
Selection-Based Vulnerabilities: Clean-Label Backdoor Attacks in Active Learning

Yuhan Zhi1, Longtian Wang1, Xiaofei Xie2, Chao Shen1, Qiang Hu3, Xiaohong Guan1

1Xi’an Jiaotong University
2Singapore Management University

3Tianjin University
zyh1123@stu.xjtu.edu.cn

Abstract

Active learning (AL), which serves as the representative
label-efficient learning paradigm, has been widely applied in
resource-constrained scenarios. The achievement of AL is at-
tributed to acquisition functions, which are designed for iden-
tifying the most important data to label. Despite this success,
one question remains unanswered: is AL safe? In this work,
we introduce ALA, a practical and the first framework to uti-
lize the acquisition function as the poisoning attack surface to
reveal the weakness of active learning. Specifically, ALA op-
timizes imperceptibly poisoned inputs to exhibit high uncer-
tainty scores, increasing their probability of being selected by
acquisition functions. To evaluate ALA, we conduct extensive
experiments across three datasets, three acquisition functions,
and two types of clean-label backdoor triggers. Results show
that our attack can achieve high success rates (up to 94%)
even under low poisoning budgets (0.5%–1.0%) while pre-
serving model utility and remaining undetectable to human
annotators. Our findings remind active learning users: acqui-
sition functions can be easily exploited, and active learning
should be deployed with caution in trusted data scenarios.

Introduction
Active learning (AL) is a learning paradigm designed to re-
duce annotation costs by iteratively selecting and labeling
the most informative samples from an unlabeled data pool
as training data (Settles 2009; Munjal et al. 2022; Ren et al.
2021). Acquisition function, which identifies the data to be
labeled, is the core of AL. Multiple acquisition functions
have been proposed (Tong and Koller 2001; Joshi, Porikli,
and Papanikolopoulos 2009; Li and Guo 2013; Beluch et al.
2018), where uncertainty based ones are the most represen-
tative, such as prediction confidence-based function and en-
tropy score-based function (Wang and Shang 2014) . With
the increasingly proposed effective acquisition functions,
AL has been more and more useful, especially when label-
ing is expensive, enabling the model to achieve comparable
accuracy with fewer labeled samples.

In real-world applications, AL is frequently deployed
in two scenarios: 1) training deep learning (DL) models
from scratch with limited data labeling budgets (Sener and
Savarese 2018; Wang and Shang 2014), and 2) continual
learning for quickly new data distribution adaptation (Kim,
Feldt, and Yoo 2019; Hu et al. 2024). For the latter one, when
a model has been deployed in the wild, it is common that the

new unseen data samples follow different data distributions,
i.e., out-of-distribution (OOD) data, from the original train-
ing data. In this situation, AL is used to select fine-tuning
data for model enhancement. Such settings arise in medical
diagnosis, autonomous systems, and data-centric AI appli-
cations (Santos and Carvalho 2024; Lu et al. 2024), where
models must incrementally learn new concepts or domains
from previously unseen data.

Even though AL has achieved great success in multiple
domains and scenarios, the safety of AL has rarely been dis-
cussed. As the heart of AL, the acquisition function deter-
mines which unlabeled samples should be annotated. In this
manner, one assumption is – the potential selection bias in
acquisition function has the potential to be exploited to in-
ject poisoned samples into the training set, thus, serves as
the attack surface.

To this end, in this paper, we introduce ALA, the first
framework to utilize acquisition functions to reveal the
weakness of active learning from the poisoning attack per-
spective. We consider a white-box threat model where at-
tackers can access the model parameters. ALA strategically
injects clean-label poisoned samples and exploits the con-
struction design of acquisition functions (selecting data sam-
ples with high uncertainty) to increase their probability of
being included in the training set. Specifically, ALA first se-
lects samples that are near the decision boundaries (quanti-
fied by the high uncertainty scores) as seed data. Then, ALA
applies poisoning attack methods with a selection-aware op-
timization algorithm to generate poisoned samples while
further increase the uncertainty scores of these generated
samples. In this way, the poisoned samples are more likely to
be selected by acquisition functions and therefore, injected
into the training set.

To evaluate ALA, we conduct comprehensive experiments
on three datasets (Fashion-MNIST, CIFAR-10, and SVHN)
with two clean-label backdoor triggers (CL (Turner, Tsipras,
and Madry 2019) and SIG (Barni, Kallas, and Tondi 2019))
and three acquisition functions (Entropy, Margin, and Least
Confidence (Wang and Shang 2014)). Our results show that
poisoned samples injected by ALA can lead to attack suc-
cess rates of up to 94% on the AL-trained model under
uncertainty-based acquisition functions, even with a low
poisoning budget, achieving a 43% improvement over the
Random selection baseline, and highlighting the potential

ar
X

iv
:2

50
8.

05
68

1v
1

 [
cs

.C
R

]
 5

 A
ug

 2
02

5

https://arxiv.org/abs/2508.05681v1

vulnerability of AL in practical scenarios. Moreover, we find
that in AL scenarios, the SIG trigger is substantially more
effective and robust than CL for clean-label backdoor injec-
tion, consistently achieving higher ASRs across datasets and
acquisition functions.

Our Contributions.
• We identify the acquisition function in AL as a new and

realistic attack surface for clean-label backdoor injection.
• We propose ALA, the first framework to attack active

learning with a selection-aware optimization strategy that
aligns poisoned inputs with the model’s selection prefer-
ences to enhance attack success.

• We conduct extensive experiments across three datasets,
three acquisition functions, and two clean-label attack
types, demonstrating strong attack effectiveness under
multiple common AL configurations, revealing a poten-
tial real-world vulnerability of active learning.

Our results raise important concerns about the security
of AL pipelines, and highlight the need to incorporate
selection-aware threat models into the design of robust ac-
tive learning systems.

Background
Active Learning
Active learning is a learning paradigm that aims to reduce
annotation costs by selectively querying labels for only the
most informative samples (Settles 2009; Munjal et al. 2022).
Rather than training on a large fully labeled dataset, an AL
algorithm maintains a small labeled set L and a large unla-
beled pool U , and iteratively selects samples from U to be
labeled by an oracle (e.g., a human annotator) (Ren et al.
2021). The newly labeled samples are added to L, and the
model is retrained. This loop continues until a predefined la-
beling budget is exhausted or model performance converges.

The AL framework typically includes three components:
(1) a model or learner, (2) an acquisition function for de-
termining which samples to label next, and (3) a labeling
oracle. This iterative loop has been widely applied in sce-
narios such as medical imaging, autonomous driving, and
real-world systems where labeling is expensive and contin-
uous adaptation is necessary.

Acquisition Functions in Active Learning
The effectiveness of AL heavily depends on the design
of its acquisition function, which determines which unla-
beled samples are most beneficial to label at each epoch.
Among various approaches, uncertainty-based acquisition
functions (Tong and Koller 2001; Joshi, Porikli, and Pa-
panikolopoulos 2009; Li and Guo 2013; Beluch et al. 2018)
are the most widely adopted due to their simplicity and ef-
fectiveness. These methods prioritize samples on which the
current model is most uncertain.

Common uncertainty-based acquisition functions include:

• Entropy: Selects samples with the highest entropy in the
predicted class distribution. For a sample x, let p(y | x)

be the model’s predicted probability distribution over K
classes. The entropy (Shannon 1948) is computed as:

H(x) = −
K∑

k=1

p(yk | x) log p(yk | x).

Samples with higher entropy indicate greater prediction
uncertainty.

• Margin: Selects samples with the smallest margin be-
tween the top two class probabilities (Roy and McCallum
2001).

• Least Confidence: Selects samples with the lowest max-
imum predicted probability (Wang and Shang 2014).

Other acquisition functions target alternative objectives
beyond uncertainty. Diversity-based methods aim to select
samples that are both representative of the input distribu-
tion and mutually diverse, in order to cover different re-
gions of the feature space (Sener and Savarese 2017; Bilgic
and Getoor 2009; Gal, Islam, and Ghahramani 2017). Hy-
brid methods combine multiple selection signals—typically
blending uncertainty with diversity—to improve robustness
and sample efficiency (Ash et al. 2019; Shui et al. 2020; Yin
et al. 2017).

In this work, we focus on uncertainty-based acquisition
functions, as they are generally effective in practice and are
commonly used in AL (Li et al. 2022, 2024).

