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Abstract

Modeling and simulation are widely used in cybersecurity research
to assess cyber threats, evaluate defense mechanisms, and analyze vul-
nerabilities. However, the diversity of application areas, the variety of
cyberattacks scenarios, and the differing objectives of these simulations
makes it difficult to identify methodological trends. Existing reviews often
focus on specific modeling techniques or application domains, making it
challenging to analyze the field as a whole.

To address these limitations, we present a comprehensive review of
the current state of the art, classifying the selected papers based on four
dimensions: the application domain, the types of cyber threats repre-
sented, the simulation techniques employed, and the primary goals of the
simulation. The review discusses the strengths and limitations of dif-
ferent approaches, identifies which cyber threats are the most suited for
simulation-based investigations, and analyzes which modeling paradigms
are most appropriate for specific cybersecurity challenges.

1 Introduction

The shift towards digitalization and the increasing interconnectedness of modern
technological devices had a remarkable impact on society. On one hand, several
tasks have been automated and made more efficient; on the other, many sys-
tems are now exposed to cyberattacks, which have become a significant threat
across various sectors [1]. Attackers may pursue different goals, such as provok-
ing operational disruption, inflicting financial harm, and stealing confidential
information. To achieve this, they exploit vulnerabilities in the target systems,
which are any type of weakness or flaw in a system’s design, implementation,
configuration, or usage.
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Among the various categories of cyberattacks, some stand out for their fre-
quency and potential for disruption. One of the major cybersecurity concerns
is Denial of Service (DoS) [2], where the targeted system is overwhelmed with
requests at a rate it can not sustain, making service unavailable to legitimate
users. The impact of DoS can be further increased if multiple compromised
devices participate in the attack – a scenario commonly referred to as a Denial
of Service (DDoS) – making it harder to identify and isolate the responsible
parties. Other attacks aim at gaining unauthorized access or to manipulate the
operations of a target system, typically by making the victim execute malicious
code through either vulnerable web interfaces or malware deployment. Since
communication channels are the primary medium through which cyberattacks
spread, it is essential to ensure confidentiality, integrity, and authenticity of data
transmissions. If channels are not properly secured through cryptographic tech-
niques, these properties can be undermined by a Man-in-the-Middle (MitM) [3],
who can intercept, alter, or relay communication between two parties without
their knowledge. This allows for eavesdropping on sensitive information, modi-
fying transmitted data, or injecting malicious commands.

The increasing adoption of technologies such as the Internet of Things (IoT),
Distributed Ledger Technology (DLT), and cloud services further expands the
attack surface. In transportation systems, cyber vulnerabilities can compromise
the safety and functionality of autonomous vehicles and traffic control networks.
In energy and utility infrastructures, attacks on supervisory control and data
acquisition systems can cause power outages or water supply failures, affecting
millions of people. Thus, cyberattacks can lead to severe economic, operational,
and social consequences, requiring appropriate countermeasures to mitigate risks
and damage. Given the significant impact of cyber threats, it is important to
develop methods and tools to assess vulnerabilities, measure the effectiveness
of defenses, and evaluate resilience to attacks. Modeling and simulation is a
powerful tool to analyze complex threat scenarios, test mitigation strategies in
controlled environments, and gain deeper insights into system behavior under
adversarial conditions.

This paper examines the role of simulation in cybersecurity by reviewing and
categorizing the research activities of the last 25 years, to address the following
research questions (RQ):

RQ1: Which application domains are the most frequently considered
by cybersecurity simulations? Since cybersecurity is relevant for all
digital applications, this questions aims to identify which sectors are the
most represented in the scientific literature.

RQ2: Which types of cyber threats are mostinvestigated using sim-
ulation? Different cyber threats are characterized by distinct challenges
in terms of modeling and analysis. This questions examines which attack
vectors are investigated through simulation and the reasons behind the
research approach.

RQ3: Which modeling and simulation techniques are employed in cy-
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bersecurity research? Since many different modeling paradigms exist,
this question aims at understanding which ones are most suitable for in-
vestigating each type of threat or application domain, considering aspects
such as computational constraints, the required level of detail, and the
need to integrate stochasticity or dynamic behaviors.

RQ4: What are the primary goals of modeling and simulation in cy-
bersecurity research? Most papers in this area share a common ob-
jective, such as evaluating the impact of an attack under specific condi-
tions, but there are important differences in the focus of the simulation.
Some studies concentrate on defensive measures, others on identifying crit-
ical threshold values, analyzing economic consequences, or examining the
propagation of malware. This question aims to classify the goals pursued
by researchers, and understand how they influence the simulation design
choices.

Simulation for
Cybersecurity

Application domain
(Section 4)

Cyber threats
(Section 5)

Modelling technique
(Section 6)

Goal of Simulation
(Section 7)

Figure 1: Taxonomy of the review.

To this aim, we classify the research papers across four dimensions (Figure 1):

• Application domain. Cybersecurity risks vary across different sectors, each
with specific technological features and potential attack vectors. Sim-
ulation enables domain-specific vulnerability analysis, allowing security
strategies to be tailored to the operational and structural characteristics
of the investigated system.

• Cyber Threat considered. The term “cybersecurity” encompasses a wide
range of threats, which differ in the vulnerabilities being exploited, tar-
get and objective of the attack, available means, origin (i.e., internal or
external), and complexity.

• Modeling technique. Several M&S paradigms are available, depending on
the required level of granularity, availability of computing resources, and
the complexity of the scenario under study.

• Goal of the investigation. The goal of simulation-based cybersecurity stud-
ies can vary depending on several factors. In most cases, potential weak-
nesses are already known, and the goal is to examine the level of resilience
of the system under adversarial conditions, the effectiveness of certain
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mitigation strategies, or the level of impairment that is caused by attacks.
Conversely, simulations might help to identify vulnerable endpoints where
cyber-induced failures would cause the most damage, or generate syntetic
workloads to train AI models to detect malicious patterns that could be
symptoms of attacks.

This paper is organized as follows. In Section 2 we present some review
papers that discussed simulation papers that have discussed M&S in the field of
cybersecurity. In Section 3 we define the methodology that has been adopted to
collect and categorize the references; we analyze the data from the quantitative
point of view to highlight research trends that help to understand how this
research area is evolving. Sections 4 through 7 are devoted to the analysis of
the scientific literature that has been discussed along the four main dimensions.
Finally, conclusions and general remarks will be provided in Section 8.

2 Related Works

Table 1: Comparison of this review and others from the literature.
Study Year Survey Focus N. of Papers

[4] 2020 Cyber-physical power systems 67
[5] 2024 Agent-based modeling 39
[6] 2021 Cyber-physical systems, ICS 31
[7] 2021 Critical infrastructures 68
[8] 2021 Training, risk analysis, testbeds,

human behavior
50

[9] 2022 Cause-effect cyberattack simula-
tions

11

[10] 2018 Cognitive modeling of users, at-
tackers, defenders

?

Ours 2025 [Insert focus] 135

The use of simulation and modeling techniques in cybersecurity has been
extensively studied in the literature (Table 1). Although several review stud-
ies have been conducted, most of them focus on specific application areas or
modeling methodologies.

In [6], studies of cyberattacks on Cyber-Phisical Systems (CPSs) and in-
dustrial control systems are grouped by modeling methodology, considering
approaches based on graphs, attack trees, and automata. In [7] the authors
reviewed cybersecurity research concerning the critical infrastructure sectors,
with a particular emphasis on aviation, energy, and nuclear industries.

