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Abstract
Backdoor injection attacks are a threat to machine learn-
ing models that are trained on large data collected from
untrusted sources; these attacks enable attackers to inject
malicious behavior into the model that can be triggered by
specially crafted inputs. Prior work has established bounds
on the success of backdoor attacks and their impact on the
benign learning task, however, an open question is what
amount of poison data is needed for a successful backdoor
attack. Typical attacks either use few samples, but need
much information about the data points or need to poison
many data points.

In this paper, we formulate the one-poison hypothesis: an
adversary with one poison sample and limited background
knowledge can inject a backdoor with zero backdooring-
error and without significantly impacting the benign learn-
ing task performance. Moreover, we prove the one-poison
hypothesis for linear regression and linear classification.
For adversaries that utilize a direction that is unused by the
benign data distribution for the poison sample, we show
that the resulting model is functionally equivalent to a
model where the poison was excluded from training. We
build on prior work on statistical backdoor learning to show
that in all other cases, the impact on the benign learning
task is still limited. We also validate our theoretical results
experimentally with realistic benchmark data sets.

1 Introduction
Machine learning on publicly available data is highly prone
to data poisoning attacks that aim to inject backdoors into
a model. Malicious parties could, e.g., randomly sprinkle
poisoned data points on the Internet, hoping for a success-
ful backdoor injection. Yet, data poisoning attacks are theo-
retically not sufficiently understood to assess whether such
attacks will succeed, not even for linear models.

Prior work that provides theoretical bounds on backdoor
injection attacks requires a significant fraction of the data
to be poisoned in order to establish a bound on the ac-

curacy of a backdoor attack. Poisoning such a large num-
ber of data points raises multiple problems for an attacker.
One particular issue is the fact that such a large number
of untypical data points can be easily detected and point
to malicious behaviour, revealing the attack. In contrast,
the modification of only few data points allows for plau-
sible deniability, as these modification might, e.g., be due
to measurement errors. Hence, Wang et al. [16] raise the
question of “when will a backdoor attack succeed with a
vanishing [fraction] ρ” of poisoned data points? Chaudhari
et al. [2], Zhong et al. [19], Tan et al. [14] empirically illus-
trate that a one-poison attack is possible for specific tasks
with rich data points. Their results, however, leave the ques-
tion open for which other tasks such a one-poison attack
can succeed, what the theoretical bounds for the success
of the backdoor attack are, and how well the original, be-
nign task is learned. For an omniscient attacker knowing all
training data points, Hoang [6] provide initial bounds for a
one-poison attack.

Hence, previous backdoor attacks were either able to per-
form a one-poison attack but needed exact knowledge about
all data points or needed to poison a significant fraction of
the data points, but needed less knowledge about the other
data points. One might thus wonder whether this tradeoff
between the number of poisoned data points and the needed
knowledge is inherent. We study this open question from
the literature that we pose as the one-poison hypothesis:

One-Poison Hypothesis. Any machine learning model can
be backdoored by a non-omniscient attacker with zero
backdooring-error with a single poison sample with no sig-
nificant harm to benign learning with probability almost 1.

1.1 Main contributions
To understand this problem space, we confirm this hypoth-
esis for linear regression and linear classification.

• We prove that with little knowledge of the training
data, a single poisoned sample suffices to backdoor a
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Symbol Description

x data point
n size of training data
d Dimensionality of data space, i.e. Rd

η poison pattern strength
1− φ targeted prediction of poisoned sample

(regression)
xp single poison sample
C regularization parameter

µ cl/µ bd/µ poi benign/backdoored/poisoned data distribution
f̂cl/f̂poi classifier trained on benign/poisoned data

LL2H/lL2H regularized/per sample Hinge loss
LSE/lSE regularized/per sample squared error loss
r cl
n

(
f̂poi

)
statistical risk on benign data,
expectation taken over training data

r poi
n

(
f̂poi

)
statistical risk on poisoned data,
expectation taken over training data

Table 1: Notation Table

linear classification or linear regression model with no
attack error with probability almost 1. In contrast to
previous work, our bounds are proven and confirmed
on real-world data.

• We prove that, if all samples from the benign data dis-
tribution have zero magnitude projected onto some di-
rection, then both clean and poisoned model are func-
tionally equivalent for any clean data sample, if the at-
tacker chooses that direction for its single poison sam-
ple.

• We build on the prior work by Wang et al. [16] for
classification and extend their work for regression to
show that in all other cases, the impact of the poison
sample on the benign learning task is still limited.

• We validate our theoretical results by evaluating them
on realistic benchmark.

2 Overview
We provide an overview of our technique to confirm the
one-poison hypothesis for linear classification and linear
regression. Our proofs guarantee a successful backdoor at-
tack and limited impact, in some cases even no impact, on
the benign learning task. In our proof for guaranteeing a
successful backdoor (cf. Theorem 2), we construct an at-
tacker whose goal it is to leave a sufficiently large imprint
on the classifier / regressor in any one direction. During in-
ference stage, the adversary then triggers the backdoor be-
havior using a poison patch that activates the imprint and
thus changes the prediction. Our proof for linear classifica-
tion follows a similar idea as for linear regression. Hence,
we only provide an intuition for linear regression.

Our main contribution is a one-poison attack for non-
omniscient attackers.1 We identify a simple sufficient prop-

1For an omniscient attacker, Hoang [6] has shown that a one-poison

erty for injecting a backdoor through a single poisonous
data point. For that we need the notion of the magnitude
of a data set in a direction that is characterized by a vec-
tor u ∈ RD. The magnitude of a data set D in a direc-
tion u is the sum over each data point’s length projected
onto u, i.e.,

∑
x∈D ∥proj(x, u)∥2 =

∑
x∈D ∥xTu/∥u∥2

2 ·u∥2.
The sufficient condition that we identified requires that
mean and variance of this magnitude for a single direc-
tion u are known to the adversary. We show that using this
knowledge, an adversary can inject a backdoor with zero
backdoor-error and if the magnitude is 0 (in mean and vari-
ance), the poison sample does not affect the benign learning
task at all (cf. Theorem 3). We also show that if this mag-
nitude is not 0, the impact on the benign learning task is
limited (cf. Corollary 4).

In the simplest case of our proof for linear regression,
assume that there is a direction u ∈ RD such that the sam-
ples from the benign data distribution have zero projected
magnitude onto u. The attacker constructs their single poi-
son along the direction of u. They desire a specific property
of the regressor, that the poison sample is predicted by the
regressor with large enough value 1 − φ (φ ∈ (0, 1)). To
obtain this property, the adversary enforces the loss’s gradi-
ent to be non-zero, whenever this property is not satisfied.
For training a linear regressor with regularized squared er-
ror loss, the gradient of the loss function for a classifier
T ∈ RD is the difference of the classifier T and a sum
of training data points, weighted with a regularization fac-
tor C. Only the classifier disturbs the impact of the poison
sample in the gradient as benign training data points have
no magnitude projected onto u by assumption. We show
that if the magnitude of the poison sample is now larger
than

√
φ(1 − φ)/φ

√
C for regularization factor C, then it will

outdo the regularization in the gradient.
During inference, the attacker patches the pattern with

increased magnitude onto any test data point to change pre-
diction of the data point. The increased magnitude of the
poison patch increases the impact of the imprinted poison
sample in the prediction of the regressor. This can arbitrar-
ily change the prediction of the test data point when the
poison patch is applied.