Backdoor Attacks and Clean-Label Threats
Backdoor attacks (Gu, Dolan-Gavitt, and Garg 2017) are a
class of data poisoning attacks that aim to implant hidden
malicious behavior into machine learning models. Typically,
the attacker injects a small number of specially crafted train-
ing samples—known as poisoned samples—that contain a
specific trigger pattern. These samples are labeled as the at-
tacker’s desired target class. At inference time, any input
containing the same trigger will be misclassified into the tar-
get class, while the model maintains high accuracy on clean
inputs.

Traditional backdoor attacks often assume that the at-
tacker can manipulate both the training data and the asso-
ciated labels (Liu et al. 2018; Zhong et al. 2020; Ji, Zhang,
and Wang 2017). However, this assumption may not hold
in many real-world scenarios, especially when labels are
provided by human annotators or trusted pipelines (Turner,
Tsipras, and Madry 2019). To address this limitation, clean-
label backdoor attacks have emerged as a more realistic
and stealthy threat model by preserving the ground-truth la-
bels of poisoned samples (Saha, Subramanya, and Pirsiavash
2020).

Clean-label backdoor attacks exploit the mismatch be-
tween human and model perception by embedding imper-
ceptible triggers into inputs without altering their ground-
truth labels. While human annotators assign correct labels
based on visual semantics, the model may learn to asso-
ciate subtle patterns—such as high-frequency or localized
signals—with a specific target class. As a result, inputs con-
taining the same trigger at test time can be misclassified into
the target class, even if they are semantically unrelated. Rep-
resentative techniques include:

• CL: Adds localized, low-visibility triggers (e.g., small
patches) without altering the sample’s semantics (Turner,
Tsipras, and Madry 2019).

• SIG: Applies imperceptible, frequency-domain perturba-
tions as triggers (Barni, Kallas, and Tondi 2019).

These techniques are particularly effective in settings
where the labeling process is external and cannot be ma-
nipulated. In our work, we adopt and adapt these clean-label
backdoor methods to the context of active learning, where
the attacker cannot flip labels and must remain undetected
by human annotators.

Methodology
Problem setting
We consider a realistic and common deployment scenario:
a deployed model has already been well trained on an ini-
tial labeled dataset and achieves strong performance. Given
newly collected unlabeled data that follow a different dis-
tribution (OOD data) from the original training data, we
employ AL to conduct distribution adaptation for the pre-
trained model under a specific labeling budget.

We focus on this setting for both technical and practical
reasons. From a technical standpoint, poisoning the initial
training set is often infeasible, as it typically requires in-
sider access to the original data pipeline. In contrast, newly
arriving OOD data is more accessible and provides a nat-
ural point of interaction for external attackers. In practice,
attacking a poorly trained model is of limited value, as its
predictions are already unreliable. In contrast, attacking a
deployed, well-performed model makes real-world impacts
and therefore should be more carefully considered.

In our setting, the AL model follows a standard loop:
at each epoch, the model selects a batch of unlabeled
OOD samples using a predefined acquisition function (e.g.,
Entropy, Margin, Least Confidence), obtains their labels
through human annotation (i.e., oracle in our experiments),
and retrains on the updated labeled set. This process repeats
until the labeling budget is exhausted or target performance
is reached.

Our attack aims to inject a clean-label backdoor during
this OOD adaptation process. Specifically, we poison a small
number of OOD samples by embedding an imperceptible
trigger, such that the final model misclassifies any input con-
taining the trigger into a specific target class, while maintain-
ing high accuracy on clean inputs from both ID and OOD
distributions.

To make the threat model explicit, we assume the follow-
ing capabilities and constraints for the attacker:

• Model access: The attacker has access to the current
AL model before the selection step on incoming OOD
data. This includes the architecture and parameters of the
model.

• Data injection: The attacker can access and modify a
subset of the newly arriving OOD samples before they
are injected into the unlabeled pool. However, the at-
tacker has no access to the original ID training data.

AL model

Unlabeled
clean OOD data

Retrain

Backdoor Sample Construction

Rank

High-uncertainty
clean samples

Add trigger
Optimization

Poisoned
samples

Poison

AL pool

Feature

ExtractSelectLabel

Labeled
data

Figure 1: Overview of ALA.

• Label integrity: The attacker cannot alter the ground-
truth labels, nor interfere with the annotation process,
which is assumed to be performed by human annotators.

These assumptions reflect realistic attack surfaces in de-
ployed AL systems. Meanwhile, this setting introduces
unique challenges: the attacker must craft poisoned samples
that satisfy the clean-label constraint, and yet ensure that
they are selected by the AL agent despite being rare in a
large, unfamiliar OOD pool.

Overview of ALA
Figure 1 illustrates the overall workflow of ALA. It first uses
the current-epoch AL model (or pre-trained model) to rank
the incoming OOD data based on their uncertainty scores.
We then identify high-uncertainty samples from the attack
target class. After that, according to a predefined poisoning
ratio, ALA embeds an invisible trigger to the top uncertain
samples. Since adding the trigger may change the prediction
confidence of the model on the data, in turn, affects the un-
certainty scores, we design a selection-aware optimization
algorithm to increase the attack success rate and the uncer-
tainty of the poisoned data.

The optimized poisoned samples are then injected into the
candidate pool under acquisition. The AL agent selects sam-
ples based on their extracted features, obtains labels from the
oracle, and retrains the AL model. This process is repeated
throughout the AL loop, allowing poisoned samples to be
gradually incorporated and enabling the model to learn the
backdoor behavior over time.

Backdoor Sample Construction
The backdoor sample construction process is the core of
ALA, which contains two key steps: target-class candidate
selection and selection-aware optimization. Algorithm 1
shows the detailed process.

Target-class candidate selection. Clean-label backdoor
attacks target a specific class yt, and poisoning is only ap-
plied to samples belonging to this class. Since the incom-
ing OOD samples are unlabeled, the attacker must manu-
ally identify which samples belong to yt. Given this setting,
we aim to minimize labeling cost by first ranking the unla-
beled OOD pool U using the current AL model’s uncertainty
score, in this work we use entropy, though any uncertainty-
based metric could be used (Line 2), and then sequentially

Algorithm 1: Backdoor Sample Construction

Require: Unlabeled pool U , target class yt, poisoning ratio
ρ, AL model M , trigger T , GA iterations G, population
size P , Entropy calculation H

Ensure: Poisoned sample set P
1: P ← ∅, C ← ∅ ▷ Initialize
2: Rank U by entropy H(M(x)) in descending order
3: for top-ranked x ∈ U do
4: y ← QueryLabel(x) ▷ Human annotation
5: if y = yt then
6: C ← C ∪ {x}
7: if |C| ≥ ρ · |U| then break
8: end if
9: end if

10: end for
11: for x ∈ C do
12: xbest ← x, Hmax ← −∞
13: for g = 1 to G do
14: Generate mutants {m1, . . . ,mP } from xbest via

augmentation
15: Pcand ← {ApplyTrigger(mi, T)}Pi=1
16: index← argmaxp∈Pcand H(M(p))
17: p∗ ← mindex

18: if H(M(p∗)) > Hmax then
19: xbest ← p∗, Hmax ← H(M(p∗))
20: end if
21: x← RemoveTrigger(p∗, T) ▷ Clean seed for

next iter
22: end for
23: P ← P ∪ {xbest}
24: end for
25: return P

querying the ground-truth labels of the top-ranked samples,
which in practice would require human annotation (Line 3-
6). The process stops once ρ · |U| samples from class yt
are found (Line 7), where ρ is the predefined poisoning ra-
tio. This strategy ensures that the selected samples are both
label-efficient and more likely to be chosen by the AL agent.

Selection-aware optimization. To perform the poisoning
attack, a trigger needs to be embedded in the data. However,
adding a trigger can affect the uncertainty of a sample, po-
tentially reducing the chance that it will be queried by the
uncertainty-based acquisition function. To mitigate this, we
design a selection-aware optimization procedure based on a
genetic algorithm (GA) to increase each poisoned sample’s
uncertainty score (i.e., entropy). Specifically, given a clean
sample as a seed, ALA first mutates it and generates multi-
ple mutants (Line 14). Then, the poisoning attack is used to
inject triggers into these mutants (Line 15). After that, we
calculate the uncertainty score of each poisoned sample and
keep the one with the highest uncertainty (Line 16-19). Af-
ter removing its trigger, this sample will be used as the seed
in the next iteration (Line 20). Finally, the poisoned sample
with the highest entropy in the final population is selected as
the optimized poisoned sample (Line 22).

