in Alg. 1.
ãt The response action selected after planning; cf. (4).
J, J̃ Recovery time-to-go functions (true and estimated); cf.§IV-D.
Q, Q̃ Q-functions (true and estimated by LLM); cf. §IV-D.
S,A Sets of recovery states and response actions; cf. §IV-D.
S̃ Set of non-terminal recovery states; cf. §IV-D.
AN

t The set of N candidate actions at time step t; cf. §IV-D.

TABLE 6: Notation.

Next, since â is hallucinated and ã is not, we have

Q(s, â) = 1 + Es′ [J(s
′) | â, s, I] = 1 + J(s),

Q(s, ã) = 1 + Es′ [J(s
′) | ã, s, I] ≤ 1 + J(s)− δ.

Substituting Q(s, â) = 1+J(s) into the inequality, we obtain

Q(s, â) ≥ Q(s, ã) + δ

=⇒ δ ≤ Q(s, â)−Q(s, ã) ≤ 2∆

= 2
(
η∥J̃∥∞∥J∥∞ + η∥J∥∞

)
= 2η∥J∥∞

(
∥J̃∥∞ + 1

)
.

Since the conditions of the proposition state that

δ > 2η∥J∥∞
(
∥J̃∥∞ + 1

)
,

we conclude that whenever a non-hallucinated action exists, it
will be selected by the minimization (4).

APPENDIX B
NOTATION

Our notation is summarized in Table 6.

APPENDIX C
EXPERIMENTAL SETUP

All computations are performed using 4×QUADRO RTX
8000 GPUS. The hyperparameters that we use for fine-tuning
and for instantiating PPO are listed in Table 7. Parameters not
listed in Table 7 are set to default values.

APPENDIX D
DATASET GENERATION

To generate the dataset of instruction-answer pairs for fine-
tuning, we use a combination of log data from our testbed
and synthetic data generated by frontier LLMs. Specifically, we
first run the attacks listed in Table 8 on our testbed. Such runs
generate system measurements and logs (e.g., SNORT alerts
[72]), based on which we construct 500 instruction-answer
pairs. Each instruction consists of log data and previously
applied response actions, as well as a task to either generate a
response action or predict the current recovery state; cf. Def. 1.
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Parameter(s) Value(s)

LORA rank r 64
LORA α 128
LORA dropout 0.05
Learning rate 0.00095
Batch size 5
Gradient accumulation steps 16
Temperature 0.6
Number of training epochs 2
Quantization 4 bit

PPO [18, Alg. 1]

Learning rate, # hidden layers 5148 · 10−5, 1,
# Neurons/layer 64
# Steps between updates, 2048,
Batch size, discount factor γ 16, 0.99
GAE λ, clip range, entropy coefficient 0.95, 0.2, 2 · 10−4

Value coefficient, max gradient norm 0.102, 0.5
Feature representation the original cyborg features [84] &

one-hot encoded scan-state &
decoy-state for each node

TABLE 7: Hyperparameters.
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Fig. 14: Distributions of the number of tokens (upper plot) and MITRE
ATT&CK TACTICS [77] (lower plot) in our dataset of instruction-answer pairs
(x, y), which we use for fine-tuning the LLM. The dataset is available at [19].

Similarly, each answer either consists of the true recovery state
or the optimal response action, both of which are manually
selected based on knowledge about the incident.

Since these 500 instruction-answer pairs are too few for ef-
fective fine-tuning, we then expand the dataset using synthetic
data generated by prompting GEMINI 2.5 [16] and OPENAI O3
[14] with our testbed examples to generate new examples of
similar structure but for different types of systems and attacks,
yielding a total dataset of size 68, 000. This dataset covers a
diverse range of attacks, system architectures, and log data.
Each instruction-answer pair follows a specific JSON structure.
Figure 14 shows the distributions of token counts and MITRE
ATT&CK tactics [77] in our dataset. We see that most incidents
are described by around 1200 tokens, and the most common
attacker tactics are INITIAL ACCESS and EXECUTION. The
prompt templates that we use are available at [19].

Our approach of combining testbed examples with synthetic
examples is inspired by the studies presented in [85] and [86],
which successfully used similar approaches to generate fine-
tuning datasets for other domains, e.g., the medical domain.

Type Actions MITRE ATT&CK technique

Reconnaissance TCP SYN scan, UDP scan T1046 service scanning
TCP XMAS scan T1046 service scanning
VULSCAN T1595 active scanning
ping-scan T1018 system discovery

Brute-force TELNET, SSH T1110 brute force
FTP, CASSANDRA T1110 brute force
IRC, MONGODB, MYSQL T1110 brute force
SMTP, POSTGRES T1110 brute force

Exploit CVE-2017-7494 T1210 service exploitation
CVE-2015-3306 T1210 service exploitation
CVE-2010-0426 T1068 privilege escalation
CVE-2015-5602 T1068 privilege escalation
CVE-2015-1427 T1210 service exploitation
CVE-2014-6271 T1210 service exploitation
CVE-2016-10033 T1210 service exploitation
SQL injection (CWE-89) T1210 service exploitation

TABLE 8: Attacker actions executed on our testbed to generate the initial
examples for our training dataset, which we use for fine-tuning the LLM.
Actions are mapped to the corresponding vulnerabilities they exploit, as
indicated by the CVE [68] and CWE [87] identifiers. The actions are also linked
to the corresponding attack techniques in the MITRE ATT&CK taxonomy [77].
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