For the special case of zero magnitude of training data in
direction u, we also show functional equivalence between
clean and poisoned regressor. The high-level idea is that
no benign data interferes with poisoned data in the learn-
ing phase and vice versa, because they are orthogonal. We
show, that the task of optimizing the model can the be split
into two independent tasks and their results are added to-
gether: One task is optimizing a benign model part and the
other optimizing a poison model part. The poison model
part is orthogonal to the benign model part, so predicting
a benign test sample is not influenced by the benign model
part, resulting in functional equivalence.

For bounding the impact of the poison sample on the be-
nign learning task in general, we build on results on sta-
tistical poisoned learning for linear classification by Wang
et al. [16] and extend their work to linear regression. These

attack basically follows the same idea as in the impossibility of byzantine
agreement [1].
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proofs bound the discrepancy between poisoned model and
optimal clean model by bounding first the discrepancy be-
tween poisoned model and optimal poisoned model and
then the discrepancy between optimal poisoned model and
optimal clean model. The first discrepancy will be expected
to be small when a good training algorithm is deployed and
the second discrepancy will also be expected to be small
since there is only a single sample that differs between the
poisoned task and the benign task.

2.1 Related work
Data poisoning backdoor attacks. Data poisoning
backdoor attacks add maliciously crafted samples to the
training data of a machine learning model to implant hid-
den triggers into the model, that when activated, leads to
malicious behavior while the model continues to perform
normally in the absence of such an active trigger. To the
best of our knowledge the first work to explore data poi-
soning attacks is that of Gu et al. [5], which similar to our
work crafts a poison sample with a target label that is spec-
ified by the adversary.
One poison sample backdoor. There are only few pa-
pers on backdoor injection specifically with one poison
sample, to the best of our knowledge. Theoretical works
on that topic assume that the adversary is omniscient, i.e.,
knows all training data, whereas we do not make such an as-
sumption. Blanchard et al. [1] show, that a sum of elements
can be arbitrarily changed by controlling a single element
when all other elements are known. Hoang [6] apply the
principle of Blanchard et al.’s work to linear and logistic
regression, since the gradient of the loss functions for lin-
ear regression and logistic regression are both essentially
a weighted sum of training data points. Hoang can make
the gradient a 0-gradient for an attacker chosen regressor,
so that this regressor is optimal for the optimization task.
For achieving the 0-gradient Hoang use gradient inversion,
i.e., generating a data point for a specific desired gradient,
which is straightforward for linear and logistic regression.
Tan et al. [14], Zhong et al. [19], Chaudhari et al. [2] em-
pirically demonstrate that a single poison document / pas-
sage suffices to backdoor retriever models. Their evaluation
shows attack success rates ranging from 28%− 100%.
Theoretical understanding of backdoor attacks.
Manoj and Blum [10] find that the excess memorization
capacity of a model, i.e., the fact that a model can learn
more tasks than the benign learning tasks, is necessary
for a backdoor. They show that overparameterized linear
models, i.e., linear models of dimension d where the input
data from Rd resides in a smaller subspace of dimension
s < d, can be poisoned with learning error on benign data
of εclean and backdoor data of εadv. The number of poison
samples required is Ω(ε−1

adv((d+1)+ log 1/δ)) where d+1
is the VC-dimension of linear classifiers and δ is the failure
probability. This number can be a very large constant for
small learning error.

Xian et al. [17] propose the ’adaptability hypothesis’ to
explain the success of a backdoor attack: A good backdoor
attack should not change the predicted value too much be-
fore and after the backdoor attack. Their findings suggest

that a good attack should have direction of low variance.
For kernel smoothing algorithms and a specific benign data
distributions that follows a multivariate normal distribution
they prove that for n → ∞, a large poison strength can
counter a small poison ratio and yield no harm on the be-
nign learning task and zero backdoor error.

Wang et al. [16] provide generalization bounds for be-
nign task learning and backdoor learning for data poison-
ing. Their bound on the statistical risk of the poisoned clas-
sifier on data with backdoor trigger scales with 1/ρ · rpoi, ig-
noring further additive error terms, where rpoi is the statisti-
cal risk on input from training distribution. For 1/ρ = n, i.e.,
a single poison sample, this bound can quickly become im-
practical due to the factor n on the statistical risk on training
data. Wang et al. further show for benign data distributions
that follow a multivariate normal, the direction of smallest
variance is most successful for a backdoor attack. For the
case of distributions with a direction where the distribution
is a point, they show that any backdoor attack will be suc-
cessful but only asymptotically. A backdoor attack is con-
sidered successful by Wang et al. if for dataset size n, one
has lim supn→∞ rbd/rcl ≤ C, where rbd is the statistical
risk of a poisoned classifier on data with backdoor trigger
and rcl is the statistical risk of a clean model on benign data.
Consequently, a very large constant C might fulfill this def-
inition, while the risk on data with backdoor trigger might
not be meaningfully bounded.

Li and Liu [8] provide bounds on benign learning task
accuracy and backdoor attack success rate of backdoor at-
tacks on overparameterized CNNs assuming data is con-
structed from random patches that follow a multivariate
normal distribution for a poison ratio that is sub-linear in
the training dataset size n.

Yu et al. [18] propose a generalization bound for be-
nign learning and backdoor learning for neural networks
and also more general hypothesis spaces. Their bound on
the statistical risk of the poisoned model on data with back-
door patch roughly scales with L/ρ, where L is the cross-
entropy loss on poisoned training data. For ρ = 1/n, i.e., a
single poison sample, this bound can also quickly become
impractical due to the factor n on the cross-entropy loss.

3 Preliminaries
Linear regression. We train a linear regressor minimiz-
ing the regularized squared error loss Lsq with regulariza-
tion parameter C:

min
f̂cl

Lsq(Dcl, f̂cl) = min
f̂cl

1

2
∥f̂cl∥22

+ C ·
∑

(xi,yi)∈Dcl

(yi − f̂T
cl xi)

2.

The gradient of regularized squared error loss is

∇f̂cl
Lsq(Dcl, f̂cl) = f̂cl + C ·

∑
(xi,yi)∈Dcl

(f̂T
cl xi − yi)xi.

We can predict test samples x in inference stage: f̂T
cl x.