We adopt existing clean-label attack methods—CL and

SIG—for trigger construction. To remain stealthy, the trig-
ger is designed to be visually imperceptible and does not
alter the semantic content of the image. The ground-truth la-
bel remains unchanged, which satisfies the clean-label con-
straint and avoids suspicion during the annotation process.

Experiments
Datasets and Models
We conduct experiments on three widely used benchmark
datasets: Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017),
a grayscale image dataset of clothing items with 10 classes;
CIFAR-10 (Krizhevsky, Hinton et al. 2009), a 10-class nat-
ural image dataset with low-resolution color images; and
SVHN (Netzer et al. 2011), a real-world digit classifica-
tion dataset derived from street view house numbers. These
datasets cover a range of visual domains and classification
difficulties.

For each dataset, we use a commonly adopted architecture
with sufficient capacity for the corresponding task. Specif-
ically, we use LeNet-5 (LeCun et al. 1998) for Fashion-
MNIST, ResNet-18 (He et al. 2016) for CIFAR-10, and Mo-
bileNetV2 (Sandler et al. 2018) for SVHN.

Setup
AL Setting. Following previous work (Hu et al. 2024), we
simulate an iterative AL loop with a total labeling budget
of 10% of the unlabeled data. At each epoch, the model se-
lects 1% of samples from the unlabeled pool using a pre-
defined acquisition function. We evaluate three widely used
uncertainty-based acquisition functions: Entropy, Margin,
and Least Confidence. Following standard AL practice, the
model is incrementally trained at each epoch using the up-
dated labeled set, continuing from the model parameters ob-
tained in the previous epoch.

Data Distribution. To simulate continuous learning in de-
ployment time on unfamiliar data, we construct an unlabeled
OOD pool by applying a randomly sampled corruption from
CIFAR-10-C (Hendrycks and Dietterich 2019) to each test
image, with a randomly chosen severity level. CIFAR-10-C
provides 19 types of common visual corruptions that can sig-
nificantly degrade model performance, each with five sever-
ity levels. A corrupted sample is added to the OOD pool if it
is misclassified by the pretrained AL model. Otherwise, the
corruption process is repeated until a misclassified variant is
found. This procedure ensures that the OOD pool consists of
visually plausible samples that the model fails to recognize,
reflecting realistic data drift during post-deployment learn-
ing. The ID data used for pretraining the AL model corre-
sponds to the original training split of each dataset.

Backdoor Attack Configuration. The current version of
ALA integrates two representative clean-label backdoor at-
tack methods. ALA is extensible, and any new attack meth-
ods can be easily employed in it.

• Clean-Label (CL) (Turner, Tsipras, and Madry 2019):
Adversarial samples are generated via projected gradi-
ent descent (PGD) attack. The perturbation is constrained
under an ℓ∞ bound of ϵ = 32.

• SIG (Barni, Kallas, and Tondi 2019): An imperceptible
sinusoidal signal trigger is overlaid onto each poisoned
sample. The signal is defined by a spatial frequency
f = 6 and amplitude δ = 50, resulting in a smooth,
high-frequency pattern that is visually indistinguishable
to humans but learnable by the model.

All poisoned samples are assigned their correct ground-truth
labels and visually resemble benign data. We evaluate two
poisoning ratios: 0.5% and 1.0% of the OOD pool. Poison-
ing is applied class-wise for each of the 10 classes, and re-
sults are averaged over classes.

Selection-Aware Optimization. To increase the likeli-
hood that poisoned samples are selected by the AL agent,
we apply a GA to optimize their uncertainty (measured via
entropy). For each poisoned sample, the GA is run indepen-
dently with a population size of 100, tournament size of 5,
and mutation rate of 0.5. Crossover is performed by ran-
domly inheriting from one parent. The mutation operations
include: (1) pixel-level noise (Gaussian, salt-and-pepper,
multiplicative), (2) blurring (Gaussian, uniform, median, bi-
lateral), and (3) global transformations (brightness and con-
trast adjustments). We evaluate the effect of optimization at
multiple checkpoints: 0, 5, 10, and 15 iterations.

Experiment Configurations. Each active learning pro-
cess is repeated three times with different random seeds, and
we report the average value of all evaluation metrics. All ex-
periments are conducted on a server equipped with an In-
tel(R) Xeon(R) Gold 6226R CPU (64 cores, 2.90GHz) and
eight NVIDIA RTX 3090 GPUs.

Evaluation Metrics
We evaluate our attack effectiveness and its impact on model
performance using the following metrics:
• Poisoned Selection Rate (Rselect). We report the per-

centage of poisoned samples that are selected by the
AL agent during the entire active learning process. A
higher Rselect under uncertainty-based acquisition func-
tions—compared to Random—indicates a more effective
attack This metric directly quantifies how well the attack
succeeds in manipulating the acquisition function to pri-
oritize poisoned inputs.

• Attack Success Rate (ASR). ASR measures the frac-
tion of test-time inputs embedded with the backdoor trig-
ger that are misclassified into the attacker-specified target
class. A higher ASR indicates a more effective backdoor
attack.

• ID Accuracy (AccID). To assess whether the backdoor
affects the model’s performance on previously learned
data, we report the classification accuracy on clean, ID
test data. High AccID indicates that the attack preserves
performance on the original distribution.

• OOD Accuracy (AccOOD). We also measure the
model’s accuracy on clean (i.e., non-poisoned) OOD
test data to assess whether the attack compromises gen-
eralization to newly learned classes. Maintaining high
AccOOD is important for stealthiness, as a noticeable
drop may expose the presence of poisoned data.

Table 1: Poisoned Selection Rate (%) at the First and Last
Training Epochs on CIFAR-10 under the SIG Attack (0.5%
Poisoning), across different acquisition functions and opti-
mization iterations. Iter refers to optimization iteration.

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 1.6 0.6 1.4 0.8
9 7.6 10.0 9.4 8.6

Entropy
0 23.8 75.4 84.6 89.4
9 29.1 75.9 84.8 89.4

Margin
0 4.6 18.0 26.2 32.4
9 14.6 24.3 30.1 35.5

Least Confidence
0 23.8 78.8 89.4 95.8
9 28.5 79.7 89.5 95.8

Results
Effectiveness of Selection-Aware Optimization. Table 1
summarizes the Poisoned Selection Rate (Rselect) at the first
and last training epochs across different acquisition func-
tions on the CIFAR-10 dataset using the SIG trigger with
a poisoning ratio of 0.5%. The results of other settings can
be found in the Appendix.

Comparing the results of iteration 0 (no optimization)
with iterations 5, 10, and 15. We observe that ALA substan-
tially increases Rselect when using uncertainty-based acqui-
sition functions (e.g., from 29.1% to 89.4% under Entropy-
based acquisition), while no significant change is observed
under Random selection. By computing the correlation be-
tween Rselect and ASR scores (shown in the Appendix)
across training epochs for iterations 5, 10, and 15, we find a
positive correlation of 0.698 (p < 0.001), indicating a strong
relationship between Rselect and attack success.

Considering the Rselect under different training epochs,
the results show that the difference between these two
epochs is negligible. For instance, across all uncertainty-
based acquisition functions and optimization settings, the
average change in Rselect between epoch 0 and epoch 9 is
less than 2.9%. We attribute this to the shift in model deci-
sion boundaries after the first epoch of training, which may
reduce the uncertainty of poisoned samples that were origi-
nally optimized based on the previous model. These findings
suggest that, if the attacker can only manipulate samples be-
fore injecting them into the AL pool, it is critical to ensure
that as many poisoned samples as possible are selected in
the very first epoch.

Figure 2 depicts the ASR scores achieved by ALA over
different iterations. The dashed line represents a control ex-
periment in which all poisoned samples are manually forced
to be selected in the first active learning epoch. In this set-
ting, the poisoned samples participate in training from the
beginning of the loop, providing an estimated upper bound
for ASR under full exposure. The estimated ASR values are
also averaged over attacks targeting all classes. Table 2 re-
ports the final ASR achieved by each acquisition function
under different optimization iterations, including the esti-
mated upper bound for reference.