Other works focus on how simulations are applied to address different chal-
lenges in cybersecurity. In [8], five objectives of the simulations are considered:
building representative environments (networks and connected systems), testing
and evaluation (how simulations help evaluate the performance of cybersecurity
tools), training (teaching basic security concepts to users, and how to recognize
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and react to a cyber threat to security professionals), risk analysis, and human
factors in cybersecurity.

In [9], the authors examine the evolution of cyber attack simulations over
the past 20 years, highlighting trends, challenges, and methodological gaps.
They classify simulations into three types: tactical (replicating specific attack
steps and responses), strategic (analyzing long-term attack-defense dynamics
and resource allocation), and impact (evaluating consequences on cyber-physical
systems and critical infrastructures).

Finally, in [10] the authors analyze how simulations can incorporate cognitive
models to enhance cybersecurity by focusing on human elements, such as the
behaviors and decisions of attackers, defenders, and users.

3 Review Methodology

3.1 Paper Selection

To ensure a comprehensive and consistent selection of research studies, review
works need to define a rigorous methodology to retrieve the papers to exam-
ine [11], which is summarized in Figure 2.

ACM DL

IEEEXplore

Google
Scholar

MergeQuery

Additional
Keywords

Abstract
relevant?

Discarded
Papers

No

Read
Paper

Content
relevant?

No

Referenced
Papers

Yes

No

Reference
paper?

Yes

Extract
references

Yes

No

New
keywords?

Pool of
papers

Initial
keywords

Figure 2: Paper selection flowchart.

While initially some papers were included because they were known to the
authors, the search process was conducted primarily using search engines like
ACM Digital Library, IEEEXplore, and Google Scholar, considering for selection
the first 50 results for each combination of keywords. The initial query was based
on the following formula to capture a broad range of studies:

(cyberattack or cybersecurity) and (modeling or simulation) (1)
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After the first round, additional terms that were frequently associated with
simulation-based cybersecurity research have been identified, allowing us to ex-
tend the keywords for paper selection. As a result, new terms such as denial-
of-service, agent-based, blockchain, and malware were fed to the bibliography
search engines, enabling the inclusion of more specialized studies. In addition
to keyword-based searches, relevant survey papers were examined to retrieve fur-
ther references that did not appear in the initial results, but were pertinent to
the topic. Only papers that implemented actual simulation experiments were
included, leaving out those that only offer methodological contribution. Fur-
thermore, preprints, studies of insufficient quality, and duplicate entries were
removed to ensure a consistent selection.

3.2 Categorization and Analysis

After excluding the papers that were not relevant, 135 works were selected as
part of the review: 91 conference papers (67.4%) and 44 journal papers (32.6%).

Figure 3 shows the number of papers by five-years term, revealing a growing
interest in this type of study over the past ten years.

Figure 3: Temporal distribution of the reviewed papers across five-year intervals
over the past 25 years.

We also track the geographic areas of the authors’ home institutions, using
a fractional counting method which works as follows: if a paper has n authors,
then each one contributes 1/n to the count of the geographic area of his/her
home institution at the time the paper was written. In case of multiple affilia-
tion, the first one is considered.

Figure 4 shows that the majority of papers are authored by researchers from
North America, Europe, or East Asia, although every continent is represented
by at least one publication. Specifically, the most recurrent nation is USA,
followed by China, UK, Italy, India, and Canada. On average, each paper
has 3.5 authors, with a variance of 2.49. In 23 papers (17%), different authors
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Africa
1,9%
South America
2,2%
South-East Asia
4,1%
Western Asia
3,8%
Russia and Central Asia
4,2%
South Asia
5,4%

Eastern Asia
13,9%

North America
36,4%

Europe
27,0%

Figure 4: Despite all continents are represented in this survey, more than 3/4
of the papers are from North America (USA and Canada), Europe, or Eastern
Asia countries (e.g., China, Japan, and Korea)

are affiliated with universities or research institutions from different countries,
indicating international collaboration.

4 Application domain

The analysis of the state of the art has revealed a significant diversification in the
application domains of simulation in cybersecurity, as shown in Figure 5. The
variety of areas covered reflects the growing awareness of the need for protection
in both digital and physical systems. In this section, we review some of the most
investigated sectors, discussing how simulation is employed is such domains.

4.1 IT Networks

IT networks and infrastructures form the backbone of digital communications,
and thus, they are important subjects for cybersecurity because they are the
media through which attacks are conveyed. A critical challenge in this domain
is mitigating DoS attacks, which can severely impact network availability. In
traditional enterprise networks, traffic routing and application of security poli-
cies are managed individually by switches and routers, whose behavior can be
modified only with specific manual intervention. On the other hand, Software-
Defined Networking (SDN) centralizes network control, allowing for fast and
coordinated responses to cyberattacks [12]. Simulation can assess mitigation
strategies, such as load balancing algorithms, evaluating their impact on packet
loss, network stability, and server performance under attack conditions.

Client-server architectures are vulnerable to DoS since the presence of cen-
tralized servers creates single points of failure that can be overwhelmed with a
large volume of malicious traffic. This scenario is analyzed in [13], where the
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Application domain

IT Networks

Industrial and
Utility systems

Transportation
Systems

Blockchain

Client-Server

Cloud and
Virtualization

P2P

Enetry
Iinfrastructure

Manufacturing and
Industry 4.0

Water
Infratructures

Autonomous
vehicles

UAV

Figure 5: Taxonomy of application domains.

simulation environment is highly configurable, enabling the test of various at-
tack taxonomies. Attack parameters include victim type (i.e., application, host,
or network), DDoS type, impact on the victim (i.e., either disruptive or de-
grading), Agents’ set permanency (i.e., fixed or variable set of daemons), attack
rate dynamics, exposure of malicious packets to detection filters, source address
validity, and degree of automation. On the other hand, defense parameters in-
clude deployment location, mechanism of cooperation, covered defense stages,
detection technique, and mitigation approach.

Beyond network availability, authentication is a crucial security aspect of IT
infrastructures. In [14], interactions between users and authentication systems
are modeled to evaluate the impact of memorization techniques like spaced rep-
etition and system-generated passphrases. Cognitive burden metrics, such as
Levenshtein distance and word count, are employed to measure the usability-
security trade-off. Simulation assesses aggregate security against brute-force
attacks, password reuse, and other vulnerabilities, showing the impact of pass-
word policies. Authentication issues are also investigated in [15], in the context
of medical imaging networks, together with unencrypted communications and
access control weaknesses.

Military networks are a high-value target, as strategic infrastructures are
more easily subject to attacks due to their geopolitical relevance. In [16], Agent-
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Based Modeling (ABM) is used to study malware propagation in mobile tactical
networks that support military operations, incorporating hierarchical command
structures, unit mobility, and short-range wireless communication. Military
units are represented as agents, aiming to capture how group movement and
hierarchical coordination influence risk exposure. Similarly, in [17] cyber forces
and networked environments are represented as interacting agents in a cyber
warfare scenario. The proposed simulation mimics malicious operations like
routing protocol manipulation, DoS, and phishing attacks, while defensive forces
deploy patching and mitigation strategies.

Financial and enterprise networks are also appealing targets for attackers,
given the valuable assets and sensitive information that they handle. Thus,
protecting these infrastructures against cyber threats is crucial, as a successful
breach would lead to financial losses and severe reputational damage. In [18], the
authors examined a scenario where a Zero Trust Architecture (i.e., no user device
can be trusted by default) is integrated with a hybrid access control system and
blockchain technology. Simulation helps assessing the impact of cyberthreats
like DoS, MitM, zero-day exploits (i.e. vulnerabilities unknown to developers and
thus lacking countermeasures), and smart contract vulnerabilities, using metrics
such as detection accuracy, false positives/negatives, and response time. In
[19], an adversary model defines the strategy to penetrate an enterprise network
based on intent, capability (i.e., the skillset of the attacker), opportunity (i.e.,
possible actions based on the attacker’s intent and accumulated knowledge),
and preferences of the attacker.