The following lemma will be useful throughout the paper.
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Lemma 1. Let a and b be two orthogonal vectors. Then
∥a+ b∥22 = ∥a∥22 + ∥b∥22.

Proof. We have ∥a+b∥22 = (a+b)T (a+b) = aTa+2aT b+
bT b = ∥a∥22 + 2aT b + ∥b∥22. As a and b are orthogonal,
aT b = 0, which concludes the proof.

Linear classification. We train a linear classifier mini-
mizing the regularized Hinge loss LHinge with regulariza-
tion parameter C (training stage):

min
f̂cl

LHinge(Dcl, f̂cl)

=min
f̂cl

1

2
∥f̂cl∥22 + C ·

∑
(xi,yi)∈Dcl

max (0, 1− yif̂
T
cl xi).

(1)

The gradient of regularized Hinge loss is

∇f̂cl
LHinge(Dcl, f̂cl) = f̂cl − C ·

∑
(xi,yi)∈Dcl:f̂T

cl xiyi<1

xiyi.

We can predict test samples x in inference stage: f̂T
cl x. In

this work, we also consider the Lagrangian dual of the lin-
ear classification problem of Equation (1). For obtaining the
Lagrangian dual, we first formulate the primal optimization
problem which is equivalent to Equation (1):

min
w,ξ

1

2
∥w∥22 + C ·

n∑
i=1

ξi (2)

s.t. − ξi ≤ 0 and (1− yiw
Txi)− ξi ≤ 0 for i = 1, ..., n.

We can then construct the Lagrangian of Equation (2):

L(w, ξ, α, r) = 1

2
∥w∥22 + C ·

n∑
i=1

ξi (3)

−
n∑

i=1

αi

(
yiw

Txi − 1 + ξi
)
−

n∑
i=1

riξi,

where the αi and ri are Lagrange multipliers constrained to
being ≥ 0. We formulate the primal of Equation (2) equiv-
alently as

min
w,ξ

max
α,r

L(w, ξ, α, r). (4)

Then, the dual of the problem is defined as

max
α,r

min
w,ξ

L(w, ξ, α, r) . (5)

For solving the dual, we first set the derivative of L with
respect to w to zero. From the derivative, we obtain that for
any α, r, the minimizing w is w =

∑n
i=1 αixiyi. Inserting

into the Lagrangian of Equation (3) yields the following
form of the dual optimization problem of Equation (5):

max
(α)ni=1

n∑
i=1

αi −
1

2

n∑
i=1,j=1

αiαjyiyjx
T
i xj (6)

s.t. 0 ≤ αi ≤ C for i = 1, ..., n.

Threat model. The adversary provides a single ma-
liciously crafted sample to the training data set to plant
a backdoor into the trained model. The backdoor should
have no backdoor error, i.e., 100% of samples with injected
backdoor patch get classified as positive (classification) or,
respectively, get labeled with +1 (regression). The single
poison sample should also not degrade learning the be-
nign task. The adversary does not need to know the ex-
act training data or even the exact distribution of the be-
nign data. They need, however, an estimate on mean and
variance of the benign data when projected onto some di-
rection u ∈ RD that the adversary uses to launch their
attack. To this end, we define a random variable s

(u)
m =∑m

i=1 ∥x
T
i u/∥u∥2

2 · u∥2 that for m data points xi ∼ µ cl
(i = 1, 2, ...,m) from benign data distribution µ cl, sums
up the lengths when those data points are projected onto a
direction u ∈ Rd, and let µsignal, σ

2
signal be mean and vari-

ance of s(R)
m . We assume the size n of the benign training

data to be fixed and known to the adversary.

4 One-poison hypothesis for linear
regression

In this section, we show validity of the one-poison hypoth-
esis for linear regression. Our proof for linear classification
follows a similar idea. We briefly discuss linear classifica-
tion in Section 4.3, for the complete proofs, we refer to the
appendix.

4.1 Single poison sample backdoor for linear
regression

Our first result shows that a single poison sample suffices to
backdoor a linear regressor with zero backdoor error with
probability almost 1:

Theorem 2. Let 0 < δ, φ < 1. Let the size n of the benign
data Dcl be fixed. Let R ∈ Rd×d :

(
det (R) = 1∧RTR =

Id
)
, then define the poison sample xp = R · (0, 0, ...., 0, η).

Let s
(u)
m be defined as in the threat model (cf. Sec-

tion 3) with mean and variance µsignal, σ2
signal. Assume

that there is some bound [−K,K] (K ∈ R+) on
regression labels and regressor output. With poison
pattern strength η > 1

2φ (2K(µsignal + σ2
signal/

√
δ) +√

4(µsignal + σ2
signal/

√
δ)2 + 4K2φ(1 − φ)/C) and patch

function patch(x) = x + R · (0, 0, ..., 0, |(−f̂T
poix +

1)/(f̂T
poixp) · η|), the adversary achieves with probability

1− δ that ∀x ∈ Ω|y=−1 : f̂
T
poi patch(x) = 1.

Proof. We define the gradient of squared error loss w.r.t.
poisoned model f̂poi as g := ∇L(f̂poi), which is equal to

C ·
∑

xi∈Dcl

(f̂T
poixi − yi)xi + C · (f̂T

poixp − 1)xp + f̂poi.

To exploit the backdoor during inference stage, the adver-
sary desires the property f̂T

poix ≥ 1. The adversary con-
structs a single poison sample xp ∈ Rd \ {0}, so that for
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any regressor that does not satisfy this property, its gradi-
ent g will have gTxp < 0 almost certainly which implies
g ̸= 0, i.e., that regressor is not optimal. We investigate the
probability of the adversary being successful:

Pr[gTxp < 0] = Pr[
(
C ·

∑
xi∈Dcl

(f̂T
poixi − yi)xi

+ C · (f̂T
poixp − 1)︸ ︷︷ ︸

<0 since f̂T
poixp<1

xp + f̂poi
)T

xp < 0]

= Pr[C ·
∑

xi∈Dcl

xT
p (f̂

T
poixi − yi)xi

+ C · xT
p (f̂

T
poixp − 1)xp + f̂T

poixp < 0]

= Pr[C ·
∑

xi∈Dcl

(R · (0, ..., 0, η))T (f̂T
poixi − yi)(R · x(R)

i )

+ C · xT
p xp(f̂

T
poixp − 1) + f̂T

poixp < 0]

Here, x(R)
i := R−1xi and x

(R)
i,d are the d’th component.

