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Abstract

Game theory has long served as a foundational tool in cybersecurity to test, predict, and
design strategic interactions between attackers and defenders. The recent advent of Large
Language Models (LLMs) offers new tools and challenges for the security of computer sys-
tems; In this work, we investigate whether classical game-theoretic frameworks can effec-
tively capture the behaviours of LLM-driven actors and bots. Using a reproducible frame-
work for game-theoretic LLM agents, we investigate two canonical scenarios – the one-shot
zero-sum game and the dynamic Prisoner’s Dilemma – and we test whether LLMs converge
to expected outcomes or exhibit deviations due to embedded biases. Our experiments in-
volve four state-of-the-art LLMs and span five natural languages, English, French, Arabic,
Vietnamese, and Mandarin Chinese, to assess linguistic sensitivity. For both games, we ob-
serve that the final payoffs are influenced by agents characteristics such as personality traits
or knowledge of repeated rounds. Moreover, we uncover an unexpected sensitivity of the fi-
nal payoffs to the choice of languages, which should warn against indiscriminate application
of LLMs in cybersecurity applications and call for in-depth studies, as LLMs may behave
differently when deployed in different countries. We also employ quantitative metrics to
evaluate the internal consistency and cross-language stability of LLM agents, to help guide
the selection of the most stable LLMs and optimising models for secure applications.

1 Introduction

According to recent reports, the cost of cyber threats is estimated to breach the $10 Trillion fig-
ure in the next few years [1, 2]. In addition to costs for companies, citizens or government firms,
cyber attacks can make digital societies vulnerable to economic and infrastructural losses,
which become even more critical as information technologies diffuse worldwide. As schol-
ars and practitioners develop new and more powerful methods to face cyber attacks of various
nature [3], game theory emerged as a powerful theoretical framework to study and predict
how defenders may react to attackers, and the other way round, in cybersecurity [4, 5, 6, 7, 8].
Game theory formalises the strategic interaction between two (or more) players, whose scope
is to maximise their own gain [9]. This modelling approach allows to capture the strategic
choices of both players, and to evaluate the effectiveness of a defence (or attack) mechanism,
depending on the behaviours and payoffs that are typical of all agents. This way, game theory
adds a layer of complexity to technology-only approaches, including the price or gains of the
interactions between cyberattackers and security layers. For instance, security and efficiency
can conflict and thus need to be balanced [10], and cyber resilience can thus be better promoted
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under certain conditions rather than others, depending on cost-benefit trade-offs [11]. With
applications spanning from intrusion detection, risk assessment, jamming and eavesdropping,
up to mechanism design or security investment (including applications over networks) [12],
game theory offers powerful tools such as proven mathematics, robustness analysis of defence
systems, and distributed solutions [4, 7].

Along with traditional information technology, the recent years have witnessed the rapid
emergence of Large Language Models (LLMs) – extremely powerful AI applications that are
disrupting academic research, industry and societies alike [13, 14, 15]. Among the other fields,
cybersecurity has swiftly included LLMs into its range of investigation, both as generators of
scenarios (modelling scope, [16]) and as agents within cybersecurity scenarios (agentic scope,
[17, 18, 8]); in the latter case, LLMs can play both as threatening or as defence-enhancing agents
[19]. However, systematic studies on the impact of LLMs to cybersecurity applications are still
at their infancy, and may radically benefit from a coherent framework addressing the emerging
strategies of interacting attacker-defender LLMs. In this sense, game theory provides a natural
choice, and recent perspectives are suggesting the use of generative AI to develop strategic
agents for reliable cybersecurity applications [20, 21].

Despite the appeal and potential of such proposals, one challenge lies in the intersection of
game theory, cybersecurity and LLMs: as of today, little is known about the actual behaviour of
interacting LLMs. In fact, we may ask whether they act in alignment with game-theoretic pre-
dictions – rendering them more or less suitable to predict the outcome of games – or whether
they showcase emerging and unpredictable outcomes; and, in the latter case, how representa-
tive such outcomes are with respect to developers’ goals (both as attackers and as defenders),
and which features mostly influence such outcomes. For instance, in games representing the
development of AI ecosystems [22], it has been observed that only certain LLMs (out of a set of
popular ones including GPT, Gemini, Mistral and more), and under specific conditions, com-
ply with game-theoretic predictions [23, 24]. Other works have also observed that LLMs divert
from theoretical predictions even in traditional game-theoretic scenarios [25, 26, 27]. It is thus
of interest to test how LLMs would behave within game-theoretic scenarios of interest for cy-
bersecurity applications, whether certain LLMs offer greater reliability than others, and which
factors or biases may challenge game theoretic-based analysis of cyber threats.