While in client-server architectures DoS typically targets a centralized server,
in Peer-to-peer (P2P) systems resources are distributed among the various par-
ticipants, making it harder for an attacker to prevent access to online resources.
However, in [20] it was demonstrated that attacks targeting an individual node
can negatively affect the whole network, slowing down system performance and
undermining the availability of the service.

Finally, due to their increasing popularity, cyber risks to cloud and grid
systems must be taken into account. In [21], the authors simulated virus propa-
gation in an IaaS infrastructure, showing cascading effects, and DDoS targeting
multiple types of cloud systems. The experiments also evaluate the role of
Intrusion Detection Systems (IDSs) to mitigate the impact of these threats.

4.2 Industrial and utility systems

Protecting industrial infrastructures and utility systems from cyberattacks is of
paramount importance, as the impairment of these systems could have widespread
social and economic consequences. The digitalization process driven by the In-
dustry 4.0 paradigm and the growing interconnection of modern industrial net-
works has exposed these environments to further cyber risks. Simulations in
this field may need to take into account multiple factors, such as the behavior
of the CPS and the organization of internal communication networks, allowing
researchers to examine the impact of cyberattacks, such as false data injec-
tion and DoS [22]. Attacks on CPSs often take advantage of specific properties
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of industrial control environments, such as the modification attack on smart
grids, where adversaries manipulate measurement data to deceive control sys-
tems. Simulation helps to assess how injected biases into the control signals can
destabilize the system under various scenarios, affecting both angle and voltage
stability [23]. MitM and data injection attacks, as discussed in [24], can signifi-
cantly alter system behavior, leading to incorrect operator decisions. Similarly,
in [25], the authors have examined the effects of induced faults on transform-
ers within a petrochemical plant. The way that DoS can disrupt sensor data
collection and control instruction transmission is analyzed in [26], showing that
attack-induced delay decreases the stability of the system. The complexity of
industrial environments is further influenced by the interaction between human
operators and automated control mechanisms.

In [27], ABM is used to simulate security failures in power grid operations,
considering as a use case the Northeast Blackout of 2003, and taking into ac-
count people, tools, and organizations involved. While the blackout itself was
not caused by malicious actors, it is shown that its key failures, such as sys-
tem misconfigurations, communication breakdowns, and software bugs, could
realistically be replicated by cyberattacks.

In [28], a scenario where attackers manipulate SCADA systems to open
circuit breakers was modeled based on Ukraine power system hacking events,
evaluating system vulnerabilities and the risk of large-scale blackouts.

4.3 Transportation Systems

The growing popularity of IoT has also extended to the automotive industry,
where cybersecurity is an important challenge for connected and autonomous
vehicles. In fact, weaknesses in Vehicle-to-Everything communications could be
exploited to modify cars’ behavior, dangerously undermining road safety. In
this field, simulation is used to assess vulnerabilities in transport networks and
potentially prevent attacks that could compromise road safety. For instance,
in drive-by downloads attacks the navigation systems are manipulated, leading
vehicles to ignore traffic signals, make unintended turns, or collide with other
vehicles and pedestrians [29]. For these investigations, multilevel modeling is
frequently used to incorporate traffic simulation, network simulation, and po-
tentially other relevant aspects, such as 5G control place [30]. As in nearly every
sector, a significant threat to vehicular networks is DoS, where malicious actors
overwhelm the network with a huge amount of messages that must be processed,
causing delays or failures in critical safety messages. To mitigate these concerns,
in [31] the authors tested the effectiveness of Bloom Filter detection, a method
that employs a space-efficient probabilistic data structure to identify anomalies
in packet transmission. Furthermore, the increasing integration of intelligent
devices in transport requires studies to ensure the reliability of communica-
tion networks and data protection, considering the interconnections among the
involved actors. In [32], ABM is used to represent vehicles, pedestrians, and
roadside infrastructure as distinct agent populations that interact via commu-
nication channels such as vehicle-to-vehicle and vehicle-to-infrastructure. The
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goal of the tests is to investigate the propagation of attacks originating from
different agents, considering parameters such as infection probability, detection,
and defense capabilities. In [33], the authors investigated the impact of jamming,
replay, falsification, and congestion attacks on ITS-G5 vehicular communication
systems. Each attack exploits known weaknesses: jamming interferes with wire-
less communication by transmitting noise packets on the same frequency, replay
attacks resend outdated packets destabilizing vehicle coordination, falsification
attacks modify critical parameters of transmitted messages, and congestion at-
tacks overwhelm communication channels.Besides ground transportation, air-
craft safety - in particular in the context of Unmanned Aerial Vehicle (UAV)
networks - has also been object of research, with studies examining cyber threats
like DDoS, jamming attacks [34] (i.e., deliberate interference with wireless com-
munication), and data tampering [35].

4.4 Blockchain

Finally, certain types of attacks are inherently linked with the type of sys-
tem under examination, as they exploit protocols or technological features. In
blockchains, cyberattacks often exploit the very features of the technology, due
to its open and decentralized nature. In particular, blockchains are vulnerable to
attacks targeting consensus protocols, smart contracts, and the network struc-
ture. Some known threats that have been investigated in scientific documents
are:

• 51% attack, which occurs when one party controls more than half of the
system’s computing power, potentially enabling transactions manipulation
and undermining the decentralized nature of the system. In fact, some
blockchains are based on Proof-of-Work, a consensus mechanism where
participants must solve complex cryptographic puzzles to generate new
valid blocks. Attackers can exploit their computational power to mine a
large number of blocks and carry out fraudulent behavior, such as double
spending [36].

• Sybil attack, where a malicious user creates a large number of fake identi-
ties (Sybil nodes) in the P2P network, in order to obstruct regular message
dissemination [37]. While often associated with blockchain networks, Sybil
attacks can also target IoT systems, wireless sensor networks, and other
distributed environments [38].

• Stalker attacks, where adversaries attempt to exclude blocks of targeted
miners from the main chain [39].

• Saving attack, where a malicious validator in Proof-of-Stake blockchains
(i.e. , block validators are selected based on their stake instead of computa-
tional work) withholds its right to propose blocks during a temporary con-
sensus failure and later use them to provoke other consensus failure [40].
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• Denial of Chain, where attackers manipulate consensus mechanisms to en-
force an alternative chain as the main chain, by withholding or selectively
publishing blocks, then overriding legitimate transactions [41].

• Re-entrancy attacks, where vulnerabilities in Ethereum smart contract
execution flow are exploited to repeatedly withdraw funds before state
changes are committed [42].

• Sandwich attack, where an attacker exploits the visibility of pending trans-
actions in the mempool. The attacker places two transactions around a
victim’s trade — one before and one after — to manipulate the asset price
and extract a profit at the victim’s expense [43].

• Partitioning attack, where an adversary splits the network into isolated
subgroups, preventing nodes in different partitions from communicating [44].

• Transaction malleability, where the ID of a transaction is manipulated
before it gets inserted on the blockchain, allowing the attacker to modify
and resend a transaction at a later time, potentially leading to double
spending or network inconsistencies. The attack is particularly dangerous
in the context of e-voting, where network delay and block generation rate
are impactful parameters [45].