= Pr[C · η ·
∑

xi∈Dcl

x
(R)
i,d (f̂T

poixi − yi)︸ ︷︷ ︸
LSE:=

+ C · xT
p xp︸ ︷︷ ︸
=η2

(f̂T
poixp − 1)︸ ︷︷ ︸

<−φ

+ f̂T
poixp︸ ︷︷ ︸
<1−φ

< 0]

≥ Pr[C · LSE · η − C · η2 · φ+ 1− φ < 0]. (7)

The adversary aims to bound LSE to obtain a magnitude
of positive η that guarantees gTxp < 0 with high probabil-
ity. To this end, for n data points in training data, the ad-
versary establishes a bound on the sum of the magnitudes
of benign training data points projected onto xp, and uses
µsignal and σ2

signal and Chebyshev’s inequality [3]: From

Pr[|s(u)|Dcl| − µsignal| ≥ k] ≤ σ2
signal/k

2 !
= δ

it follows that k = σ2
signal/

√
δ. The adversary using the as-

sumption of bounded regressor output and bounded regres-
sion label on [−K,K] bounds |(f̂T

poixi − yi)| ≤ 2 · K in-
side LSE, then sets ŝ := 2 · K · (µsignal + k) and obtains
Pr[LSE < ŝ] ≥ 1 − δ. Solving the quadratic inequality of

Equation (7) yields the solution η∗ >
ŝ+

√
ŝ2+

4φ(1−φ)
C

2φ and

Pr[C · LSE · η − C · η2 · φ+ 1− φ < 0] ≥ 1− δ.

Consequently, when the poisoned regressor attains opti-
mum, i.e., its gradient g satisfies g = 0, it has to hold that
f̂T

poixp ≥ 1−φ or else with high probability g ̸= 0. Now the
backdoor can be triggered via the patch function for every
sample x ∈ X and f̂T

poi patch(x) thus equals

= f̂T
poi

(
x+R · (0, 0, ..., 0, |(−f̂T

poix+ 1)/(f̂T
poixp) · η|)

)
= f̂T

poix+ |(−f̂T
poix+ 1)/(f̂T

poixp)| · f̂T
poi(

R · (0, 0, ..., 0, |η|)︸ ︷︷ ︸
=xp

)
= f̂T

poix+ |(−f̂T
poix+ 1)/(f̂T

poixp)| · |f̂T
poixp|︸ ︷︷ ︸

=−f̂T
poix+1

= 1.

The prior theorem assumes a bound [−K,K] on regres-
sor output and regression label, but note that this is merely
a technical assumption because otherwise the impact of be-
nign data could be arbitrarily large. In reality, regressor out-
put and regression label will certainly always have some
upper and lower bound. While the adversary can pick any
rotation R for the poison sample xp, when R is selected
such that all samples from benign data distribution pro-
jected onto the poison are zero-centered and have zero mag-
nitude, then µsignal = 0 and σ2

signal = 0. In this special case,
the adversary does not need to bound the impact of benign
training data and their success probability is exactly 1. The
bound on η simplifies to η >

√
φ(1 − φ)/(φ

√
C) since all

terms with µsignal, σ
2
signal can be dropped.

4.2 Impact on benign learning task

We now analyze the impact of the single poison sample
on the benign learning task. First, we show that if all sam-
ples from benign data distribution projected onto the poison
sample are zero-centered and have zero magnitude, then the
backdoor attack described in Theorem 2 does not impact
the benign learning task at all.

Theorem 3. Assume that µsignal = 0 and σ2
signal = 0, i.e.,

all samples from benign data distribution projected onto the
poison are zero-centered and have zero magnitude. Then
for all x ∈ X , an optimal regressor f̂poi is functionally
equivalent to an optimal f̂cl that is obtained when the single
poison xp is omitted in training.

Proof. Let xp be defined as in Theorem 2. From the defini-
tion, it follows that minf̂poi

Lsq(Dpoi, f̂poi) is equal to

=min
f̂poi

1

2
∥f̂poi∥22 + C ·

∑
(xi,yi)∈Dcl

(yi − f̂T
cl xi)

2

+ C · (1− f̂T
cl xp)

2 .

Now, we split the classifier f̂poi into two parts: the part of
f̂poi projected onto xp, i.e., projxp

(f̂poi) := f̂T
poixp/∥xp∥2 ·

xp, and the remainder of f̂poi, i.e., remxp(f̂poi) := f̂poi −
projxp

(f̂poi). We can thus write minf̂poi
Lsq(Dpoi, f̂poi) as

=min
f̂poi

1

2
∥projxp

(f̂poi) + remxp
(f̂poi)∥22

+ C ·
∑

(xi,yi)∈Dcl

(yi − (projxp
(f̂poi) + remxp(f̂poi))

Txi)
2

+ C · (1− (projxp
(f̂poi) + remxp

(f̂poi))
Txp)

2

5



By assumption, µsignal = σ2
signal = 0 and thus

=min
f̂poi

1

2
∥projxp

(f̂poi) + remxp
(f̂poi)∥22 (*)

+ C ·
∑

(xi,yi)∈Dcl

(yi − (projxp
(f̂poi)

Txi︸ ︷︷ ︸
=0

+

remxp
(f̂poi)

Txi))
2

+ C · (1− (projxp
(f̂poi)

Txp + remxp
(f̂poi)

Txp︸ ︷︷ ︸
=0

))2

=min
f̂poi

1

2
∥projxp

(f̂poi)∥22 +
1

2
∥remxp

(f̂poi)∥22

+ C
∑

(xi,yi)∈Dcl

(yi − remxp
(f̂poi)

Txi)
2

+ C · (1− projxp
(f̂poi)

Txp)
2

= min
remxp (f̂poi)

Lsq(remxp
(f̂poi), Dcl)

+ min
projxp

(f̂poi)
Lsq(projxp

(f̂poi), {xp})

Here, we used that projxp
(f̂poi) and remxp(f̂poi) are

orthogonal. Lemma 1 thus implies ∥projxp
(f̂poi) +

remxp(f̂poi)∥22 = ∥projxp
(f̂poi)∥22 + ∥remxp

(f̂poi)∥22. Using
this equality in (*) gives us the term completely separating
the projection from the remainder.

To deduce the functional equivalence, we need to
show that minimizing remxp(f̂poi)

∗, which is defined
as argminremxp (f̂poi)

Lsq(remxp(f̂poi), Dcl), is the same as
minimizing f∗ = argminf Lsq(f,Dcl). Intuitively, this is
true, as any vector of the form α · xp (α ∈ R \ {0}) is
orthogonal to remxp

(f̂poi)
∗. Adding α · xp to remxp

(f̂poi)
∗

does not change the prediction of any benign training data
point (x, y) ∈ Ω and can thus not reduce the data point’s
loss. More formally, let lSE be a data point’s squared error
loss, then

lSE(remxp
(f̂poi)

∗ + αxp, x)

=(y − (remxp
(f̂poi)

∗ + αxp)
Tx)2

=(y − ((remxp(f̂poi)
∗)Tx+ αxT

p x))
2

=lSE(remxp
(f̂poi)

∗, x).