In this work, we aim at addressing these questions by providing a first investigation of LLM
strategic agents in two popular games used for cybersecurity studies: the static zero-sum game,
which has been used, e.g., to model jamming and eavesdropping [28] or hardware Trojans [29];
and the dynamic Prisoner’s Dilemma, used, e.g., for selfishness in multi-hop networks [30] or
for nation-level cyber intrusion [31], and which forms the basis for more complex relationships
in information domains [32]. To this end, we employ FAIRGAME [33], a user-friendly and
reproducible framework to simulate such games, testing various LLM providers and configu-
rations. By doing so, we uncover hidden biases that dis-align LLM-game outputs from purely
game-theoretic ones. Moreover, we recognise that proprietary LLMs show different patterns
when laying the games, suggesting that the choice of one provider or another is not agnos-
tic, but has an impact on studies or applications – and that such choice should be carefully
considered when developing defence systems.

2 Material and Methods

2.1 Game theory for cybersecurity

Game theory is a mathematical modelling framework aimed at quantitatively and formally
capturing the strategic interactions (formalised as games with rules and payoffs) among two or
more agents, whose personal goal is to receive benefits from playing such games [9]. Formally,
games are formalised as set of tuples G such that

G = ⟨P, {Sj}i∈P , {uj}i∈P ⟩ , (1)
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where P is the set of players, {Sj}i∈P is the set of j possible strategies for player i. Given a
combination of selected strategies Si = [Sj ], {uj}i∈P : (Sj)i∈P → R≥0 is the set of payoffs,
associated with each j-th strategy, of the player i, and ui : Si → R≥0 is the overall payoff
function for player i. Depending on the game, {uj} can be either interpreted as gain or as
penalties. The set of payoffs is usually represented in terms of a payoff function, which captures
the results of interacting strategies for each involved player. An example of payoff function for
a two-player game, with two available strategies, is provided in Table 1.

Table 1: Generic form of a two-players payoff matrix, when two strategies are viable.

Option A Option B
Option A x1,1 = (a1, a2) x1,2 = (b1, b2)
Option B x2,1 = (c1, c2) x2,2 = (d1, d2)

An interesting feature of games is the possible existence of equilibria, i.e., strategies that
lead to situations where any other unilateral move would not further improve the players’
payoff. For a set of relatively simple games, under some assumptions, such equilibria can be
computed analytically; alternatively, for games involving a higher degree of complexity, games
can be effectively simulated to extract information (see, e.g., [34, 23, 35]).

For cybersecurity applications, games are usually interpreted as the set of actions between
at least two conflicting players: an attacker, whose goal is to cause corruption in the cyberspace,
and a defender aiming to prevent or minimise damage [5]. Depending on the cybersecurity sce-
nario and scope (such as jamming, cyber-physical security, configuration of intrusion detection
systems, selfishness in selected networks, trust, and more), various games can be aptly taken
from the vast game-theoretic literature and adapted to describe the desired scenarios; see [4, 3]
for recent reviews on the topic. Games can capture a variety of features in cyber systems, such
as the completeness of information (whether agents know everything about payoffs, strategies,
and opponents’ characteristics), the accuracy of monitoring (i.e., or the degree of knowledge
about the game history and opponents’ choices). Games can also be static or dynamic (or re-
peated), so as to capture attacks and disturbances that occur only once and at the same time, or
repeatedly over time (and with the possibility for agents to adjust their response at round t+1,
depending on the actions and payoffs received at time t).

Popular games such as the zero-sum game, the Prisoner’s Dilemma or the Stackelberg game
[36, 37, 38] are widely employed to model scenarios occurring in the cyberspace, and have suc-
cessfully promoted the development of effective applications. However, real cyber systems
are often more complex than relatively simple and deterministic games. To overcome this is-
sue, stochastic games have been increasingly employed to capture uncertainties, e.g., in cyber-
physical interactions [39]; recently, there have been suggestions [21, 40, 41] for the usage of
generative AI and Large Language Models to better incorporate the complexity of networked
systems or strategic agents in the cyberspace, and to equip them with advanced characteristics
(such as personality, which is absent in traditional game-theoretic models) to improve effi-
ciency and effectiveness. However, there is still shortage of systematic investigations about the
adequateness and emerging properties of game-theoretic LLM agents in cybersecurity settings.