4.5 Discussion

Table 2: Application domains and key simulation characteristics
Domain Common Threats Modeling Focus

IT Networks
DoS

Authentication Issues
MitM

Network Resilience
Packet Loss

Access Control

Industry & Utility
DoS

MitM
Data Injection

Operability
SCADA Security

Transportation
DoS

False Data Injection
Road safety

Vehicular Communication

Blockchain
Consensus Attacks

Smart Contract Bugs
Double Spending
Consensus Failure

While certain cyber threats are cross-class issues, others are characterized
by domain-specific vulnerabilities, and thus need to be modeled accordingly as
summarized in Table 2. The level of system exposure to external networks is
pivotal in establishing the pathway for an attack. The increasing digitalization
of services, adoption of cloud technologies, remote access, and real-time moni-
toring have significantly increased the attack surface of many systems, providing
attackers numerous entry points that can potentially be exploited to perform
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malicious actions.While isolated environments may still be susceptible to cyber
threats, such as attacks launched by internal actors, the limited engagement
with the external world reduces the likelihood of remote attacks.

After successfully penetrating a system, the way attacks propagate is highly
contingent upon the nature of the domain and the goal of the adversaries. At-
tackers tend to move laterally, gaining control of the system incrementally, until
the ultimate target is reached.

5 Cyber Threats

Several cyber threats exist, differing in targets, goals, attack strategies, and
vulnerabilities exploited as summarized in Figure 6. Some attacks rely on over-
whelming network resources, while others exploit software vulnerabilities, ma-
nipulate user behavior, or operate stealthily over extended periods. The nature
of each threat determines which modeling approaches can be employed, the
complexity of the representation, the metrics being used, and the simulation
parameters. In this section, we discuss the challenges linked with the most
investigated cyber threats.

5.1 Denial of Service

Out of all the cyber threats, DoS is the most extensively investigated through
simulation. This is not only due to its impact on cybersecurity, but also because
these attacks perfectly match with a simulation approach, as modelers can rep-
resent both attackers and defending entities as agents that interact dynamically
within a simulated network environment [46]. DoS serves as an umbrella term
and generally applies to any attempts to disrupt the normal operation of a sys-
tem or service by overwhelming it with a volume of requests that the system
cannot handle, rendering it unavailable to legitimate users. The effectiveness of
DoS can be enhanced when multiple compromised devices are working together,
which are often part of a botnet that overwhelms the target system with a huge
amount of traffic. DDoS may be particularly difficult to defend, since the pres-
ence of several devices utilized to conduct the attack makes it harder to filter
out the malicious traffic without interfering with the legitimate users. As sum-
marized in table 3, DoS attacks can be conducted against multiple layers of the
Internet stack, with different implications for system availability. At the MAC
layer, attackers can take advantage of the capture effect and unfairness char-
acteristics found in the IEEE 802.11 protocol to dominate channel access [47].
At the network layer, flooding attacks overwhelm bandwidth with an excessive
transmission of IP packets, saturating the bandwidth of communication chan-
nels. At the transport layer, connection-handling mechanisms are exploited to
exhaust server resources, leading to unresponsiveness. Finally, at the application
layer, attackers can overload specific protocols, such as flooding IEC 60870-5-
104 packets in SCADA systems [48], to delay time-critical processes, and even
shutting down normal operations.
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Cyber threats

(Distributed)
Denial of Service

Transport-layer DoS

Application-layer DoS

Network-layer DoS

Man in the
middle

Data injection

False data
injection

SQL injection

Side channel
attack

Electro-Magnetic
analysis attack

Power analysis
attack

Malware

Virus

Worms

Malware

Figure 6: Taxonomy of cyber threats.

DoS employes different techniques, depending on how the targeted network is
configured, the type and volume of the generated traffic, the protocol weaknesses
being exploited, and the attack’s distribution across single or multiple sources.
Several studies have examined DoS attacks using one or more of the following
techniques:

• Slowloris where a targeted web server’s connections are exhausted by send-
ing incomplete HTTP requests at a slow rate [49].

• IP/MAC Spoofing, where the attacker forges its network data in order to
disguise malicious traffic and evade detection mechanisms [50].

• Bulky Message, where a target server is flooded with excessively large
messages or files.

• Garbage Message, where a high volume of meaningless packets forces net-
work devices to fill up the switch’s flow table.
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• SYN flood, where a large number of SYN requests are sent to a target
server without completing the connection[51, 52, 53].

• UDP storm, where multiple hosts send a large volume of UDP packets
to random ports of the target machine, causing it to repeatedly check for
listening applications and respond with ICMP Destination Unreachable
messages [54].

• Ping of Death, where a host transmits numerous ICMP Echo Requests
with an oversized or malformed packet size to a target system [55].

• RTS/CTS, where an attacker exploits the Request-to-Send and Clear-to-
Send mechanism in IEEE 802.11 networks by sending forged RTS/CTS
frames with excessively long duration values, thus reserving the wireless
channel for an extended period, preventing legitimate devices from access-
ing the medium [56].

• Disassociation on 802.11 wireless networks, where an attacker spoofs a
legitimate access point or client and sends fake disassociation frames to
disconnect devices from the network, forcing victims to repeatedly recon-
nect [57].

• Process Table attack, the target system’s process table is filled with exces-
sive requests, preventing new processes from being created and rendering
the system unresponsive until the attack stops or the administrator man-
ually terminates the malicious processes [58].

• Mailbomb, where a mail server is overwhelmed by sending a massive num-
ber of emails from multiple sources, leading to excessive resource con-
sumption and disruption of email services [59].

• HELLO Flood, where HELLO messages, used to announce the presence of
a node, are broadcast to trick other nodes into incorrectly recognizing the
attacker as a legitimate neighbor [60].

• DNS Flood, where the attacker exploits open DNS resolvers by sending
small queries with a spoofed IP address, causing the servers to send large
responses to the victim [61].

5.2 Man-in-the-Middle

MitM is a severe threat to confidentiality and integrity of data transmission,
particularly in scenarios where communication channels are encrypted, authen-
tication mechanisms are weak, or network access is poorly controlled. While
simulation might not be the most appropriate approach to evaluate the likeli-
hood of data leakage, it is well-suited to evaluate the consequences that insecure
communication could have on system operations, above all in case the attacker
is able to inject harmful data.
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Table 3: Classification of DoS Techniques by OSI Layer

OSI Layer DoS Attack Technique

MAC (Layer 2) RTS/CTS Attack
Disassociation Attack

Network (Layer 3) IP/MAC Spoofing
UDP Storm
Ping of Death
HELLO Flood

Transport (Layer 4) SYN Flood
Application (Layer 7) Slowloris

Mailbomb
Bulky Message Flood
Garbage Message Flood
DNS Flood

System-level Process Table Attack

In [62], simulation is used to investigated how a MitM can affect the behav-
ior of the power system of a wind farm, leading to overspeed conditions, voltage
instability, and potential equipment damage. The MitM targets the optical
fiber link between the control center and the wind turbines, intercepting and
modifying measurement data and control commands. As a result, operators are
led to think that the system is functioning regularly, despite turbine operations
are destabilized. A similar attack scenario is examined in [63], where an ad-
versary is able to eavesdrop on the network backbone of a power distribution
automation system. The attacker injects false measurements regarding the sta-
tus of electrical components, to mislead operators in their decision-making, such
as switching when it is unnecessary or failing to respond to a legitimate fault
response. However, it was shown how mitigation strategies based on shared
secret keys and message authentication codes enable the detection of tampered
data. Furthermore, to increase the veracity of the representation, modelers
could feed simulators with real network traffic, ensuring that packet structures
and communication patterns reflect actual system behavior. For instance, in
[64], Wireshark is employed to capture and analyze live network traffic between
components of a smart grid.