Due to the orthogonality, we can again use Lemma 1
to show that the addition of α · xp only increases the
norm of the classifier, as ∥remxp

(f̂poi)
∗ + αxp∥22 =

∥remxp
(f̂poi)

∗∥22 + ∥αxp∥22 > ∥remxp
(f̂poi)

∗∥22.
We thus obtain the functional equivalence for x ∈ X by

using (minprojxp
(f̂poi)

Lsq(projxp
(f̂poi), {xp}))Tx = 0, as

(min
f̂poi

Lsq(Dpoi, f̂poi))
Tx = (min

f̂poi

Lsq(Dcl, f̂poi))
Tx .

Now we move on to the most general case where the
benign data distribution can be any distribution. For this,
we extend prior work [16] to regression:

Corollary 4. Corollary of [16, Theorem 1] Let µ cl be the
benign data distribution. We define the backdoor and poi-
soned distributions as

µ bd(x) = 1{x = xp}, µ poi(x) = (1− 1/n)µ cl + 1/nµ bd.

Let n be fixed. Let f̂poi be the regressor trained on n
samples from the poisoned distribution µ poi. Let l(., .) :
[0, 1] × [0, 1] 7→ R+ be a general loss function that is
(C,α)-Hölder continuous for 0 < α ≤ 1 that measures
the discrepancy between two regressors. The statistical risk
on benign input is bounded as

r cl
n

(
f̂poi

)
≤ 1

1− 1/n
r poi
n

(
f̂poi

)
+ C(µ cl(xp) · 1/n · 2)α .

Proof. First, since l is (C,α)-Hölder continuous:

r cl
n

(
f̂poi

)
= E

Dpoi

[
E

x∼µ cl

[
l(f̂poi(x), f

∗
cl(x))

]]
≤ E

Dpoi

[
E

x∼µ cl

[
l(f̂poi(x), f

∗
poi(x)) + C |f∗

poi(x)− f∗
cl(x)|α

]]
≤ E

Dpoi

[
E

x∼µ cl

[
l(f̂poi(x), f

∗
poi(x))

]]
+ C E

x∼µ cl

[
|f∗

poi(x)− f∗
cl(x)|α

]
.

Using Jensen’s inequality, this is at most

≤ E
Dpoi

[
E

x∼µ cl

[
l(f̂poi(x), f

∗
poi(x))

]]
+ C

(
E

x∼µ cl

[
|f∗

poi(x)− f∗
cl(x)|

])α
.

We bound each term on the right-hand side independently.
For the first term, we can bound

E
Dpoi

[
E

x∼µ cl

[
l(f̂poi(x), f

∗
poi(x))

]]
≤ (1− 1/n)−1 E

Dpoi

[
E

x∼µ poi

[
l(f̂poi(x), f

∗
poi(x))

]]
≤ (1− 1/n)−1r poi

n

(
f̂poi

)
.

As for the second term, by definition of the Bayes opti-
mal regressor for squared error loss [20], we have f∗

cl(x) =
E
µ cl
[Y |X = x] and, similarly,

f∗
poi(x) = E

µ poi
[Y |X = x] = E

µ cl
[Y |X = x] if x ̸= xp,

(1− 1/n) E
µ cl
[Y |X = xp] + 1/n E

µ bd
[Y |X = xp] if x = xp.

Combining prior equations, we get

f∗
poi − f∗

cl =


0 if x ̸= xp,
1/n · E

µ bd
[Y |X = xp]

−1/n E
µ cl
[Y |X = xp] if x = xp.
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Accordingly,

E
x∼µ cl

[
|f∗

poi(x)− f∗
cl(x)|

]
= Pr

µ cl
[X = xp] · |1/n E

µ bd
[Y |X = xp]

− E
µ cl
[Y |X = xp]|+ (1− Pr

µ cl
(X = xp) · 0

= µ cl(xp)1/n| E
µ bd

[Y |X = xp]− E
µ cl
[Y |X = xp]|

≤ µ cl(xp) · 1/n · 2.

Now, we plug the two bounds together:

r cl
n

(
f̂poi

)
≤ 1

1− 1/n
r poi
n

(
f̂poi

)
+ C(µ cl(xp) · 1/n · 2)α.

The attentive reader might be wondering why we con-
sider i.i.d. sampling of the data set that is different to our
prior assumption that the poison sample is guaranteed to
be added to training data. Slightly increasing the poison
ratio in the proof from 1/n to k/n for a small constant k
gives the probability of sampling at least one poison sam-
ple 1 − (1 − k/n)n. Under large enough data size n, this
turns to 1 − (1 − k/n)n →

n→∞
1 − e−k which quickly

goes to 1 when increasing k. The bound on the statistical
risk on benign data for k poison samples is r cl

n

(
f̂poi

)
≤

1
1−k/nr

poi
n

(
f̂poi

)
+ C(µ cl(xp) · k/n)α, so the bound is only

slightly higher.

4.3 One-poison hypothesis for linear classifi-
cation

We extend all of our results stated here to the case of lin-
ear classification using regularized Hinge loss, both in pri-
mal optimization and dual optimization. The attack works
mostly similar, but there are a few differences. The loss
function is different than regularized squared error loss: In
the gradient w.r.t. classifier f each data point x with la-
bel y is weighted by either 1 if fTxy < 1 and 0 oth-
erwise. Consequently, the poison sample xp’s impact on
gradient is not scaled down when fTxp approaches 1, so
the adversary does not need to account for this. Also, dur-
ing inference stage, the adversary must construct a poison
patch for test data point x that changes prediction from
fTx < 0 to fT patch(x) ≥ 0 so there is no need to aim
for a specific predicted value. Linear classification is often
performed using dual optimization, for instance using the
popular LIBLINEAR library [4]. We show using the strong
duality property of linear classification, i.e., that maximum
objective value of primal and dual are equal, that our results
for primal optimization also follow for dual optimization.
For full proofs, we refer to the appendix.

5 Experiments

5.1 Experimental setup
All experiments were run on an Intel Xeon Platinum 8168
2.7 GHz CPU with 32GB of RAM.

Model. We validate our developed theory for linear
regression and linear classification using the scikit-learn
Python library [13], trained for 1,000 iterations with reg-
ularization C = 1. For our functional equivalence ablation
for linear classification we use a vanilla implementation of
liblinear [4] instead of the one of scikit-learn to remove any
source of randomness.
Data sets. We evaluate regression data sets Parkinsons
[15] and Abalone [12], and classification data sets Spam-
base [7] and Phishing [11], each partitioned half and half
in training and test data. The data sets demand deduc-
ing motor impairment of patients from biomedical voice
measurements, predicting the age of abalone from physi-
cal measurements, detecting spam mail from word counts,
and detecting phishing websites from website meta data.
We choose these data sets as they represent realistic data
sets of real-world measurements.
Baselines. We train a clean model only on benign data.
We also evaluate a mean regressor producing the mean re-
gression label from training data for linear regression, and
a majority-vote classifier outputting the majority label from
training data for linear classification. For linear regression,
we report the mean squared error, for linear classification,
we report accuracy. Both metrics correspond to their learn-
ing task, i.e., reducing squared error (linear regression) and
improving accuracy (linear classification). We report mean
and standard deviation over five runs of random data splits.
Attack. We set the poison label to 1 and the magni-
tude of poison patch η = 1 for Parkinsons and Abalone,
η = 10 for Spambase and Phishing. For poison direction,
we compute a principal component analysis on each data
set and extract an eigenvector in direction with smallest
variance. This variance is 6.5e−12 for Parkinsons, 0.0001
for Abalone, 0.0004 for Spambase and 0.03 for Phishing.
A single poison sample is added to the training data set.