In what follows, we select two widely used games, having different characteristics that
capture different needs of the cyber modellers, and explore their behaviours within generative
AI settings.

2.1.1 The one-shot zero-sum game

The first game to be analysed is the static (one-shot) zero-sum non-cooperative game. It has
been employed, e.g., to model jamming and eavesdropping activities [28], as well as attacks
aimed at denying service (DoS) [42] or hardware Trojans [29]; in the physical domain, it has
also been employed to model submarine attacks [43]. Zero-sum games are such if the payoff
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function satisfies
N∑
i=1

ui = 0 , (2)

that is, a player winning something implies the others to lose an equal amount. For instance,
think of an attacker-defender scenario on a routing system: the attacker strives to find the
optimal configuration parameters that cause maximum service disruption with the minimum
cost. On the opposite side, the defender looks for the optimal configuration parameters for a
firewall, so as to fight off the threat and get the maximum gain. Whichever player gets the
upper hand, implies that the other loses an equal amount. A corresponding payoff matrix
would be that of Table 2 (with generic payoff values that are proportional up to a scaling factor
[44]).

Table 2: Zero sum game payoff matrix.

Option A Option B
Option A x1,1 = (2,−2) x1,2 = (−2, 2)
Option B x2,1 = (−2, 2) x2,2 = (2,−2)

We describe a prototypical scenario and its detailed implementation in Sec. 2.2

2.1.2 The repeated Prisoner’s Dilemma

The Prisoner’s Dilemma is a classic scenario in game theory where two players must choose
between cooperation and defection, each facing varying levels of penalties based on their de-
cisions. Here, mutual cooperation yields a better collective payoff; however, according to the
theory, in a static scenario, the dominant strategy equilibrium leads both parties to a subopti-
mal outcome—mutual defection. In the cyber domain, the Prisoner’s Dilemma has been used,
e.g., to model selfishness in Multi-hop networks [30] or mutual aid in multi-agent scenarios
[45]. The classical results of a one-shot Prisoner’s Dilemma may change in the case of repeated
games, where players have the chance to update their choices based on history [46]. For in-
stance, repeated games are employed to model selfishness in packet forwarding [47], as well
as the problem of free-riding. To capture these scenarios, we thus investigated the repeated
Prisoner’s Dilemma, over 10 rounds, with partial information available to the agents. Using
a common scaling of dilemma payoffs [46], we employed a conventional configuration with
matrix given in Table 3.

Table 3: Prisoner’s Dilemma payoff matrix.

Option A Option B
Option A x1,1 = (6, 6) x1,2 = (0, 10)
Option B x2,1 = (10, 0) x2,2 = (2, 2)

The description of the game scenario and its implementation details are given in Sec. 2.2.

2.2 LLMs in game-theoretic scenarios

Large Language Models rely on deep computational architectures that are vastly obscure to ex-
plicit modelling. Hence, using analytical tools to analyse strategic games among LLM agents is
not feasible, and we must perform studies based on empiric game-theoretic analysis [48], that
is, performing experiments and carefully evaluating and interpreting the results, and contrast
them with game-theoretic predictions. Large Language Models are characterised by a large
array of degrees of freedoms and features that render them extremely versatile, but also chal-
lenging for sensitivity analysis. Moreover, LLMs are inherently characterised by uncertainties
and non-deterministic behaviour, which yields some degree of stochasticity in their responses
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[49]. Hence, integrating LLMs into game-theoretic scenarios requires setting their attributes in
a reproducible and interpretable framework, which helps to systematically account for the in-
fluence of single features and allows repeated experiments to collect reasonable statistics about
the average behaviour during games.

To these ends, we instantiated the games mentioned above using FAIRGAME [33], a frame-
work purposefully designed to embed LLM agents for the desired strategic games, while al-
lowing to set several features of agents and game settings. The specific settings are detailed
below and summarized in Fig. 1.