Finally, in [65] a MitM creates a large number of pseudonymous identities
and threatens road safety by falsifying data exchanged among connected ve-
hicles. These data contain information such as vehicle size, position, speed,
heading, acceleration, and brake system status, which could lead cars to make
unsafe driving decisions. The experiments show that if a certificate mechanism
is employed, vehicles can swiftly block forged messages.
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5.3 Data Injection

Data injection occurs when attackers feed malicious code into a target system,
exploiting vulnerabilities in input validation and data handling, with the aim of
executing fraudulent operations that may cause data leaks or unauthorized ac-
cess. Code injection, and especially SQL injection, has been a well-documented
cybersecurity threat for decades, consistently ranked among the OWASP Top 10
vulnerabilities [66] due to its frequency and potential effects. Despite its impact
on cybersecurity, simulation-based investigations remain quite uncommon. The
primary reason is the difficulty in parameterizing data injection attacks. Unlike
DoS, which can be studied observing how system degradation is influenced by
varying traffic loads, data injection success outcome is binary, making it unsuit-
able for quantitative analysis. Furthermore, the success of the attack usually
depends on application-specific factors, such as database structure, query man-
agement, and input handling. As a result, penetration testing and code analysis
are preferred for assessing injection risks.

Despite these limitations, few simulation studies have been conducted, in
particular to analyze the consequences of undetected data injections on the
targeted system. In the context of vehicle-to-everything communication, false
data regarding the surrounding vehicles or the driving environment may lead
to the loss of car control, endangering drivers, passengers and pedestrians, and
disrupting the traffic flow [67]. In SCADA systems, the injection of falsified
measurements can deceive control decisions, such as triggering unnecessary dis-
connection of transmission lines or altering generator outputs, potentially desta-
bilizing the power grid [68]. Also in shipboard power systems, false data injec-
tion is concerning issue, as attackers can manipulate load control instructions
to deliberately reduce the electricity supply by forcing incorrect power adjust-
ments. Specifically, in [69], the attack consists of injecting false commands into
the control system, which unknowingly transmits the incorrect instructions to
the generators, resulting in a distribution system disturbance. The system’s
response is assessed by measuring the deviation from generation and estimating
load curtailment. To defend from the attack, an independent control mechanism
is considered to detect and block the modified commands to maintain the sta-
bility of the system, effective demand response, and manage energy supply. In
[70], the authors simulated a SQL injection, where fraudulent SQL code inter-
feres with database queries. The model represents communication of different
network components within a typical demilitarized zone architecture. Network
traffic generated during the simulated attack was captured and analyzed using
Wireshark to observe SQL injection attempts and examine the interactions be-
tween the attacker and the server. In [71], SQL injection is examined through
a penetration test conducted within a controlled simulation environment. The
SQL injection attack is executed on a locally hosted demo website, starting
with reconnaissance to identify vulnerabilities in authentication mechanisms.
The simulation allows for testing automated attack techniques that exploit in-
put validation weaknesses to gain unauthorized access, while the penetration
test assesses how different exploitation techniques affect data confidentiality.
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Phishing is also studied, demonstrating how fraudulent login prompts can be
used to deceive users into revealing credentials.

5.4 Malware

Malware refers to any type of malicious software designed to cause harmful
or unintended behavior when executed on a device, usually with the aim to
cause damage, steal sensitive information, extort money, or conduct espionage.
Certain malware, like viruses and worms, do not only produce local effects, but
attempt to propagate to reach other devices. While sandboxed environments are
preferable for evaluating the effects of malware on infected devices, simulation
is often used to study dissemination dynamics.

In [72], viruses and worms are represented as autonomous agents that repli-
cate and propagate across the information system of a power plant. Once they
reach the target, they deactivate the hosts’ network cards, rendering unavail-
able control and remote monitoring services. The simulation helps investigate
both the propagation dynamics and the operational implications of the attack.
In [73], network nodes are modeled as autonomous agents that interact within
a scale-free network. Each agent transitions between states following a SEIRS
model: susceptible agents are vulnerable to infection, exposed agents carry in-
active malware, infectious agents spread the malware to their neighbors, and
stifler agents stop transmitting the infection but may become susceptible again.
The model also incorporates defensive strategies such as selectively immunizing
the nodes with the highest connectivity and software diversity, where automatic
program transformations are applied to generate variants of applications. Sim-
ilarly, in [74], 5G mobile devices act as mobile agents in an urban environment
structured as a Poisson-Voronoi tessellation, a mathematical model that repre-
sents city street layouts with random segmentation. The simulation employs an
SI model, where an initially infected device transmits malware to susceptible
neighbors if they remain within communication range for a sufficient time. In
[75], the NS-3 simulator is extended to analyze Mirai, a self-propagating botnet
malware that targets IoT devices to perform DDoS attacks. Captured traffic is
forwarded through a router that intercepts communications and redirects pack-
ets based on protocol and port numbers. Mirai was further investigated in [76],
where its infection behavior was modeled using Petri Nets alongside Hajime, a
peer-to-peer IoT malware that spreads by exploiting vulnerabilities, blocks ports
to prevent reinfection, and vanishes upon reboot. Both IoT devices and malware
are represented as agents, with transitions defining infection events. Different
reboot frequencies and network topologies are tested to analyze infection dy-
namics, showing their impact on malware dissemination and how interactions
between Mirai and Hajime affect infection patterns.

5.5 Side-Channel Attacks

Side-channel attacks exploit unintended data leakages that occur during com-
puting operations, usually related to cryptography. The collected physical sig-
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nals, such as energy consumption, execution time, or electromagnetic emissions,
are used to infer information like a secret key. To analyze the feasibility of
these attacks, it is first necessary to reproduce realistic power traces. In [77],
two methods are compared. One uses detailed electrical simulations to estimate
how the chip’s power consumption changes during encryption, taking into ac-
count the effects of wiring and circuit structure. The other relies on faster digital
simulations, where the activity of the circuit is monitored and power consump-
tion is approximated by counting signal changes. Small variation in power usage
during the encryption procedure can reveal information about the secret keys.
In [78], the authors investigate how much information leaks from a chip through
electromagnetic signals, focusing on the AES encryption algorithm. The sim-
ulator first mimics the circuit’s activity to determine current behavior, then
uses currents on the chip’s top metallization layers to estimate electromagnetic
emissions, which in turn are employed to generate virtual signals that a nearby
electromagnetic probe might capture. By repeating this process for many dif-
ferent encryption runs and analyzing the resulting signals, the model assesses
whether an attacker could recover the full secret key. A similar approach is
used in [79], where both hardware and software implementations of AES are
simulated at a high level with a tool based on SystemC. The internal values of
registers and memory during encryption are tracked, enabling the estimation of
power usage based on how those values change over time. This lays the foun-
dation to generate power traces that resemble what would be measured on a
physical chip.

5.6 Discussion

Cybersecurity includes a wide range of threats, differing in the objectives, ex-
ploited vulnerabilities, and modes of propagation. Although not all cyberattacks
are equally suited for detailed modeling, simulation can still serve different pur-
poses depending on the type of threat, as summarized in Table 4. Simulation is
well-suited when it is feasible to reproduce realistically the sequence of actions
of the involved parties and their effect on the system, and when the impact of
the attacks is measurable with meaningful metrics.