0 3 6 9
Epoch

0

20

40

60

80

100
AS

R
(%

)
Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 2: ASR (%) over training epochs on CIFAR-10 under the SIG trigger with 0.5% poisoning. Colored lines represent
different acquisition functions, while the dashed line denotes the estimated upper bound achieved when all poisoned samples
are selected in the first AL epoch.

Table 2: Final ASR (%) on CIFAR-10 under the SIG attack
with 0.5% poisoning for different acquisition functions and
optimization rounds. The first row reports the estimated up-
per bound, where all poisoned samples are selected in the
first AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 46.0 46.0 46.0 46.0
Random 14.6 16.0 17.7 16.4
Entropy 29.7 43.6 43.8 43.7
Margin 21.0 27.3 28.5 30.0

Least Confidence 27.1 43.3 47.7 48.2

We observe that ALA significantly improves ASR un-
der Entropy and Least Confidence selection, approaching
or even surpassing the estimated upper bound. For exam-
ple, ALA achieves 47.7% and 48.2% ASRs on Least Confi-
dence with 10 and 15 optimization iterations, respectively—
exceeding the estimated upper bound of 46.0%. Margin also
benefits from optimization. Though its gains are more mod-
est, it still maintains a clear advantage over Random. As
expected, Random selection shows no substantial improve-
ment with additional optimization.

Notably, the differences in ASR across different optimiza-
tion iterations are relatively small, which aligns with our ob-
servations from Table 1: when Rselect ceases to increase sig-
nificantly, the ASR also plateaus. This suggests that five iter-
ations of optimization are sufficient to achieve stable and ef-
fective results. Nevertheless, although additional optimiza-
tion iterations yield diminishing returns, we still observe
slight ASR improvements under the Margin and Least Con-
fidence acquisition functions, as their corresponding Rselect

values continue to grow slightly.
We further report both AccID and AccOOD results in the

Appendix. To investigate whether ALA impacts the model’s
performance on the original ID data, we plot the AccID
curve over training epochs under the poisoned setting. The
results show that AccID remains stable throughout train-
ing, with no noticeable degradation and even slight improve-
ments in some cases. To assess whether the attack degrades
generalization on clean OOD data, we conduct a control ex-
periment where the AL model is trained using the original,

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

CL

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

SIG

Upper bound Random Entropy Margin Least confidence

Figure 3: ASR (%) over training epochs on SVHN under the
CL and SIG trigger with 1.0% poisoning and 15 optimiza-
tion iterations. Colored lines represent different acquisition
functions, while the dashed line denotes the estimated upper
bound achieved when all poisoned samples are selected in
the first AL epoch.

unpoisoned OOD samples. The resulting accuracy curve is
compared against the poisoned training curve. We observe
no significant difference between the two. These findings
suggest that our clean-label attack does not introduce ab-
normal accuracy drops or fluctuations in either AccID or
AccOOD, making it difficult to detect through standard per-
formance monitoring.

Comparison Across Backdoor Attack Methods. We
compare two clean-label backdoor attack methods: CL and
SIG. While SIG consistently achieves reasonably strong
ASR across all datasets, CL proves ineffective as an attack
method under the active learning setting.

Figure 3 illustrates the ASR over training epochs on the
CIFAR-10 dataset for both CL and SIG triggers, with a 1%
poisoning ratio and 15 optimization iterations. For reference,
we also include the estimated upper bound—obtained by
assuming all poisoned samples are selected in the first AL
epoch. The results reveal a stark contrast between the two
methods. Under CL, the ASR remains consistently around
10% throughout training. Even under the estimated upper
bound condition, the ASR fails to exceed this level, indi-
cating that CL cannot induce misclassification beyond the
poisoned sample’s original class. In contrast, SIG achieves
significantly higher ASRs, with attacks optimized by ALA
approaching the estimated upper bound, which itself is close

0 3 6 9 0 3 6 9 0 3 6 9
Class

0

20

40

60

80

100
AS

R
(%

)
CL

0 3 6 9 0 3 6 9 0 3 6 9
Class

0

20

40

60

80

100 SIG

Entropy Margin Least confidence

Figure 4: ASR (%) of epoch 9 over different classes on
CIFAR-10 under the CL and SIG trigger with 1.0% poison-
ing and 15 optimization iterations. Colored lines represent
different acquisition functions, while the dashed line denotes
the estimated upper bound achieved when all poisoned sam-
ples are selected in the first AL epoch.

to 100%. More results are put in the Appendix.
These findings demonstrate that in active learning scenar-

ios, SIG is substantially more effective and robust than CL
for clean-label backdoor injection—likely due to its stronger
and more learnable trigger design.

ASR Difference Across Target Classes. Figure 4
presents the class-wise ASR on training epoch 9 of CIFAR-
10 under the CL and SIG triggers with a 1.0% poisoning
ratio. Each bar corresponds to the ASR for a specific target
class when that class is selected as the attack target.

We observe class-dependent differences in attack dif-
ficulty across methods. For example, under all three
uncertainty-based acquisition functions, CL consistently
yields high ASR on class label 2, while SIG achieves its
highest ASR on class label 0, showing consistent behav-
ior within each method. Interestingly, SIG performs well on
class label 8, where CL fails to achieve high ASR, further
highlighting the differing effectiveness of the two triggers
across target classes.

The results reveal a clear contrast in attack generality
between the two trigger types. Compared to CL, the SIG
trigger achieves consistently higher ASRs across nearly all
classes and acquisition functions, demonstrating stronger
and more stable attack performance. In particular, under the
SIG trigger, most target classes achieve ASRs above 30%,
with more than half exceeding 50%, and some reaching over
70%. In contrast, under the CL trigger, ASRs for more than
half of the classes fail to surpass 30%, indicating that SIG
generalizes better across different semantic categories. More
results can be found in the Appendix.

Discussion
Broader Implications of Selection-Aware Attacks. Our
work highlights a new and underexplored attack surface:
the acquisition function itself. While our study focuses on
AL, the vulnerability is not confined to AL frameworks.
Any machine learning pipeline that leverages acquisition
function—such as test case selection, data valuation, re-
pair, and retraining strategies—could be similarly exploited.

This calls for a re-evaluation of the trust placed in selection
mechanisms, which have traditionally been seen as purely
efficiency-enhancing components.

Extension to Other Acquisition Functions. In this work,
we focus on uncertainty-based acquisition functions, which
are the most widely used category in AL literature. However,
other acquisition functions—such as diversity-based (Sener
and Savarese 2017; Gal, Islam, and Ghahramani 2017) or
hybrid methods (Ash et al. 2019)—may also be vulnerable.
Attacking such methods would require new criteria for iden-
tifying and optimizing poisoning samples, potentially rely-
ing on feature space distances or clustering behavior. We
leave this as an important direction for future work.

Transferability and Black-box Potential. To explore the
black-box applicability of our attack, we evaluated its trans-
ferability across models with different architectures or ran-
dom initializations. We observed that both the poisoned
selection rate and ASR under uncertainty-based acquisi-
tion functions become comparable to Random selection in
the transfer setting. This holds even when adopting com-
mon transfer techniques based on ensembling, gradients,
or input transformations. Notably, high-entropy samples are
not consistent across models, highlighting a key limitation:
uncertainty-based selection is highly sensitive to model-
specific decision boundaries, even when performance is sim-
ilar. These findings suggest that effective selection-aware at-
tacks in the black-box setting remain a challenging open
problem, and further research is needed to design transfer-
able or model-agnostic poisoning techniques.

Toward Possible Defenses. Our findings underscore the
need for defenses that explicitly consider vulnerabilities
arising from the selection process. Potential countermea-
sures include entropy regularization (Pereyra et al. 2017)
to mitigate model overconfidence, and anomaly detection
mechanisms to identify suspicious samples selected during
AL epochs. Another promising direction is to randomize
or ensemble multiple acquisition functions, thereby limiting
the attacker’s ability to optimize against any fixed selection
rule.

Overall, our study issues a new warning for the security
of AI systems: acquisition functions, while intended to im-
prove efficiency, can inadvertently introduce exploitable at-
tack surfaces. To build truly robust AL systems, it is essential
to integrate selection-aware threat modeling into the design
of secure learning pipelines.