2.2.1 Employed LLMs

It has been observed that, in various tasks, different LLMs may not be consistent with one
another [50, 33]. Hence, we tested the games on four widely used Large Language Models,
using default settings recommended by the providers: (i) GPT-4 by OpenAI (proprietary) in
its latest (February 2025) version, with Temperature = 1.0 and Top p = 1.0; (ii) Gemini Pro 1.5
by DeepMind (proprietery, Alphabet) in its gemini-1.5-flash-latest version, with Temperature
= 0.9 and Top p = 1.0; (iii) Mistral Large by Mistral AI (open-source) in its mistral-large-latest
version, with Temperature:= 0.3 and Top p = 1; (iv) Llama 3.1 405b by Meta (open-source) in
its meta/meta-llama-3.1-405b-instruct version, with Temperature = 0.9, Top p = 0.6 and Top k
= 40. All LLMs are accessed through their corresponding APIs.

2.2.2 Tested features

LLM agents can embed complex traits that surpass simplified features of game-theoretic mod-
els [51, 20]. This allows greater flexibility and capabilities; at the same time, however, this fact
makes estimating the sensitivity of outputs to LLM characteristics more challenging. Hence,
we here select and test a set of features that are known to possibly elicit biases in LLM responses
[33, 52]: the natural language used to conduct the games, and the personality bestowed upon
each agents. Using different languages is natural, as both hackers and defenders can come from
geographically distant regions and may be more or less proficient using certain languages, such
as their own native one; as prompting LLMs can be conducted in different languages, it is of
interest to test their influence on the outcomes. Setting a personality for agents can also be in-
triguing; in fact, attention has been given in the past to using agents receiving incentives [53] or
having specific attitudes towards information sharing [54]; setting a personality to LLM agents
is a first step toward modelling their ‘intrinsic’ behavioural tendencies while performing their
strategies.

As natural languages, we employed English, French, Arabic, Vietnamese and Mandarin
Chinese, to represent a variety of cultures and geographies. The prompts are initially written
in English and then translated with the help of native speakers.

As personality traits, we used a binary classification into ‘cooperative’ and ‘selfish’, to rep-
resent the possibility of stressing cooperation or self-interest [4]. Instead, we did not specify
any specific agent identifier (name) such as ‘attacker’ or ‘defender’; they were intentionally left
neutral (’agent1’ and ’agent2’) so as not to add additional variables that could introduce de-
viations from default behaviours. Future works may look into the impact of explicitly telling
each agent its role into a cybersecurity game. Note that agents are unaware of their opponent’s
personality, as that would mean requiring additional information that is often not available to
either player [55].

For the repeated games of the Prisoner’s Dilemma, we tested both scenarios in which agents
know the total number of rounds (# Rounds Known) or not (# Rounds Unknown). However,
they are knowledgeable about the past history of the rounds. This reflects the amount of infor-
mation possessed by the agents, which is often incomplete in case of real cyber systems [56, 57].
Agents do not communicate with each other.
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2.2.3 Game runs

To run games following FAIRGAME’s workflow [33], the framework requires a configuration
JSON file and a prompt template describing the characteristics of each game and of the agents,
translated into the languages of interest. The prompt template provides a literal description of
the game, with placeholders populated using the information from the JSON file. The English
prompt templates, which employ prompt engineering hacks such as using assertive and rule-
driven language, employing clear subdivision of commands into sections, as well as including
all placeholders (in {}) for mandatory fields in clear order, are:

Zero-sum game: You are {currentPlayerName} and your opponent is {opponent1}.
{intro}: [You are {personality}.]

You and {opponent1} are fulfilling a task, which requires choosing either {strategy1}
or {strategy2}.

There is only one round to decide. If you both choose {strategy1} or {strategy2},
Agent1 gets a payoff of {weight1} and Agent2 gets a payoff of {weight2}. If one
agent chooses {strategy1} and the other chooses {strategy2}, Agent1 gets a payoff of
{weight2} and Agent2 gets a payoff of {weight1}. If one agent chooses {strategy2}
and the other chooses {strategy1}, Agent1 gets a payoff of {weight2} and Agent2
gets a payoff of {weight1}.

Your goal is to maximise your reward by making the best strategies based on the
provided information. Choose between {strategy1} and {strategy2}. Output ONLY
the choice.