5.2 Results
Single poison sample backdoor. Table 2 and Table 3
show that a single poison sample suffices to inject a back-
door in linear regressors and classifiers. All test samples
with poison patches are predicted with the poison label in-
stead of the correct label. The single poison sample does not
significantly increase prediction error, showing bounded
impact on the benign learning task.
Ablation: Functional equivalence of clean model and
poisoned model with 0-dimension in data. To validate
our theoretic results, we add a dimension to the benign data
and set each benign sample’s value in that dimension to 0,
then calculate for 100 random test samples the L1-distance
of predictions between clean model and poisoned model.
We clip the predictions to two decimal places. In all set-
tings, the L1 distance is 0, showing functional equivalence
of clean model and poisoned model.

6 Conclusion
In this paper, we proved the one-poison hypothesis for both
linear regression and linear classification. Our attack shows
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Parkinsons

Regressor Benign Task MSE Backdoor MSE

Mean regr. 0.202± 0.002
Clean regr. 0.165± 0.002 3.852± 1.954
Poisoned regr. 0.166± 0.002 0.000± 0.000

Abalone

Regressor Benign Task MSE Backdoor MSE

Mean regr. 0.054± 0.001
Clean regr. 0.033± 0.001 7.391± 0.043
Poisoned regr. 0.034± 0.001 0.000± 0.000

Table 2: Clean and poisoned regressor test MSE of benign
and backdoor task. Single poison added to training data.
Mean regressor outputs mean of labels from training data.

Spambase

Classifier Benign Task (%) Backdoor Task (%)

Majority vote 60.00± 0.04
Clean 82.89± 0.05 18.33± 36.65
Poisoned 81.81± 0.04 100.00± 0.00

Phishing

Classifier Benign Task (%) Backdoor Task (%)

Majority vote 56.44± 0.01
Clean 92.47± 0.01 0.02± 0.05
Poisoned 92.37± 0.01 100.00± 0.00

Table 3: Clean and poisoned classifier test accuracy of be-
nign and backdoor task. Single poison added to training
data. Majority vote predicts majority label from training
data.

that such models can be successfully attacked by poisoning
a single data point with limited knowledge about the other
data points. Our bounds are formally proven, apply to real-
world instance sizes, and are verified experimentally also.

While typical countermeasures such as differential pri-
vacy look very promising [9], they also come with a large
performance or accuracy penalty. Promising future direc-
tions are thus the development of efficient countermeasures
and the transfer of our results to more complex models.
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A One-poison hypothesis for linear
classification

In this section, we answer the one-poison hypothesis for
linear classification: We first show that a single poison sam-
ple suffices to backdoor a linear classifier with zero back-
door error with probability almost 1. We extend this result
to the case where the learner uses dual optimization to fit
their classifier. We then show that the poison sample does
not impact the benign learning task at all when all data from
the benign data distribution projected onto the poison sam-
ple is zero-centered and has zero magnitude. For all other
cases, we show that the impact is still limited.

A.1 Single poison sample backdoor for lin-
ear classification

Our first result shows that a single poison sample suffices
to backdoor a linear classifier with zero backdoor error with
probability almost 1:

Theorem 5. Let 0 < δ < 1. Let the size n of
the benign data Dcl be fixed. Let R ∈ Rd×d :(
det (R) = 1 ∧ RTR = Id

)
, then define the poison sam-

ple xp = R · (0, 0, ...., 0, η). Let s
(u)
m be defined as in

the threat model (cf. Section 3) with mean and variance
µsignal, σ

2
signal. With poison pattern strength η > 1

2 (µsignal +

σ2
signal/

√
δ +

√
(µsignal + σ2

signal/
√
δ)2 + 4/C) and patch

function patch(x) = x + R · (0, 0, ..., 0,K · η), the ad-
versary achieves with probability 1− δ that

∀x ∈ Ω|y=−1 : f̂
T
poix > −K ⇒ f̂T

poi patch(x) ≥ 0 .

Proof. We define the gradient w.r.t. poisoned model f̂poi as

g := ∇f̂poi
L(f̂poi) = C ·

∑
(xi,yi)∈Dcl:f̂T

poixiyi<1

−xiyi

− C · xp · 1{f̂T
poixp < 1}+ f̂poi.

To exploit the backdoor during inference stage, the adver-
sary desires the property f̂T

poix ≥ 1. The adversary con-
structs a single poison sample xp ∈ Rd \ {0}, so that for
any classifier that does not satisfy this property, its gradi-
ent g will have gTxp < 0 almost certainly which implies
g ̸= 0, i.e., that classifier is not optimal. We investigate the
probability of the adversary being successful:

Pr[gTxp < 0] = Pr[
(
C ·

∑
(xi,yi)∈Dcl:f̂T

poixiyi<1

−xiyi

− C · xp · 1{f̂T
poixp < 1}︸ ︷︷ ︸

=1 by assumption

+f̂poi
)T

xp < 0]

= Pr[C ·
∑

(xi,yi)∈Dcl:f̂T
poixiyi<1

−xT
p xiyi

− C · xT
p xp + f̂T

poixp < 0]

= Pr[C ·
∑

(xi,yi)∈Dcl:f̂T
poixiyi<1

−(R · (0, ..., 0, η))T

Let x(R)
i := R−1xi and x

(R)
i,d its d’th component, then

(R · x(R)
i )yi

− C · xT
p xp + f̂T

poixp < 0]

= Pr[C ·
∑

(xi,yi)∈Dcl:f̂T
poixiyi<1

−(0, ..., 0, η)Tx
(R)
i yi

− C · xT
p xp + f̂T

poixp < 0]

= Pr[C · η ·
∑

xi∈Dcl:f̂T
poixiyi<1

x
(R)
i,d yi

︸ ︷︷ ︸
LL2H:=

−C · xT
p xp︸ ︷︷ ︸
=η2

+ f̂T
poixp︸ ︷︷ ︸
<1

< 0] ≥ Pr[C · LL2H · η − C · η2 + 1 < 0]. (8)

The adversary aims to bound LL2H in order to obtain a mag-
nitude of positive η that guarantees gTxp < 0 with high
probability. To this end, for n data points in training data,
the adversary establishes a bound on the sum of the magni-
tudes of benign training data points projected onto xp, and
uses µsignal and σ2

signal and Chebyshev’s inequality [3]:

Pr[|s(u)|Dcl| − µsignal| ≥ k] ≤ σ2
signal/k

2 !
= δ

⇒ k = σ2
signal/

√
δ.