Conclusion
In this paper, we introduced a new type of attack for deep
learning – poisoning attack for active learning. Leveraging
the acquisition function as the attack surface, we proposed a
novel framework, ALA, to inject poisoned samples into the
training set of active learning models. To increase the at-
tack efficiency, we designed a selection-aware optimization
algorithm to maximize the probability of poisoned samples
being selected. Evaluation results demonstrated that ALA is
effective in attacking active learning, highlighting the need
for secure active learning in the future.

References
Ash, J. T.; Zhang, C.; Krishnamurthy, A.; Langford, J.;
and Agarwal, A. 2019. Deep batch active learning by
diverse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671.
Barni, M.; Kallas, K.; and Tondi, B. 2019. A new backdoor
attack in cnns by training set corruption without label poi-
soning. In 2019 IEEE International Conference on Image
Processing (ICIP), 101–105. IEEE.
Beluch, W. H.; Genewein, T.; Nürnberger, A.; and Köhler,
J. M. 2018. The power of ensembles for active learning in
image classification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 9368–9377.
Bilgic, M.; and Getoor, L. 2009. Link-based active learning.
In NIPS workshop on analyzing networks and learning with
graphs, volume 4, 9. Vancouver, BC, Canada.
Gal, Y.; Islam, R.; and Ghahramani, Z. 2017. Deep bayesian
active learning with image data. In International conference
on machine learning, 1183–1192. PMLR.
Gu, T.; Dolan-Gavitt, B.; and Garg, S. 2017. Badnets: Iden-
tifying vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hendrycks, D.; and Dietterich, T. 2019. Benchmarking Neu-
ral Network Robustness to Common Corruptions and Per-
turbations. Proceedings of the International Conference on
Learning Representations.
Hu, Q.; Guo, Y.; Xie, X.; Cordy, M.; Ma, L.; Papadakis, M.;
and Le Traon, Y. 2024. Active code learning: Benchmarking
sample-efficient training of code models. IEEE Transactions
on Software Engineering, 50(5): 1080–1095.
Ji, Y.; Zhang, X.; and Wang, T. 2017. Backdoor attacks
against learning systems. In 2017 IEEE Conference on Com-
munications and Network Security (CNS), 1–9. IEEE.
Joshi, A. J.; Porikli, F.; and Papanikolopoulos, N. 2009.
Multi-class active learning for image classification. In 2009
ieee conference on computer vision and pattern recognition,
2372–2379. IEEE.
Kim, J.; Feldt, R.; and Yoo, S. 2019. Guiding deep learning
system testing using surprise adequacy. In Atlee, J. M.; Bul-
tan, T.; and Whittle, J., eds., Proceedings of the 41st Inter-
national Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, 1039–1049. IEEE
/ ACM.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
LeCun, Y.; eon Bottou, L.; Bengio, Y.; et al. 1998. Gradient-
Based Learning Applied to Document Recognition. PROC.
OF THE IEEE, 1.
Li, D.; Wang, Z.; Chen, Y.; Jiang, R.; Ding, W.; and Oku-
mura, M. 2024. A survey on deep active learning: Recent
advances and new frontiers. IEEE Transactions on Neural
Networks and Learning Systems, 36(4): 5879–5899.

Li, X.; and Guo, Y. 2013. Adaptive active learning for image
classification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 859–866.
Li, Y.; Chen, M.; Liu, Y.; He, D.; and Xu, Q. 2022. An
empirical study on the efficacy of deep active learning for
image classification. arXiv preprint arXiv:2212.03088.
Liu, Y.; Ma, S.; Aafer, Y.; Lee, W.-C.; Zhai, J.; Wang, W.;
and Zhang, X. 2018. Trojaning attack on neural networks. In
25th Annual Network And Distributed System Security Sym-
posium (NDSS 2018). Internet Soc.
Lu, H.; Jia, X.; Xie, Y.; Liao, W.; Yang, X.; and Yan, J. 2024.
ActiveAD: Planning-Oriented Active Learning for End-to-
End Autonomous Driving. CoRR, abs/2403.02877.
Munjal, P.; Hayat, N.; Hayat, M.; Sourati, J.; and Khan, S.
2022. Towards robust and reproducible active learning using
neural networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 223–232.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng,
A. Y.; et al. 2011. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011,
7. Granada.
Pereyra, G.; Tucker, G.; Chorowski, J.; Kaiser, Ł.; and
Hinton, G. 2017. Regularizing neural networks by pe-
nalizing confident output distributions. arXiv preprint
arXiv:1701.06548.
Ren, P.; Xiao, Y.; Chang, X.; Huang, P.-Y.; Li, Z.; Gupta,
B. B.; Chen, X.; and Wang, X. 2021. A survey of deep active
learning. ACM computing surveys (CSUR), 54(9): 1–40.
Roy, N.; and McCallum, A. 2001. Toward optimal active
learning through sampling estimation of error reduction. In
In Proc. 18th International Conf. on Machine Learning.
Saha, A.; Subramanya, A.; and Pirsiavash, H. 2020. Hidden
trigger backdoor attacks. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, 11957–11965.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 4510–4520.
Santos, I.; and Carvalho, A. 2024. ProtoAL: Interpretable
deep active learning with prototypes for medical imaging.
In Zaza, G.; Casalino, G.; and Castellano, G., eds., Pro-
ceedings of the First Workshop on Explainable Artificial In-
telligence for the Medical Domain (EXPLIMED 2024) co-
located with 27th European Conference on Artificial Intel-
ligence (ECAI 2024), Santiago de Compostela, Spain, Oc-
tober 20, 2024, volume 3831 of CEUR Workshop Proceed-
ings. CEUR-WS.org.
Sener, O.; and Savarese, S. 2017. Active learning for con-
volutional neural networks: A core-set approach. arXiv
preprint arXiv:1708.00489.
Sener, O.; and Savarese, S. 2018. Active Learning for
Convolutional Neural Networks: A Core-Set Approach. In
6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Settles, B. 2009. Active learning literature survey.
Shannon, C. E. 1948. A mathematical theory of communi-
cation. The Bell system technical journal, 27(3): 379–423.
Shui, C.; Zhou, F.; Gagné, C.; and Wang, B. 2020. Deep ac-
tive learning: Unified and principled method for query and
training. In International conference on artificial intelli-
gence and statistics, 1308–1318. PMLR.
Tong, S.; and Koller, D. 2001. Support vector machine active
learning with applications to text classification. Journal of
machine learning research, 2(Nov): 45–66.
Turner, A.; Tsipras, D.; and Madry, A. 2019.
Label-consistent backdoor attacks. arXiv preprint
arXiv:1912.02771.
Wang, D.; and Shang, Y. 2014. A new active labeling
method for deep learning. In 2014 International joint con-
ference on neural networks (IJCNN), 112–119. IEEE.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv preprint arXiv:1708.07747.
Yin, C.; Qian, B.; Cao, S.; Li, X.; Wei, J.; Zheng, Q.; and
Davidson, I. 2017. Deep similarity-based batch mode ac-
tive learning with exploration-exploitation. In 2017 IEEE
international conference on data mining (ICDM), 575–584.
IEEE.
Zhong, H.; Liao, C.; Squicciarini, A. C.; Zhu, S.; and Miller,
D. 2020. Backdoor embedding in convolutional neural net-
work models via invisible perturbation. In Proceedings of
the Tenth ACM Conference on Data and Application Secu-
rity and Privacy, 97–108.

Appendix
Poisoned Selection Rate
Table 3–14 present the Poisoned Selection Rate at the First
and Last Training Epochs across all settings.