Prisoner’s Dilemma:
You are {currentPlayerName} and your opponent is {opponent1}.
intro: [You are {personality}.]
You and {opponent1} are arrested for a crime and held in separate cells. You

cannot communicate.
Every round each of you has the following choices: ’{strategy1}’ and ’{strategy2}’.
{gameLength}: [There are {nRounds} rounds to decide.] The current round is

number {currentRound}.
If you both choose {strategy1}, you both get a penalty of {weight1}. If you choose

{strategy1} and {opponent1} chooses {strategy2}, you get a penalty of {weight2} and
{opponent1} gets a penalty of {weight3}. If you choose {strategy2} and {opponent1}
chooses {strategy1}, you get a penalty of {weight3} and {opponent1} gets a penalty
of {weight2}. If you both choose {strategy2}, you both get a penalty of {weight4}.

Your goal is to minimize your penalties by making the best strategies based on
the provided information. This is the history of the choices made so far: {history}.

Choose between {strategy1} and {strategy2}. Output ONLY the choice.

Note that we employed the classical version of the games, to be as generic as possible;
a previous work [33] observed that modifying the storytelling has little to no effect on the
outputs. Since the zero-sum matrix is symmetric, we directly call for Agent1 and Agent2 (the
names in the JSON file) to avoid ambiguities in the interpretation of prompts by LLMs.

The player names, as mentioned above, are left neutral; personality is set as a permutation of
the two personality traits described above. The repeated Prisoner’s Dilemma has gameLength
= 10, while the one-shot zero-sum game has gameLength = 1. Strategies and their corresponding
weights are set according to the games’ payoff matrices described in Sec. 2.1.2 and 2.1.1.

The set of all configurations yields 18 distinct games per LLM. Moreover, all games are
repeated 10 times to collect sufficient variability in their output and perform statistics over
means and credible intervals. Overall, considering 4 LLMs, 5 languages, and 2 decisions per
round (one per agent), each game round generated a total of 7,200 individual decisions. For
the repeated Prisoner’s Dilemma, this figure is multiplied over the 10 rounds.
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2.2.4 Metrics

For all games, we collect the payoffs (either penalties, in case of the Prisoner’s Dilemma, or re-
wards, in case of the zero-sum game) resulting from all choices, and evaluate their distribution
along the 10 repetitions.

To enable easy comparison across the LLMs when we show the evolution of the rounds
of the Prisoner’s Dilemma, we normalise the average outcomes obtained by the LLM at each
round to a scale from -1 to 1 (respectively, the minimum and maximum achievable penalties in
each game).

Moreover, we employ the scoring system proposed in [33] to evaluate the prowess of differ-
ent LLMs when conducting game-theoretic experiments. For the repeated Prisoner’s Dilemma,
we measure (i) Internal Variability (IV ), i.e., the variance of outcomes when the same game
scenario is played multiple times, which captures the model’s internal consistency: for each
LLM, IV = 1

ZI
[Var(y)], where y is the whole results set. (ii) Cross-Language Inconsistency

(CI ), i.e., the standard deviation of results for the same game played in different languages;
this indicates the instability of the model’s behaviour when the language is changed: for an
LLM, CI = 1

ZC
[Meanb,c(Vara(Meand(ya,b,c,d)))], where a indicates languages, b is for person-

ality combinations, c indicates knowledge of rounds, d indicates the rounds and ya,b,c,d is the
set of results. For each operation O = {Mean,Var}, Om is shorthand notation to represent that
such operation is performed on a parameter m ∈ [a, b, c, d]. (iii) Variability Over Rounds (VR):
the degree to which the model fluctuates over its strategies, across consecutive rounds of the
same game: VR = 1

ZV
[Meanj(Vard(yd,j))], where j are the game variants and d the rounds. In

all cases, Zi = max[·] are normalization factors.
For the one-shot zero-sum game, we only measure CI , as other metrics refer to evolutions

over rounds.

3 Results

3.1 Zero-sum game

The results for the zero-sum game are reported in Fig. 5 (we only show the average payoff
P1 of agent 1 over the repeated experiments; the payoff for agent 2 its complement to 0, by
definition of the game). The figure compares the results obtained with different combinations
of personalities (cooperative-cooperative, C C, cooperative-selfish, C S, and selfish-selfish, S S),
over all considered LLMs and languages.