The adversary assumes all data points to be active in the
gradient and sets ŝ := µsignal + k and obtains

Pr[LL2H < ŝ] ≥ 1− δ.

Then, solving the quadratic inequality of Equation (8)

yields the solution η∗ >
ŝ+
√

ŝ2+ 4
C

2 and with that

Pr[C · LL2H · η∗ − C · (η∗)2 + 1 < 0] ≥ 1− δ.

Consequently, when the poisoned classifier attains opti-
mum, i.e., its gradient g satisfies g = 0, it has to hold that
f̂T

poixp ≥ 1 or else with high probability g ̸= 0. Now the
backdoor can be triggered via the patch function for every
sample x ∈ X : f̂T

poix > −K:

f̂T
poi patch(x) = f̂T

poi

(
x+R · (0, 0, ..., 0,K · η)

)
= f̂T

poix+K · f̂T
poi

(
R · (0, 0, ..., 0, η)

)
= f̂T

poix+K · f̂T
poixp︸ ︷︷ ︸
≥1

≥ f̂T
poi︸︷︷︸

≥−K

x+K ≥ 0.

In the prior theorem, the adversary can pick any rotation
R for the poison sample xp. When R is selected such that
all samples from benign data distribution projected onto
the poison are zero-centered and have zero magnitude, then
µsignal = 0 and σ2

signal = 0. In this special case, the adver-
sary does not need to bound the impact of benign training
data. Consequently, the bound on η simplifies to η > 1/

√
C

and the backdoor success probability is always exactly 1.
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A.2 Single poison sample backdoor for dual
optimization of linear classification

For linear classification instead of solving the task directly,
one often solves the dual of the problem using dual opti-
mization, e.g., via dual optimizers like liblinear. We
show that solving the dual exhibits the same susceptibility
to backdoor attacks as in the original task.

Corollary 6. Consider the same adversary as in Theo-
rem 5. If the learner utilizes dual optimization for obtaining
a linear classifier, then with probability 1 − δ the learned
model is backdoored.

Proof. The dual learner obtains a solution (α,w) with w =∑n
i=1 αixiyi that is dual optimal, i.e., is optimal for Equa-

tion (6). Because strong duality holds for linear SVM, the
objective value d∗ that (α,w) attains in the dual is also an
optimal objective value for the primal of Equation (4), so
(α,w) is also a minimizer of the primal of Equation (4).
Now for the sake of contradiction, assume that w does not
satisfy the adversary’s desired backdoor property, i.e., as-
sume that wTxp < 1. By Theorem 5, when choosing η
appropriately, with probability arbitrarily close to 1, the
gradient gt projected onto poison direction is not zero and
so gt ̸= 0. This implies that w can be further changed
to achieve smaller objective value in Equation (1). This
further implies that changing w can also reduce objective
value in Equation (2), and also in Equation (4). This con-
tradicts that (α,w) is a minimizer of the primal of Equa-
tion (4).

A.3 Impact on benign learning task
We now analyze the impact of the single poison sample
on the benign learning task. First, we show that if all sam-
ples from benign data distribution projected onto the poison
sample are zero-centered and have zero magnitude, then the
backdoor attack described in Theorem 5 does not impact
the benign learning task.

Theorem 7. Assume that µsignal = 0 and σ2
signal = 0, i.e.,

all samples from benign data distribution projected onto the
poison are zero-centered and have zero magnitude. Then
for all x ∈ X , an optimal linear classifier w is functionally
equivalent to an optimal w′ that is obtained when the single
poison xp is omitted in training.

Proof. Let xp be defined as in Theorem 5. By definition,
we have

min
f̂poi

LHinge(Dpoi, f̂poi)

=min
f̂poi

1

2
∥f̂poi∥22 + C ·

∑
(xi,yi)∈Dpoi

max (0, 1− yif̂
T
cl xi)

=min
f̂poi

1

2
∥f̂poi∥22 + C ·

∑
(xi,yi)∈Dcl

max (0, 1− yif̂
T
poixi)

+ C ·max (0, 1− f̂T
poixp) .

Now, we split the classifier f̂poi into two parts: the part of
f̂poi projected onto xp, i.e., projxp

(f̂poi) := f̂T
poixp/∥xp∥2 ·

xp, and the remainder of f̂poi, i.e., remxp
(f̂poi) := f̂poi −

projxp
(f̂poi). We can thus write minf̂poi

LHinge(Dpoi, f̂poi) as

=min
f̂poi

1

2
∥projxp

(f̂poi) + remxp
(f̂poi)∥22

+ C ·
∑

(xi,yi)∈Dcl

max (0, 1− yi(projxp
(f̂poi) + remxp

(f̂poi))
Txi)

+ C ·max (0, 1− (projxp
(f̂poi) + remxp(f̂poi))

Txp).

By assumption, µsignal = σ2
signal = 0, and we thus conclude

=min
f̂poi

1

2
∥projxp

(f̂poi) + remxp(f̂poi)∥22 (*)

+ C ·
∑

(xi,yi)∈Dcl

max (0, 1− yi(projxp
(f̂poi)

Txi︸ ︷︷ ︸
=0

+remxp(f̂poi)
Txi))

+ C ·max (0, 1− (projxp
(f̂poi)

Txp

+ remxp
(f̂poi)

Txp︸ ︷︷ ︸
=0

)).

As projxp
(f̂poi) and remxp

(f̂poi) are orthogonal, Lemma 1
implies

∥projxp
(f̂poi) + remxp(f̂poi)∥22

= ∥projxp
(f̂poi)∥22 + ∥remxp

(f̂poi)∥22 .

Using this equality in (*) gives us a term completely sep-
arating the projection from the remainder as

min
f̂poi

1

2
∥projxp

(f̂poi)∥22 +
1

2
∥remxp(f̂poi)∥22

+ C
∑

(xi,yi)∈Dcl

max (0, 1− yiremxp
(f̂poi)

Txi)

+ C ·max (0, 1− projxp
(f̂poi)

Txp)

= min
f1 : projxp

(f1)=0
LHinge(f1, Dcl)

+ min
f2 : remxp (f2)=0

LHinge(f2, {xp}) .

To deduce the functional equivalence of the classifiers, we
need to show that minimizing

arg min
f1 : projxp

(f1)=0
LHinge(f1, Dcl) (9)

is the same as minimizing

argmin
f

LHinge(f,Dcl) .