Table 3: Poisoned Selection Rate (%) on CIFAR-10 under
the CL Attack (0.5% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 1.0 1.2 0.6 1.2
9 11.2 7.2 8.0 11.6

Entropy
0 5.8 46.0 71.4 80.8
9 14.9 47.1 71.7 81.0

Margin
0 6.2 12.6 22.8 25.6
9 14.2 21.5 28.4 31.3

Least Confidence
0 7.2 49.0 72.4 88.6
9 15.5 51.3 73.1 88.8

Table 4: Poisoned Selection Rate (%) on Fashion-MNIST
under the CL Attack (0.5% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 1.8 1.4 1.2 1.6
9 12.8 8.6 10.6 9.6

Entropy
0 0.0 18.2 40.6 60.6
9 2.0 25.0 44.6 62.2

Margin
0 0.0 3.4 7.2 8.2
9 6.2 11.0 14.0 13.4

Least Confidence
0 0.0 23.0 47.4 67.6
9 3.2 28.0 49.6 68.4

Table 5: Poisoned Selection Rate (%) on SVHN under the
CL Attack (0.5% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 1.4 0.2 0.6 1.0
9 13.0 8.4 8.6 11.6

Entropy
0 85.2 100.0 100.0 100.0
9 85.4 100.0 100.0 100.0

Margin
0 10.2 14.4 19.4 25.4
9 18.2 21.2 24.8 31.0

Least Confidence
0 61.0 95.0 98.4 99.8
9 61.8 95.0 98.4 99.8

Table 6: Poisoned Selection Rate (%) on CIFAR-10 under
the SIG Attack (0.5% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 1.6 0.6 1.4 0.8
9 7.6 10.0 9.4 8.6

Entropy
0 23.8 75.4 84.6 89.4
9 29.1 75.9 84.8 89.4

Margin
0 4.6 18.0 26.2 32.4
9 14.6 24.3 30.1 35.5

Least Confidence
0 23.8 78.8 89.4 95.8
9 28.5 79.7 89.5 95.8

Table 7: Poisoned Selection Rate (%) on Fashion-MNIST
under the SIG Attack (0.5% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 1.4 1.8 0.4 0.2
9 9.6 12.4 7.0 9.4

Entropy
0 15.2 53.2 72.0 86.0
9 20.6 54.2 72.2 86.2

Margin
0 2.6 4.6 5.2 7.2
9 8.4 11.4 10.8 11.8

Least Confidence
0 9.6 47.6 69.8 85.4
9 16.2 48.4 70.4 85.4

Table 8: Poisoned Selection Rate (%) on SVHN under the
SIG Attack (0.5% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 1.4 0.2 0.6 1.0
9 13.0 8.4 8.6 11.6

Entropy
0 85.2 100.0 100.0 100.0
9 85.4 100.0 100.0 100.0

Margin
0 10.2 14.4 19.4 25.4
9 18.2 21.2 24.8 31.0

Least Confidence
0 61.0 95.0 98.4 99.8
9 61.8 95.0 98.4 99.8

Table 9: Poisoned Selection Rate (%) on CIFAR-10 under
the CL Attack (1.0% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 1.2 1.0 1.0 0.5
9 9.5 11.0 10.8 8.8

Entropy
0 3.0 45.6 65.1 73.9
9 11.5 46.0 65.4 74.0

Margin
0 3.7 14.3 19.7 23.9
9 10.9 19.4 23.3 26.6

Least Confidence
0 3.6 44.0 67.9 77.4
9 11.3 44.6 68.0 77.5

Table 10: Poisoned Selection Rate (%) on Fashion-MNIST
under the CL Attack (1.0% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 1.0 1.1 0.9 0.5
9 11.0 10.6 10.7 8.4

Entropy
0 0.0 19.4 42.3 61.2
9 3.0 23.6 43.8 61.8

Margin
0 0.0 4.1 6.0 8.4
9 4.3 10.3 12.3 13.9

Least Confidence
0 0.0 24.8 47.9 64.5
9 3.1 26.6 48.9 64.9

Table 11: Poisoned Selection Rate (%) on SVHN under the
CL Attack (1.0% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 0.9 0.7 0.8 0.8
9 10.3 8.4 10.0 11.1

Entropy
0 0.0 31.5 51.2 62.3
9 10.7 42.5 57.4 67.3

Margin
0 0.0 7.6 10.0 12.3
9 8.3 20.6 22.7 25.6

Least Confidence
0 0.0 33.1 50.9 64.9
9 10.4 41.8 57.9 69.3

Table 12: Poisoned Selection Rate (%) on CIFAR-10 under
the SIG Attack (1.0% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 1.2 1.0 1.4 0.8
9 9.3 8.4 10.1 9.4

Entropy
0 11.9 58.2 69.4 73.4
9 16.1 58.4 69.6 73.6

Margin
0 4.5 18.3 23.2 24.7
9 12.1 21.7 25.9 27.0

Least Confidence
0 12.6 62.7 76.0 81.9
9 16.7 63.2 76.1 82.0

Table 13: Poisoned Selection Rate (%) on Fashion-MNIST
under the SIG Attack (1.0% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 1.5 1.4 1.3 1.0
9 9.1 10.3 9.5 10.1

Entropy
0 7.8 44.6 65.7 79.4
9 12.7 45.3 65.9 79.7

Margin
0 2.0 5.5 6.6 9.8
9 8.2 7.5 9.8 11.5

Least Confidence
0 5.4 41.6 61.1 76.0
9 10.1 41.7 61.2 76.0

Table 14: Poisoned Selection Rate (%) on SVHN under the
SIG Attack (1.0% Poisoning)

Acquisition Epoch Iter 0 Iter 5 Iter 10 Iter 15

Random
0 0.6 1.6 0.9 0.9
9 10.4 9.3 9.0 11.0

Entropy
0 43.6 74.8 82.5 86.1
9 44.1 75.0 82.7 86.2

Margin
0 7.2 14.7 17.0 21.1
9 13.3 17.7 19.6 23.6

Least Confidence
0 37.1 74.9 84.3 88.4
9 38.5 75.1 84.3 88.6

Attack success rate
Table 15–26 present the Final ASR (%) for different acqui-
sition functions and optimization rounds. Figure 5-16 show
the ASR (%) across epochs. Table 39 shows the Poisoned
Selection Rate and the corresponding ASR on the CIFAR-
10 dataset using the SIG trigger with a poisoning ratio of
0.5%.

Table 15: Final ASR (%) on CIFAR-10 under the CL attack
with 0.5% poisoning for different acquisition functions and
optimization rounds. The first row reports the estimated up-
per bound, where all poisoned samples are selected in the
first AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 55.1 55.1 55.1 55.1
Random 11.6 10.4 10.4 10.8
Entropy 12.0 16.7 20.9 25.0
Margin 13.1 11.9 12.5 13.7

Least Confidence 11.9 16.2 22.0 26.5

Table 16: Final ASR (%) on Fashion-MNIST under the CL
attack with 0.5% poisoning for different acquisition func-
tions and optimization rounds. The first row reports the esti-
mated upper bound, where all poisoned samples are selected
in the first AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 35.8 35.8 35.8 35.8
Random 16.9 12.5 11.0 13.3
Entropy 11.3 13.0 15.7 20.2
Margin 11.9 12.7 14.2 13.7

Least Confidence 10.5 14.7 17.4 24.4

Table 17: Final ASR (%) on SVHN under the CL attack with
0.5% poisoning for different acquisition functions and opti-
mization rounds. The first row reports the estimated upper
bound, where all poisoned samples are selected in the first
AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 10.1 10.1 10.1 10.1
Random 10.1 10.2 10.0 10.0
Entropy 10.1 10.0 10.1 10.0
Margin 10.1 10.1 10.0 10.2

Least Confidence 10.1 10.1 10.1 10.1

Table 18: Final ASR (%) on CIFAR-10 under the SIG attack
with 0.5% poisoning for different acquisition functions and
optimization rounds. The first row reports the estimated up-
per bound, where all poisoned samples are selected in the
first AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 46.0 46.0 46.0 46.0
Random 14.6 16.0 17.7 16.4
Entropy 29.7 43.6 43.8 43.7
Margin 21.0 27.3 28.5 30.0

Least Confidence 27.1 43.3 47.7 48.2

Table 19: Final ASR (%) on Fashion-MNIST under the SIG
attack with 0.5% poisoning for different acquisition func-
tions and optimization rounds. The first row reports the esti-
mated upper bound, where all poisoned samples are selected
in the first AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 33.3 33.3 33.3 33.3
Random 17.0 19.3 14.9 18.1
Entropy 20.5 25.9 27.8 29.0
Margin 17.5 18.5 19.4 21.7

Least Confidence 21.3 27.8 27.2 33.6

Table 20: Final ASR (%) on SVHN under the SIG attack
with 0.5% poisoning for different acquisition functions and
optimization rounds. The first row reports the estimated up-
per bound, where all poisoned samples are selected in the
first AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 91.6 91.6 91.6 91.6
Random 74.0 51.1 65.7 64.6
Entropy 90.5 90.9 93.2 93.0
Margin 80.9 83.8 81.5 77.3