We immediately see the notable impact of the personalities: when when both agents are
cooperative (C-C), Agent 1 tends to get negative payoffs, reflecting the fact that the agents tend
to choose different options instead of aiming for the same one. This choice is less consistent in
case of other personality combinations. Nonetheless, the choice of options is not stable across
LLMs and languages. For instance, focusing on the C C personality combination, we observe
that GPT-4o is an outlier in English, while Llama 3 405B Instruct diverges from the others in
French, and Claude 3.5 Sonnet drastically differs from other LLMs in Arabic and Chinese. Only
in Vietnamese (language for which, most likely, there are lower data for the original training of
the LLMs and thus may be subject to lower variability), all LLMs score consistently with payoff
< 0, albeit with different variance.

Similar observations hold for the other personality combinations, across languages: over-
all, there is great variability and hardly recognised conserved patterns, and the LLMs seldom
agree with one another, or are even consistent with themselves, when the language is changed.
According to literature, the best strategy for a zero-sum game is a mixed strategy (or, in the
one-shot case, even a random choice); however, it seems that each LLM chooses sometimes
consistently for each combination of language and personality (note that the credible inter-
val bars are very small in some cases, such as C C in French for GPT-4o) and other times in
rather random fashion (e.g., C C in English for GPT-4o), but in any case without following a
clear consistent strategy when changing languages (as in the examples just mentioned: chang-
ing language suffices to change the strategy completely). All in all, these observations should
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warn about the choice of LLMs to be used for cybersecurity applications, as they may be ex-
tremely sensitive about geographical location and language, as well as on other characteristics
of the LLM agents that can be defined by the developer of by the user. In fact, this extreme vari-
ability may yield breaches in accountability and reliability, and deserve careful studies before
adoption.

To go beyond qualitative investigation, we use the metrics defined in Sec. 2.2.4 to quan-
titatively compare the LLMs, and help to guide their selection. Since there is no dynamics in
this game, out of the proposed metric we estimate only the Internal Variability IV and Cross-
Language Inconsistency CI , for each LLM. The results are reported in Table 4. These metrics
quantify what was discussed above, and highlight the different performance and stability of
the various models across languages and across repeated experiments for the same configu-
ration. Overall, Mistral Large has lower ”peaks” of underperformance and variability, while
GPT-4o seems to be the less stable model. Notably, these inconsistencies are not maintained in
the exact ranking over the Prisoner’s Dilemma (see next section); this fact suggests that case-
by-case analysis is necessary for future works, as LLMs display emerging capabilities that may
differ across games. Choosing the best LLM to apply cybersecurity protocols is thus a delicate
endeavour that will require dedicated studies and protocols.

Table 4: Internal Variability (IV) and Cross-Language Inconsistency (CI) metrics for the zero-
sum game across LLMs. Lower values indicate more stable and consistent model behaviour.

Mistral Large Claude 3.5 Sonnet GPT-4o Llama 3 405B Instruct
IV 0.87 1 0.79 0.90
CI 0.29 0.58 1 0.46

3.2 Repeated Prisoner’s Dilemma

The repeated Prisoner’s Dilemma adds a layer of complexity to the evaluation, because the
game evolved repeatedly over several rounds and agents have partial information about the
history of the game, and are either aware or unaware of the opponent’s personality. As such,
they can make conditional decisions on the accessible history. The following results can be
further complemented by results in [33], which present a broader outlook onto LLM-based
games.

Fig. 2 shows the box plots for the final payoff (representing penalties) for the agents, with
quartiles of the payoff distribution. The figure directly compares the two conditions on per-
sonality information: one where agents are unaware of their opponent’s personality, and one
where they are explicitly informed about them. The results are shown across all considered
LLMs and languages examined in this study, and for all personality combinations (cooperative-
cooperative, C C; selfish-selfish, S S; and C S). We immediately, observe that, overall, LLM
agents tend to defect (thus scoring higher payoffs), in line with what is suggested by game
theory. As expected, attackers and defenders tend to mutually impair each other, aligning with
the Nash equilibrium of the Prisoner’s Dilemma. However, notable exceptions exist, and there
are dramatic inconsistencies across languages and combinations of personalities; this indicates
that, on top of the payoff matrix, languages and intrinsic biases may influence the agents’ be-
haviour.