The cyber threat that is best suited for simulation is DoS, as the effects
of the attack depend on easily configurable parameters such as traffic volume,
number of attacking nodes, and target system capacity. These parameters allow
researchers to test different attack intensities and to evaluate how network per-
formances degrade over time, defining threshold conditions. Additionally, DoS
simulations produce measurable outcomes, such as increased latency, packet
loss, and server unresponsiveness, allowing the comparison of different mitiga-
tion strategies. In contrast, the outcome of certain attacks depends primarily
on the exploitation of vulnerabilities that, being unknown, cannot be analyzed
in advance. Also, when success is determined entirely by system configuration,
static analysis or penetration testing are more appropriate approaches. Simi-
larly, attacks that depend on deception, such as phishing or social engineering,
are difficult to model in a simulation environment since their effectiveness relies
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Table 4: Cyber threats and simulation suitability

Threat Typical Targets Simulation Goal

DoS / DDoS Web servers, Network
devices

Measure impact
through tunable pa-
rameters

MitM Communication chan-
nels that lack proper
security measures

Evaluate consequences
of insecure communica-
tion

Data Injection SCADA system, Web
apps, Connected vehi-
cles

Study the consequences
of undetected injections
on the system

Malware Personal devices Criti-
cal infrastructures

Study malware propa-
gation

Side-Channel Devices performing
cryptographic opera-
tions

Assess the feasibility of
the attack

on human behavior rather than predictable system responses.

6 Modeling Technique

Due to the diversity of cyber threats and application domains involved, there
are currently no methodological standards for cybersecurity simulation. As a
result, researchers select modeling approaches based on the specific features of
the threat, the complexity of the environment, and analysis objectives. In this
section, we introduce the most popular modeling paradigms (summarized in
Figure 7, discussing the context where they are more suited.

6.1 Agent-Based Modeling

ABM has a prominent role in cyberattack simulation thanks to its ability to
represent in detail the behavior of all entities involved in the scenario under in-
vestigation. In [80], both attackers and targets are represented as agents within
a critical water infrastructure. Attackers are classified by expertise level (ama-
teurs, experts, and highly skilled adversaries), which defines the behavioral rules
in the attempt to locate and exploit system vulnerabilities. Adversarial actions
are dictated by resource availability, estimated attack success probability, and
strategies of defenders. On the other hand, targets include cyber-physical com-
ponents such as sensors, actuators, PLCs, and SCADA components, each with
different levels of protection. Agents’ behavioral rules can be either predefined
based on expert knowledge or derived from real-world samples, such as malware
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Figure 7: Taxonomy of modeling approaches.

execution traces or attack logs. In [81], agents are defined using state machines,
where transitions between states are determined by analyzing logs from infected
systems through process mining techniques. In [82], DDoS agents operate in a
coordinated way: a master issues commands to daemons, which execute the
attack by flooding the target with malicious traffic. Instead, defensive agents
monitor network traffic, detect anomalies, discard malicious requests, and at-
tempt to trace attack origins, adapting their countermeasures in response to
threats. In [83], the modeling DDoS attacks on critical infrastructures incor-
porates game theory aspects, as attackers and defenders engage in anticipation
games. The various agents predict the opponent’s next move to optimize their
actions, using a dependency graph to represent the relationships between in-
frastructure components, attack paths, and defensive responses. Each agent is
characterized by a set of attributes and decision rules that defines its behav-
ior. Attackers analyze vulnerabilities and launch botnet-based assaults, while
defenders implement countermeasures based on available resources and infor-
mation from system monitoring.

While most agent-based models in cybersecurity focus on DoS attacks, other
cyber threats can also be analyzed through ABM. In [84], the authors developed
a simulator that evaluates the effectiveness of password policies, quantifying out-
comes such as login success rates, system breaches, and password leakages under
different security rules. The model defines four agent types. Employees authen-
ticate across internal and external systems, sometimes forgetting, reusing, or
sharing passwords. Malicious insiders exploit these behaviors for unauthorized
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access, while hackers use brute-force attacks, default passwords, or stolen cre-
dentials to infiltrate. Finally, system administrators enforce policies but may
neglect maintenance, increasing vulnerabilities.

While most of the models focus on attackers and defensive mechanisms,
the quality of the analysis can benefit from incorporating human behavior and
decision-making, as user actions play a crucial role in system security. To ac-
complish this, in [85] the authors introduced the General Agent Model for the
Evaluation of Security (GAMES) formalism, where decision making of users,
defenders, and attackers is defined by an algorithm that moves each agent to-
ward its most advantageous state. By simulating human actions, errors, and
adaptations, GAMES provides a more realistic assessment of risk, system vul-
nerabilities, and defense effectiveness, offering insights into how human factors
influence cybersecurity resilience [85]. In [86], user agents within a database
system are assigned with specific privileges and access rules in order to comply
with the discretionary access control policy, where permissions are granted se-
lectively. Agents operate hierarchically, determining access paths and enforcing
security policies. Each agent maintains a reliability index, which influences fu-
ture access privileges and can lead to restrictions if data corruption is detected.

Finally, ABM allows multiple levels of detail to coexist. For instance, in [87],
macroscopic modeling is used to capture high-level attack strategies and their
overall impact on the system, while microscopic modeling focuses on individual
attack steps and their execution details.

6.2 Equation-based Modeling

Equation-Based Modeling (EBM) enables a system-wide representation of com-
plex behaviors using mathematical equations, making it a valuable alternative
to Discrete Events Simulation (DES) and ABM. While ABM is able to represent
the heterogeneity of the behavior of the various entities involved with a high
level of detail, its execution can be computationally expensive and impractical
for large-scale, long-term analyses.

In particular, System Dynamics (SD) is a modeling methodology where the
behavior of the system is described by differential equations that integrate feed-
back loops to capture interactions among system components. Two main entities
are used to describe the system: stocks representing cumulative elements and
flows representing the rates of change of the stocks. This approach can be used
to model the evolution of cyberattack conditions, and it is especially well suited
for analyzing the attack effects in complex interconnected systems like univer-
sity IT infrastructure [88]. In [89], SD is employed to evaluate the impact of
cyberattacks on critical infrastructures, modeling interactions between physical
and cyber layers. In particular, sensitivity analysis is employed to compute the
effects of cyberattacks on control variables and their propagation throughout
the system. In [90], SD assesses how cybersecurity initiatives impact business
resilience in Industry 4.0, capturing the interdependencies between security in-
vestments, operations, and risk mitigation. The model enables what-if scenario
analysis to evaluate long-term cybersecurity decisions. The study gathers data

22



from 150 professionals in network and security organizations to identify key pa-
rameters like resource allocation, employee awareness, and time management.
These inputs shape the SD framework, which models the effects of cybersecurity
strategies on business performance.

Compartmental models, commonly used in epidemiology to describe disease
spread, can be employed to represent entity transitions between different discrete
states over time. Mathematical equations define the transitions, which may
depend on the size of other compartments and on static transition parameters.
In [91], this approach is applied to malware propagation in Connected and
Autonomous Vehicles. The SIR model, where entities are either susceptible
to infection, infected, or recovered from infection, is used to examine cases
where infected vehicles can be permanently patched, preventing reinfection. On
the other hand, the SIS model represents the scenarios where vehicles, once
recovered, are susceptible to reinfection. Similarly, in [92] the SEIR model is
used to include also the condition where a device is exposed, enabling the capture
of the latency period of infections, as threats often remain undetected before
causing harm.

6.3 Petri Nets

Petri nets are directed bipartite graphs with two types of elements: places, rep-
resenting states or system resources, and transitions, which are events or actions
triggered by the accomplishment of certain conditions. Furthermore, places may
contain tokens, which represent any type of resources, and arcs defining the flow
between places and transitions. Despite being designed to model distributed
systems, this approach can also be applied in cybersecurity, allowing the repre-
sentation of the sequence of concurrent actions that occur during a cyberattack.
In [93], Petri nets are used to represent attacker strategies, system vulnerabili-
ties, and defensive mechanisms. Attack patterns are drawn from the Common
Attack Pattern Enumeration and Classification database and formalized as mod-
ular Petri net components, allowing for the representation of adversarial actions
such as privilege escalation and service disruption. The tool supports both fine-
grained modeling, where components represent specific attack techniques within
different phases (e.g., exploration, exploitation), and coarse-grained modeling,
where components encapsulate the entire attack patterns.