Least Confidence 87.6 92.6 92.5 87.8

Table 21: Final ASR (%) on CIFAR-10 under the CL attack
with 1.0% poisoning for different acquisition functions and
optimization rounds. The first row reports the estimated up-
per bound, where all poisoned samples are selected in the
first AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 66.6 66.6 66.6 66.6
Random 12.3 12.2 11.6 11.5
Entropy 15.1 27.4 33.3 33.8
Margin 16.3 19.2 17.6 20.5

Least Confidence 13.5 27.5 33.2 34.9

Table 22: Final ASR (%) on Fashion-MNIST under the CL
attack with 1.0% poisoning for different acquisition func-
tions and optimization rounds. The first row reports the esti-
mated upper bound, where all poisoned samples are selected
in the first AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 47.6 47.6 47.6 47.6
Random 17.4 13.4 13.3 13.3
Entropy 10.7 16.4 20.3 22.4
Margin 14.8 15.1 15.3 15.0

Least Confidence 11.5 17.0 20.4 23.8

Table 23: Final ASR (%) on SVHN under the CL attack with
1.0% poisoning for different acquisition functions and opti-
mization rounds. The first row reports the estimated upper
bound, where all poisoned samples are selected in the first
AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 10.1 10.1 10.1 10.1
Random 10.1 10.2 10.0 10.1
Entropy 10.0 10.1 9.9 10.1
Margin 10.1 10.0 10.1 10.1

Least Confidence 10.1 10.2 10.1 10.2

Table 24: Final ASR (%) on CIFAR-10 under the SIG attack
with 1.0% poisoning for different acquisition functions and
optimization rounds. The first row reports the estimated up-
per bound, where all poisoned samples are selected in the
first AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 60.3 60.3 60.3 60.3
Random 24.1 20.8 23.8 19.9
Entropy 30.5 50.3 48.3 48.1
Margin 30.2 36.6 38.3 38.1

Least Confidence 34.4 50.6 53.5 52.2

Table 25: Final ASR (%) on Fashion-MNIST under the SIG
attack with 1.0% poisoning for different acquisition func-
tions and optimization rounds. The first row reports the esti-
mated upper bound, where all poisoned samples are selected
in the first AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 31.5 31.5 31.5 31.5
Random 19.5 24.0 23.1 21.6
Entropy 24.0 25.5 31.9 34.2
Margin 21.3 24.9 25.8 27.0

Least Confidence 20.9 33.5 30.4 34.8

Table 26: Final ASR (%) on SVHN under the SIG attack
with 1.0% poisoning for different acquisition functions and
optimization rounds. The first row reports the estimated up-
per bound, where all poisoned samples are selected in the
first AL epoch. Iter refers to optimization iteration.

ASR (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 94.3 94.3 94.3 94.3
Random 77.1 74.5 80.0 84.4
Entropy 86.9 93.3 91.1 94.0
Margin 88.0 88.8 85.7 90.6

Least Confidence 91.6 94.0 93.3 94.1

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 5: ASR (%) over training epochs on CIFAR-10 under the CL trigger with 0.5% poisoning. Colored lines represent
different acquisition functions, while the dashed line denotes the estimated upper bound achieved when all poisoned samples
are selected in the first AL epoch.

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 6: ASR (%) over training epochs on Fashion-MNIST under the CL trigger with 0.5% poisoning.

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 7: ASR (%) over training epochs on SVHN under the CL trigger with 0.5% poisoning.

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 8: ASR (%) over training epochs on CIFAR-10 under the SIG trigger with 0.5% poisoning.

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 9: ASR (%) over training epochs on Fashion-MNIST under the SIG trigger with 0.5% poisoning.

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 10: ASR (%) over training epochs on SVHN under the SIG trigger with 0.5% poisoning.

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 11: ASR (%) over training epochs on CIFAR-10 under the CL trigger with 1.0% poisoning.

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 12: ASR (%) over training epochs on Fashion-MNIST under the CL trigger with 1.0% poisoning.

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 13: ASR (%) over training epochs on SVHN under the CL trigger with 1.0% poisoning.

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 14: ASR (%) over training epochs on CIFAR-10 under the SIG trigger with 1.0% poisoning.

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 15: ASR (%) over training epochs on Fashion-MNIST under the SIG trigger with 1.0% poisoning.

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 0

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 5

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 10

0 3 6 9
Epoch

0

20

40

60

80

100

AS
R

(%
)

Iteration 15 Acquisition Function
Upper bound
Random
Entropy
Margin
Least confidence

Figure 16: ASR (%) over training epochs on SVHN under the SIG trigger with 1.0% poisoning.

ASR over different classes
Figure 17 and Figure 18 show the ASR (%) of epoch 9 over
different classes on Fashion-MNIST and SVHN dataset.

0 3 6 9 0 3 6 9 0 3 6 9
Class

0

20

40

60

80

100

AS
R

(%
)

CL

0 3 6 9 0 3 6 9 0 3 6 9
Class

0

20

40

60

80

100 SIG

Entropy Margin Least confidence

Figure 17: ASR (%) of epoch 9 over different classes on
Fashion-MNIST under the CL and SIG trigger with 1.0%
poisoning and 15 optimization iterations. Colored lines rep-
resent different acquisition functions, while the dashed line
denotes the estimated upper bound achieved when all poi-
soned samples are selected in the first AL epoch.

0 3 6 9 0 3 6 9 0 3 6 9
Class

0

20

40

60

80

100

AS
R

(%
)

CL

0 3 6 9 0 3 6 9 0 3 6 9
Class

0

20

40

60

80

100 SIG

Entropy Margin Least confidence

Figure 18: ASR (%) of epoch 9 over different classes on
SVHN under the CL and SIG trigger with 1.0% poisoning
and 15 optimization iterations. Colored lines represent dif-
ferent acquisition functions, while the dashed line denotes
the estimated upper bound achieved when all poisoned sam-
ples are selected in the first AL epoch.

OOD data accuracy
Tables 27–38 show the prediction accuracy of the fine-tuned
models on OOD data (i.e., all benign unlabeled data). The
results indicate that the backdoor injection process does not
affect the model’s performance on benign samples.

Table 27: OOD Accuray (%) on CIFAR-10 under the CL at-
tack with 0.5% poisoning for different acquisition functions
and optimization rounds. The first row reports the estimated
upper bound, where no poisoned samples are injected in un-
labeled pool. ACC refers to OOD accuracy and Iter refers to
optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 55.0 55.0 55.0 55.0
Random 56.3 56.5 56.3 57.5
Entropy 55.7 56.0 55.9 55.4
Margin 56.9 57.0 57.9 57.5

Least Confidence 56.3 56.7 56.6 56.0

Table 28: OOD Accuray (%) on Fashion-MNIST under the
CL attack with 0.5% poisoning for different acquisition
functions and optimization rounds. The first row reports the
estimated upper bound, where no poisoned samples are in-
jected in unlabeled pool. ACC refers to OOD accuracy and
Iter refers to optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 51.0 51.0 51.0 51.0
Random 50.3 50.1 49.6 50.4
Entropy 53.3 52.7 53.2 53.0
Margin 51.5 51.6 52.2 52.1

Least Confidence 52.7 52.9 52.7 53.1

Table 29: OOD Accuray (%) on SVHN under the CL at-
tack with 0.5% poisoning for different acquisition functions
and optimization rounds. The first row reports the estimated
upper bound, where no poisoned samples are injected in un-
labeled pool. ACC refers to OOD accuracy and Iter refers to
optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 62.0 62.0 62.0 62.0
Random 63.0 62.7 62.6 62.3
Entropy 63.0 62.9 61.5 61.9
Margin 64.4 64.0 63.6 63.9

Least Confidence 64.1 64.0 62.9 63.2

Table 30: OOD Accuray (%) on CIFAR-10 under the SIG at-
tack with 0.5% poisoning for different acquisition functions
and optimization rounds. The first row reports the estimated
upper bound, where no poisoned samples are injected in un-
labeled pool. ACC refers to OOD accuracy and Iter refers to
optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 55.0 55.0 55.0 55.0
Random 56.5 56.8 57.3 57.8
Entropy 56.3 55.8 56.1 55.2
Margin 57.5 57.4 57.4 57.2