When focusing on the individual features, we see that some LLM are more ”stable” than
others, that is, they provide similar outputs across languages: Llama 3 and GPT-4o, overall,
produce similar distributions in payoffs (even though discrepancies exist when playing the
game in one language or another, see e.g., that GPT-4o C-S players tend to have lower penalties
(thus cooperate more) when playing in French than in Arabic or Mandarin Chinese. On the
other hand, Claude and Mistral showcase a higher sensitivity to the choice of the language, up
to the point of having cooperating C-C Claude 3.5 agents (with the lowest payoff) in English,
and with the highest penalties in all other languages. In general, penalties are lower in English
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and when the number of rounds is unknown, indicating more consistent cooperative behaviour
in the LLM primary training language. This evidence suggests that the choice of the LLM, when
simulating or developing security applications, drastically depends on the language area they
are intended to represent or protect.

Furthermore, equipping agents with personalities influences their strategy: for instance, S-
S Mistral Large players have lower penalties than C-C players – while it happens almost the
opposite for Llama players, especially when the number of rounds is known and information
about the endgame can thus be leveraged. Finally, we observe that having agents with similar
personality interacting with each other yields, statistically, lower variations (especially for S-S
agents), while C-S agents have wider distributions in payoffs. These observations suggest that
the higher flexibility bestowed upon agents built with generative AI also leads to emerging
and potentially unpredictable behaviours. On the one hand, this calls for caution when im-
plementing scenarios in the cyber space – so as to develop models that are coherent with the
desired scopes and present few biases; on the other hand, this fact warns security developers
that, in case they may face LLM-based attackers, they response may be different than what
traditionally predicted, and novel counteracting strategies may need to be developed.

To look at how games evolve over the rounds, look at Fig. 3. We recall that, to enable direct
comparison between LLMs, the payoff average results were normalised between minimum
and maximum. All LLM eventually converge to values around zero, but they begin at different
initial conditions (Llama 3 and GPT-4o are the extremes at the first round). Claude 3.5 Sonnet
converges rapidly to stable payoff values within a few rounds. While this may indicate faster
adaptation, it might also suggest limited flexibility in exploring alternative strategies through-
out the game. Instead, other models are more variable from one round to the other, again
indicating varying degrees of stochasticity along the repeated games. The general downward
trend in penalties over rounds for Claude 3.5, Llama 3.1 405B and Mistral Large indicate pro-
gressively increasing mutual cooperation among agents; this is consistent with the strategies
traditionally observed in repeated games, where agents reciprocate cooperation to maximize
long-term payoffs [46]. Conversely, GPT-4o begins with relatively high cooperation and then
increases the penalties (thus decreasing cooperation). This reflects potential biases towards
cooperative behaviours in the case of one-shot Prisoner’s Dilemma game (at round one), even-
tually balanced by context-dependent strategic adaptation. With these results, we thus observe
that agents perform behaviours on top of what is purely predicted by the payoff matrix, and
that repeated interactions yield different results than the one-shot counterparts.

What has been qualitatively described above is quantitatively captured in Fig. 4, which
sums up the metrics used to measure, for each LLM, the variability across repeated experi-
ments inconsistencies across languages, and variability during repeated games (see Sec. 2.2.4).
Notably, GPT-4o and Llama 3 show the lowest overall cross-language inconsistency (CI = 0.37
and CI = 0.42 respectively), while Claude 3.5 exhibits the highest CI (0.79), suggesting a higher
sensitivity to prompting language. Moreover, we immediately recognise the higher variability
displayed by Claude 3.5 across the languages and Mistral Large’s variability over the repeated
rounds, as well as their higher uncertainties over the various experiments. Conversely, GPT-
4o and Llama 3 show more consistent results, indicating some stabilising effect that somehow
copes with their stochastic behaviour.

4 Discussion

Real-world cyber systems are characterised by higher complexity (e.g., partial information or
resources, adaptive infiltration schemes, uncertainties) that may divert agents to always per-
form best-payoff actions. Generative AI is a promising venue to embed realistic scenarios and
complex features into simulations and applications, therefore widening the possibility to em-
ploy LLM-based game-theoretic models for cybersecurity. However, as LLMs are emerging
technologies with unpredictable and often un-interpretable capabilities, it is imperative to sys-
tematically assess their capabilities and behaviours. This study provides evidence that LLM
agents may behave sub-optimally in key games used for cybersecurity applications, high-
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lighting that the language used for prompting the models, as well as additional traits such
as completeness of information or the assigned digital personality of agents may introduce
behavioural biases that affect their decision-making during the games.