Petri Nets could also be extended to support more expressive modeling ca-
pabilities, such as incorporating time, data, costs, and strategic behavior. In
[94], Timed Coloured Petri Nets, where tokens carry data values and transitions
are associated with time delays, are used to assess the resilience of protocols like
SSL and HIP against DoS. A cost-based model quantifies the computational
burden on different protocol participants, providing insights into the effective-
ness of mitigation strategies. The simulation analyzes execution costs, attack
impact, and overall system robustness. In [95], the authors introduce Petri
Nets with Players, Strategies, and Costss (PNPSCs), where competing players
act based on the part of the system they can observe, taking into account the
cost required to modify or perform those actions. The methodology is applied
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to generate executable models of real-world attack patterns from the CAPEC
database, enabling reinforcement learning agents to learn cost-efficient strategies
based on the observed outcomes.

6.4 Hardaware-based Simulation

Usually, simulations rely on a certain level of abstraction, neglecting the phys-
ical features of devices and communication infrastructures. However, certain
scenarios may require the integration of real hardware into the testing envi-
ronment, in order to observe the real behavior of devices under attack and to
evaluate hardware-specific vulnerabilities, which are often hard to model.

Hardware-in-the-loop (HIL) is an approach that links physical devices, such
as routers or sensors, with software models that represent the rest of the inves-
tigated environment. This methodology is particularly valuable in fields where
real-time performance and hardware-dependent behaviors are particularly criti-
cal, such as automotive systems [96] and CPSs [97]. Also, Wide-Area Measure-
ment Systems (WAMSs) monitor are an attractive target for cyber-attacks, as
they monitor and control modern power grids. In [98], HIL is used to integrate
physical devices such as relays and phasor measurement units into a power sys-
tem model that analyzes cyber threats such as MitM, replay attacks, and data
injection against WAMS. A similar approach is adopted in [99] to simulate data
injection attacks against the secondary control of DC microgrids, and to study
their impact on voltage stability and current control. Finally, in [100] HIL is
used to perform tests against DDoS, considering different network topologies.

While HIL relies on physical components to test embedded systems, the na-
tive simulation runs real embedded software on a virtualized hardware model.
This approach eliminates the need to employ actual devices, allowing for faster,
scalable, and flexible testing while maintaining accuracy in power consump-
tion, execution time, and network behavior estimations. In [101], native sim-
ulation is used to analyze the effects of attacks on Wireless Sensor Networks
(WSNs), considering components like hardware (e.g., processors, sensors, and
RF transceivers), embedded software, and network deployment. Finally, this
methodology is used in [102] to represent fault injection techniques on smart
cards at the functional level. Faults are introduced into interconnections and
memory by modifying data exchanges between components, allowing the assess-
ment of vulnerabilities without altering the hardware.

6.5 Probabilistic Modeling

To capture uncertainty and variability in real-world systems, modelers can lever-
age mathematical frameworks that use probability distributions to represent
stochastic behavior and estimate the likelihood of possible outcomes.

Monte Carlo simulation is a technique for analyzing complex systems affected
by uncertainty. It generates random failure and repair events based on statis-
tical distributions and provides a probabilistic evaluation of system reliability
and performance over time. In, [103], Monte Carlo simulations are performed
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to quantify the impact of DoS and attacks targeting the integrity of controls
and sensor signals on power generation systems, considering the financial losses.
By generating random failure and repair times based on probabilistic distribu-
tions, modelers can assess how attacks affect system availability and downtime.
Bayesian methods represent another probabilistic approach, integrating prior
knowledge into the analysis and updating probability estimates as new infor-
mation is obtained. Bayesian attack trees model cyber-physical security risks
by analyzing attack paths, dependencies, and intrusion probabilities based on
attacker skill and exploit difficulty. In [104], this method is used to evaluate
vulnerabilities in power systems, focusing on threats like DoS and Cross-Site
Scripting (XSS). The study analyzes how attacks on SCADA systems in sub-
stations and control centers compromise Human Machine Interfaces, application
servers, and other network components. The Bayesian model quantifies exploit
probabilities based on vulnerability type, complexity, and attacker skill level,
providing an assessment of security risks. In [105], the likelihood of exploit
success is determined by probability distributions based on system attributes
like OS version and security configurations rather than simulating the detailed
execution of exploits. Specifically, the proposed simulation platform enables the
simulation of vulnerabilities, exploits, and complex multi-step attacks (i.e. use
of a compromised machine as a stepping stone to reach further networks and
machines, making use of its trust relationships).

6.6 Other Modeling Approaches

While most of the investigations employed ABM or the other mentioned mod-
eling paradigms, other approaches can be found in the state of the art.

Dynamic node-level modeling is a methodology that is used to analyze the
spread of cyber threats by representing each node in a network as an individ-
ual entity with state-based transitions. Unlike traditional epidemic models that
assume uniform spreading behavior, this approach accounts for network topol-
ogy via an adjacency matrix, enabling a more granular analysis of infection
dynamics. In [106], a dynamic node-level model is used to study ransomware
propagation, where node transitions between susceptible, delitescent, infected,
and recovered states are based on probabilistic rules influenced by neighbor-
ing nodes. Theoretical analysis leverages spectral properties of the adjacency
matrix to determine conditions for controlling ransomware spread. Numerical
simulations on different network topologies, including star, fully connected, and
scale-free networks, show the impact of network structure on infection rates and
containment strategies.

G-networks employ a queueing-based modeling approach for analyzing com-
plex networked systems under dynamic conditions, using positive arrivals to
represent normal data flows and negative arrivals to model disruptive events
such as cyberattacks. In [107], a G-network is used to assess security threats
in IoT infrastructures, estimating data losses in relation to traffic arrival rates.
The study highlights the role of queuing dynamics in IoT resilience, showing
how variations in arrival and departure rates influence data availability in the
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application domain.
Reinforcement learning is mainly used to optimize decision-making, but it

can be applied in cybersecurity simulations to model attack scenarios where
agents interact with the system, receive feedback, and gradually learns effective
strategies. This method is useful for penetration testing, allowing agents to ex-
plore different ways to exploit vulnerabilities without predefined rules. In [108],
SQL injection is modeled as a learning challenge, where agents interact with
a vulnerable system, observe responses to their inputs, and learn how to craft
effective SQL injection queries to extract sensitive data. Two reinforcement
learning approaches are compared: tabular Q-learning, where the agent’s be-
havior is easier to interpret but struggles with scalability, and deep Q-learning,
which uses neural networks to handle larger action spaces more effectively.

6.7 Multilevel Modeling

One model, regardless of the employed approach, is often incapable of capturing
all the relevant aspects of complex scenarios. Real-world systems are frequently
composed of multiple interacting components, each addressing semantically dis-
tinct aspects that contribute to overall system behavior. An example can be
found in [109], where a hydraulic simulator and an industrial network emu-
lator are combined to reproduce MitM attacks in water distribution systems.
Multilevel modeling is widely used to integrate the various building blocks, par-
ticularly when it is possible to reuse existing simulators, whose effectiveness
in representing specific phenomena has already been validated. A significant
example is SURE [110], a multilevel simulator designed to assess resilience and
security of CPSs, with a focus on smart transportation. The tool combines OM-
NeT++ to simulate communication networks, SUMO to model traffic dynamics,
and Matlab/Simulink to run control algorithms that govern the transportation
infrastructure. A similar approach was applied in [111] to analyze the impact
of cyberattacks on heterogeneous intelligent traffic flow. A car-following model
representing microscopic driving dynamics is integrated with a communication
model that captures information exchange in connected vehicle systems. In par-
ticular, the investigation examines bogus messages, replay/delay attacks, and
collusion attacks, which all use tampered information to disrupt cooperative
driving, causing instability in traffic flow.