Intuitively, this is true, because any vector of the form α ·
xp (α ∈ R \ {0}) is orthogonal to remxp(f̂poi)

∗. Adding
α · xp to a solution f∗

1 of Equation (9) does not change
the prediction of any benign training data point (x, y) ∈

11



Ω and, consequently, cannot reduce any data point’s loss.
More formally, let lL2H be a data point’s Hinge loss, then

lL2H(f
∗
1 + αxp, x)

=max (0, 1− y(f∗
1 + αxp)

Tx)

=max (0, 1− y((f∗
1 )

Tx+ α xT
p x︸︷︷︸
=0

))

=lL2H(f
∗
1 , x).

As projxp
(f1) = 0, we can again use Lemma 1 to show

that the addition of α ·xp can only increase the norm of the
f∗
1 , as

∥f∗
1 + αxp∥22

=∥f∗
1 ∥22 + ∥αxp∥22 > ∥f∗

1 ∥22 .

We thus obtain the functional equivalence for x ∈ X due
to the equality

(min
f̂poi

LHinge(Dpoi, f̂poi))
Tx

=(min
f

LHinge(Dcl, f))
Tx

+ ( min
f2:remxp (f2)=0

LHinge(f2, {xp}))Tx︸ ︷︷ ︸
=0

=(min
f̂poi

LHinge(Dcl, f̂poi))
Tx .

Again, this result also holds when using dual optimiza-
tion instead of solving the linear classification task directly,
as we show in the following result:

Theorem 8. Consider the same setting as in Theorem 7.
If the learner utilizes dual optimization for training linear
classifier w, then this is functionally equivalent to optimiz-
ing a classifier w′ with poison sample xp omitted in train-
ing.

Proof. The dual learner obtains a solution (α,w) with w =∑n
i=1 αixiyi that is dual optimal, i.e., is optimal for Equa-

tion (6). Because strong duality holds for linear SVM, the
objective value d∗ that (α,w) attains in the dual is also
optimal objective value for the primal of Equation (4), so
(α,w) is also a minimizer of the primal of Equation (4).
Consequently, w is also a minimizer of Equation (2) and of
Equation (1). By Theorem 7, any optimum of Equation (1)
satisfies the clean learning functional equivalence, so this
holds for this specific w as well.

Now, we move on to the most general case where the
benign data distribution can be any data distribution. For
this, we build on prior work [16] to show that the impact on
the benign learning task is still limited:

Corollary 9. Corollary of [16, Theorem 1] Let µ cl be the
benign data distribution. We define the backdoor and poi-
soned distributions as

µ bd(x) = 1{x = xp},

µ poi(x) = (1− 1/n)µ cl + 1/nµ bd .

Let n be fixed. Let f̂poi be the classifier trained on n sam-
ples from the poisoned distribution µ poi. Let l(., .) : [0, 1]×
[0, 1] 7→ R+ be a general loss function that is (C,α)-
Hölder continuous for 0 < α ≤ 1 that measures the dis-
crepancy between two classifiers. The statistical risk on be-
nign input is bounded as

r cl
n

(
f̂poi

)
≤ 1

1− 1/n
r poi
n

(
f̂poi

)
+ C(µ cl(xp) · 1/n)α .

Proof. Let µ cl be any clean distribution. We define the poi-
soned distributions as

µ bd(x) = 1{x = xp},

µ poi(x) = (1− 1/n)µ cl + 1/nµ bd .

We derive an upper bound on r cl
n

(
f̂poi

)
. First, since l is

(C,α)-Hölder continuous:

r cl
n

(
f̂poi

)
= E

Dpoi

[
E

x∼µ cl

[
l(f̂poi(x), f

∗
cl(x))

]]
≤ E

Dpoi

[
E

x∼µ cl

[
l(f̂poi(x), f

∗
poi(x)) + C |f∗

poi(x)− f∗
cl(x)|α

]]
≤ E

Dpoi

[
E

x∼µ cl

[
l(f̂poi(x), f

∗
poi(x))

]]
+ C E

x∼µ cl

[
|f∗

poi(x)− f∗
cl(x)|α

]
≤ E

Dpoi

[
E

x∼µ cl

[
l(f̂poi(x), f

∗
poi(x))

]]
+ C

(
E

x∼µ cl

[
|f∗

poi(x)− f∗
cl(x)|

])α
using Jensen’s inequality in the last step. We bound each

term on the right-hand side independently. First, we have

E
Dpoi

[
E

x∼µ cl

[
l(f̂poi(x), f

∗
poi(x))

]]
≤ (1− 1/n)−1 E

Dpoi

[
E

x∼µ poi

[
l(f̂poi(x), f

∗
poi(x))

]]
≤ (1− 1/n)−1r poi

n

(
f̂poi

)
.

As for the second term by definition of the Bayes optimal
classifier considering 0-1-loss [20], we have

f∗
cl(x) = Pr

µ cl
[Y = 1|X = x].

Similarly,

f∗
poi(x) = Pr

µ poi
[Y = 1|X = x]

=


Prµ cl [Y = 1|X = x] if x ̸= xp,

(1− 1/n) Prµ cl [Y = 1|X = x]

+1/nPrµ bd [Y = 1|X = x] if x = xp.

Combining prior equations, we get

f∗
poi − f∗

cl =


0 if x ̸= xp,
1/n · Prµ bd [Y = 1|X = x]

−1/n · Prµ cl [Y = 1|X = x] if x = xp.
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Accordingly,

E
x∼µ cl

[
|f∗

poi(x)− f∗
cl(x)|

]
= Pr

µ cl
[X = xp]·∣∣1/n · Pr
µ bd

[Y = 1|X = xp]︸ ︷︷ ︸
=1

−1/n · Pr
µ cl

[Y = 1|X = xp]
∣∣

+ (1− Pr
µ cl

[X = xp]) · 0

= µ cl(xp) · 1/n ·
∣∣1− Pr

µ cl
[Y = 1|X = xp]

∣∣︸ ︷︷ ︸
≤1

≤ µ cl(xp) · 1/n.

using that Prµ bd [Y = 1|X = xp] = 1 in the equality
since the poison label is 1. Now, we plug the two bounds
together:

r cl
n

(
f̂poi

)
≤ 1

1− 1/n
r poi
n

(
f̂poi

)
+ C(µ cl(xp) · 1/n)α.

The attentive reader might be wondering why we con-
sider i.i.d. sampling of the data set that is different to our
prior assumption that the poison sample is guaranteed to
be added to training data. Slightly increasing the poison
ratio in the proof from 1/n to k/n for a small constant k
gives the probability of sampling at least one poison sam-
ple 1 − (1 − k/n)n. Under large enough data size n, this
turns to 1 − (1 − k/n)n →

n→∞
1 − e−k which quickly

goes to 1 when increasing k. The bound on the statistical
risk on benign data for k poison samples is r cl

n

(
f̂poi

)
≤

1
1−k/nr

poi
n

(
f̂poi

)
+ C(µ cl(xp) · k/n)α, so the bound is only

slightly higher.
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