Our work can be interpreted in two ways: first, it constitutes a proof of concept of the
utility of the proposed approach to integrate generative AI into the field of game theory for
cybersecurity; second, it provides an investigation of the biases and successes of interacting
LLM agents. Despite being limited to two classes of 2× 2 games, based on simplified assump-
tions that allowed the comparison of outcomes stemming from various bias sources, our study
already recognises several sources of ambiguity in LLM responses, paving the way to future
studies focused on specific applications and mitigation of LLM issues. Future works may also
test additional games, such as Stackelberg games, Markovian games, or evolutionary games,
and increase the degrees of freedom associated with playing agents, e.g., by equipping them
with complex personalities or different degrees of information, as well as consider multi-agent
games on networks. Building upon our work, broad investigations can thus be conducted.

While our study offers meaningful insights into LLM-driven game-theoretic behaviour, it is
not without limitations. To begin with, we focused on only two classes of 2×2 games, namely
the zero-sum game and the repeated Prisoner’s Dilemma; although canonical games, they do
not fully capture the complexity and breadth of real-world cybersecurity scenarios. Addition-
ally, the selection of five languages, while covering several major linguistic families, does not
exhaust the full spectrum of cultural and linguistic variation. Lastly, the experiments were con-
ducted in simulation without real-world network deployments or adversarial environments,
leaving open the question of how these models would perform in operational cybersecurity
settings. These relevant questions may constitute basis for future work.

Overall, we observed that, despite the great promises of generative AI to positively impact
the development of security applications in the cyber domain (as outlined, e.g., by [21] when
implementing robust mobile networking), LLMs still face notable limitations in handling un-
certainty, strategic planning capabilities, and sensitivity to embedded biases. Our methodology
and case studies suggest that, before being routinely applied, generative algorithms should be
carefully tested by the community in a variety of scenarios and by considering numerous fea-
tures. Only then, the cybersecurity community may leverage the most promising LLMs, whose
set may be identified also thanks to the metrics we have here presented, to develop better de-
fensive systems.

Indeed, the use of LLMs in cybersecurity contexts raises important ethical considerations.
Simulating attacker and defender behaviours with AI-driven agents may enable better prepa-
ration and defence mechanisms, but it also opens the door to malicious uses, such as auto-
mated vulnerability discovery or adversarial prompt engineering. Moreover, biases in LLM
behaviour, especially when influenced by language or personality traits, could lead to unin-
tended consequences in sensitive security applications. As such, we advocate for responsible
experimentation frameworks and transparency in reporting LLM-driven cybersecurity simu-
lations. In fact, our case studies point to potential vulnerabilities that need to be carefully con-
sidered: if used maliciously, LLMs may behave differently from other traditional algorithms
(for instance, by altering cooperative behaviours depending on the language) and bypass so-
lutions tested on more traditional scenarios. This observation thus calls for renewed attention
towards these emerging technologies, and suggests the use of coherent testing frameworks,
such as FAIRGAME, to systematically test scenarios of increasing complexity. Overall, such
tests would enrich our understanding of LLM behaviours in the cyber systems and would help
make better predictions and interventions to navigate the newest technologies.
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Figure captions

Figure 1: Simulation and analysis workflow. After selecting the games, they are instantiated
in LLM form using FAIRGAME (whose pipeline is in dashed frame; figure adopted from [50]):
the Config. and Template file are user-defined to specify the game settings and features and
are taken as inputs; then, the framework automatically integrates the information and runs the
games by calling the desired LLMs (grey-shaded area); the output are the rounds history, the
final payoffs and any other specified metric, which is finally analysed.
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Figure 2: Aggregated final payoffs of the repeated Prisoner’s Dilemma games over re-
peated experiments, for each LLM (see legend for colour-coding), combination of personalities
(columns), language (rows), and knowledge of opponent’s personality (x-axis).
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Figure 3: Evolution of normalized penalties (averaged over repeated experiments) over re-
peated rounds, for each LLM within the Prisoner’ Dilemma scenario.
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Figure 4: Radar plot mapping the three metrics described in Sec. 2.2.4, for Prisoner’s Dilemma
and for all considered LLMs.

Figure 5: Final payoffs of agent 1 in the one-shot zero-sum game, for each LLM (see legend for
colour-coding), combination of personalities (columns) and language (rows).
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