Least Confidence 56.7 57.2 56.5 56.6

Table 31: OOD Accuray (%) on Fashion-MNIST under the
SIG attack with 0.5% poisoning for different acquisition
functions and optimization rounds. The first row reports the
estimated upper bound, where no poisoned samples are in-
jected in unlabeled pool. ACC refers to OOD accuracy and
Iter refers to optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 51.0 51.0 51.0 51.0
Random 50.2 50.5 50.6 50.1
Entropy 53.6 52.5 52.4 52.5
Margin 52.3 52.1 51.9 52.2

Least Confidence 53.1 52.9 53.0 53.0

Table 32: OOD Accuray (%) on SVHN under the SIG at-
tack with 0.5% poisoning for different acquisition functions
and optimization rounds. The first row reports the estimated
upper bound, where no poisoned samples are injected in un-
labeled pool. ACC refers to OOD accuracy and Iter refers to
optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 62.0 62.0 62.0 62.0
Random 62.3 61.9 62.3 62.1
Entropy 61.2 61.5 61.3 62.1
Margin 64.4 64.2 63.7 63.5

Least Confidence 62.5 61.9 62.3 62.1

Table 33: OOD Accuray (%) on CIFAR-10 under the CL at-
tack with 1.0% poisoning for different acquisition functions
and optimization rounds. The first row reports the estimated
upper bound, where no poisoned samples are injected in un-
labeled pool. ACC refers to OOD accuracy and Iter refers to
optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 55.0 55.0 55.0 55.0
Random 56.2 57.2 57.0 56.8
Entropy 56.2 56.2 55.4 55.4
Margin 57.0 57.3 57.4 57.6

Least Confidence 56.1 56.2 55.6 55.7

Table 34: OOD Accuray (%) on Fashion-MNIST under the
CL attack with 1.0% poisoning for different acquisition
functions and optimization rounds. The first row reports the
estimated upper bound, where no poisoned samples are in-
jected in unlabeled pool. ACC refers to OOD accuracy and
Iter refers to optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 51.0 51.0 51.0 51.0
Random 49.7 50.5 49.9 50.2
Entropy 53.1 53.3 53.4 52.8
Margin 51.3 52.2 52.0 52.0

Least Confidence 52.8 52.7 53.0 52.4

Table 35: OOD Accuray (%) on SVHN under the CL at-
tack with 1.0% poisoning for different acquisition functions
and optimization rounds. The first row reports the estimated
upper bound, where no poisoned samples are injected in un-
labeled pool. ACC refers to OOD accuracy and Iter refers to
optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 62.0 62.0 62.0 62.0
Random 62.1 61.8 62.1 62.0
Entropy 61.3 62.0 61.9 61.1
Margin 63.2 63.8 63.4 63.3

Least Confidence 62.5 62.9 63.1 62.7

Table 36: OOD Accuray (%) on CIFAR-10 under the SIG at-
tack with 1.0% poisoning for different acquisition functions
and optimization rounds. The first row reports the estimated
upper bound, where no poisoned samples are injected in un-
labeled pool. ACC refers to OOD accuracy and Iter refers to
optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 55.0 55.0 55.0 55.0
Random 57.4 58.2 57.7 57.5
Entropy 56.6 55.8 55.4 55.3
Margin 57.6 57.6 57.5 57.5

Least Confidence 56.9 56.0 56.0 56.1

Table 37: OOD Accuray (%) on Fashion-MNIST under the
SIG attack with 1.0% poisoning for different acquisition
functions and optimization rounds. The first row reports the
estimated upper bound, where no poisoned samples are in-
jected in unlabeled pool. ACC refers to OOD accuracy and
Iter refers to optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 51.0 51.0 51.0 51.0
Random 49.7 50.3 50.5 50.3
Entropy 53.5 52.7 52.6 53.1
Margin 52.7 52.3 52.4 52.1

Least Confidence 53.1 53.3 52.4 52.6

Table 38: OOD Accuray (%) on SVHN under the SIG at-
tack with 1.0% poisoning for different acquisition functions
and optimization rounds. The first row reports the estimated
upper bound, where no poisoned samples are injected in un-
labeled pool. ACC refers to OOD accuracy and Iter refers to
optimization iteration.

ACC (%) Iter 0 Iter 5 Iter 10 Iter 15

Upper bound 62.0 62.0 62.0 62.0
Random 62.6 62.8 62.6 62.2
Entropy 62.3 61.2 61.7 61.1
Margin 63.9 64.0 63.7 64.2

Least Confidence 62.8 62.8 62.2 62.2

Table 39: Raw data to calculate correlation between Rselect and ASR

Iteration Acquisition Fcuntion Metric
Epoch

0 1 2 3 4 5 6 7 8 9

0

Random
Rselect 11.5 12.4 12.4 12.2 12.8 14.4 13.6 15.0 15.2 14.6

ASR 1.6 2.2 2.8 3.4 3.8 5.2 5.6 6.0 6.8 7.6

Entropy Rselect 25.5 26.3 23.6 26.8 26.7 26.8 28.4 27.4 27.3 29.7
ASR 23.8 24.6 24.9 25.6 25.9 26.3 27.2 27.9 28.5 29.1

Margin Rselect 13.0 14.0 16.2 17.1 17.7 20.2 20.0 21.4 21.9 21.0
ASR 4.6 5.5 6.7 7.9 9.7 10.7 11.7 12.9 13.7 14.6

Least Confidence
Rselect 25.3 25.5 26.5 25.4 26.8 28.3 29.4 28.1 27.7 27.1

ASR 23.8 24.1 24.5 24.9 25.8 26.3 27.1 27.4 28.1 28.5

5

Random
Rselect 10.7 12.1 11.9 12.5 14.1 13.9 15.8 16.2 15.8 16.0

ASR 0.6 1.6 3.4 4.4 5.0 5.8 7.4 8.0 9.2 10.0

Entropy Rselect 39.1 42.4 41.8 42.3 43.1 41.4 40.2 42.5 41.8 43.6
ASR 75.4 75.5 75.5 75.6 75.7 75.7 75.7 75.7 75.7 75.9

Margin Rselect 22.5 22.2 25.6 26.9 24.9 25.5 26.3 27.6 27.1 27.3
ASR 18.0 19.2 20.0 20.5 21.1 21.5 22.3 23.1 23.7 24.3

Least Confidence
Rselect 43.8 41.9 42.7 44.6 43.3 44.5 42.2 44.8 45.6 43.3

ASR 78.8 78.9 79.1 79.1 79.2 79.2 79.3 79.6 79.7 79.7

10

Random
Rselect 12.3 11.0 12.4 13.5 12.7 14.2 15.3 15.4 16.8 17.7

ASR 1.4 2.4 3.2 3.6 4.8 5.4 6.2 7.2 8.2 9.4

Entropy Rselect 41.0 43.5 42.8 40.2 43.0 42.2 42.7 46.7 42.7 43.8
ASR 84.6 84.6 84.6 84.6 84.6 84.6 84.6 84.7 84.7 84.8

Margin Rselect 25.6 25.5 27.2 27.7 28.3 29.4 27.4 29.8 29.7 28.5
ASR 26.2 26.5 26.8 27.4 27.9 28.4 28.9 29.5 29.8 30.1

Least Confidence
Rselect 45.4 41.9 44.2 43.5 48.1 42.3 43.0 47.8 47.1 47.7

ASR 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.5 89.5 89.5

15

Random
Rselect 11.5 11.0 12.5 12.8 15.2 15.4 14.6 14.7 16.0 16.4

ASR 0.8 1.6 2.4 3.2 5.2 5.6 5.8 7.0 7.8 8.6

Entropy Rselect 41.2 41.3 42.7 44.4 47.3 45.3 44.2 46.2 45.9 43.7
ASR 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4

Margin Rselect 29.8 32.6 28.7 30.4 32.2 34.0 33.8 33.5 33.5 30.0
ASR 32.4 32.5 32.9 33.6 34.2 34.5 35.1 35.4 35.5 35.5

Least Confidence
Rselect 43.7 45.8 45.8 47.6 47.0 48.8 47.9 47.2 46.2 48.2

ASR 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.8