In multilevel modeling, different modeling paradigms may be combined to
represent processes that evolve with different rules, integrating models that use
continuous time and space with discrete representations. For instance, in [112],
continuous-time models represent the heating, ventilation, and air conditioning
physical processes, while discrete-event models capture the building automation
system communication network, allowing the simulation of data intrusion and
denial-of-service attacks targeting the communication infrastructure and their
effects on system performance and stability. Continuous and discrete represen-
tations are also combined in [113], to analyze the impact of cyberattacks on a
medium-voltage electrical grid. NetLogo is used to simulate malware propaga-
tion across the corporate network and SCADA devices using a SIR model, while
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NS2 models DoS and Man in the Middle (MITM) attacks on SCADA commu-
nications. The study assesses how these attacks lead to Loss of View and Loss
of Control, disrupting communication between the SCADA control center and
Remote Terminal Units.

In [114], a modular approach is employed to simulate side channel attacks.The
simulator is composed of multiple building blocks: data acquisition module to
capture side channel information from the target device, data processing module
to process the acquired data, leakage module to generate synthetic side-channel
signals, and attack strategy module to implement the attacks. Similarly, in [115]
a modular approach is employed to represent MitM and DoS attacks in a smart
grid, representing aspects such as power system, communication system, and
decision making. The integration of HIL enables a real-time testing of how
actual control and protection devices respond to cyberattacks.

Despite the benefits of combining multiple existing simulators, modelers
must be very careful to appropriately couple the various atomic components,
synchronizing execution and ensuring consistent data transmission. In [116], the
ParGrid platform orchestrates the real-time interaction between a power system
simulator (GridDyn) and a network simulator (ns-3), enabling the simultaneous
analysis of power grid behavior and SCADA communications. Cyberattacks are
introduced at the communication layer, affecting Remote Terminal Unit oper-
ations and propagating their impact on the power system, where consequences
such as breaker misoperations or grid instability are analyzed. Similarly, in [117],
the Mosaik framework orchestrates the execution of ns-3 and a power system
simulator (OpenDSS), in order to analyze the impact of cyberattacks on smart
grid operations, synchronizing data exchange and time-steps between the simu-
lators.

Finally, simulation and emulation can be combined to exploit their respective
strengths, balancing scalability with realism. In [118], this approach is applied
to create a high-fidelity testbed for Industrial Control Systems. Emulation in-
corporates real devices and protocols to ensure accurate network interactions,
while simulation improves scalability by modeling SCADA operations, physical
processes, and communication networks.

6.8 Discussion

Table 5: Modeling techniques and key characteristics
Technique Detail Level Stochastic Dynamic

Agent-Based Modeling High Possible Yes

System Dynamics Low Yes No

Petri Nets Medium No Yes

Hardware Simulation Very High No Yes

Probabilistic Modeling Low Yes No

As summarized in Table 5, the choice of a simulation approach depends
on several factors, including the required level of accuracy, data utilization,
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the complexity of the tested environment, and the incorporation of stochastic
and dynamic elements. The accuracy of the representation usually depends on
the objectives of the simulation and computational constraints. Fine-grained
models reproduce the behavior of all the entities involved, considering their het-
erogeneity. Low-level characteristics can be taken into account, such as network
protocols, software vulnerabilities, security controls, and human-related deci-
sions, allowing for testing how specific configurations of the target systems or
attack features influence the outcome of cyber intrusion. On the other hand,
coarse-grained models focus on attack dynamics at the macro scale, such as mal-
ware spreading across networks or coordinated intrusion attempts, prioritizing
efficiency over accuracy. In certain models, actors operate according to prede-
fined rules, where attack actions and system responses are explicitly defined,
making these models useful for evaluating known vulnerabilities and testing
specific defense mechanisms. On the other hand, other approaches incorporate
stochasticity, introducing variations to better reproduce the unpredictability
of real-world systems. Another important factor is whether the simulation ac-
counts for adaptive behavior. Some models assume fixed attack strategies, while
others allow attackers and defenders to adjust their behavior based on accumu-
lated knowledge. This is critical when analyzing threats that evolve over time,
such as adversaries modifying their attack patterns to evade detection or mal-
ware that changes its characteristics to bypass security measures. To increase
the veracity of the simulation, modelers could leverage data extracted from
historical intrusion records or synthesized using statistical models to introduce
realistic variations.

From a technological point of view, certain simulators are frequently em-
ployed for cybersecurity research, particularly ns-3 and OMNeT++ for model-
ing communication over networks, Mininet for representing SDN, and SUMO for
traffic simulation. Other times, authors develop novel simulators from scratch,
though only rarely do they provide the source code. In terms of programming
languages, the most frequently employed are C, C++, Java, Python, and Mat-
lab.

7 Goal of the Simulation

The ultimate goal of the simulation can influence the design choices of re-
searchers, including the modeling paradigms employed, the adopted level of
granularity, the system configurations to be tested, and the metrics used for
evaluation. In this section, we discuss the interconnection between the goal of
the investigation and the simulation approach.

7.1 Evaluate Attack Impact and System Resilience

A primary objective of cybersecurity simulations is to assess the system’s ex-
posure to cyberattacks, analyzing its performance under adversarial conditions
and the capacity to recover from failures. This includes the evaluation of sys-
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Figure 8: Taxonomy of the goals of the simulation.

tem’s vulnerabilities to known cyber threats, measuring the degree of opera-
tional degradation under adversarial conditions, examining the potential cas-
cading effects of disruption and how malware infection can propagate across
interconnected components. In [119], the authors analyze how disruptions to
information and communication systems affect hospital operations. The sim-
ulation evaluates the extent of operational degradation, focusing on hospital
service availability, patient admissions, and resource utilization under different
attack scenarios, including DoS and ransomware, ultimately assessing how these
factors contribute to increased mortality rates.

Simulations also help identify critical thresholds below which the system
functionalities are significantly compromised, and what conditions lead to ir-
reversible failures or prolonged downtime. For instance, in [120], the outcome
of attacks on Proof-of-Work-based blockchains is evaluated under varying at-
tack conditions, identifying critical thresholds for system security and opera-
tion. Specifically, core parameters are the computational power controlled by
the attackers in the context of 51% attacks and selfish mining, and the number
of malicious nodes for the Sybil attack (see Section 4.4).

The outcome of cyberattacks is not influenced only by adversarial features,
but also by multiple environmental factors such as defensive policies or net-
work organization. As a result, simulation can take into account various system
layouts to understand which system configurations increase the likelihood of a
successful attack. In [121], the authors have studied how packet loss and delay

29



jitter are related with performance degradation of network-based control sys-
tems under DoS attacks. Two queuing models are used to simulate different
attack scenarios: local DoS targeting endpoint devices, leading to packet losses,
and non-local DoS affecting intermediate routers, causing prolonged delay jit-
ter. Results are expressed with metrics such as percentage overshoot, rise and
settling time, and mean-squared error, showing that defensive measures at the
network level can mitigate performance degradation. In [122], the authors pro-
pose a cloud-based testbed to evaluate the impact on networked infrastructures.
Through virtualization, it enables researchers to represent threats such as DoS,
and analyze system performance under different network configurations. ABM
is used in [123] to analyze which are the most impactful factors on the secu-
rity of mid-size and small companies. The developed platform allows users to
set parameters such as network size, attack strength and frequency, number
and strength of defensive agents, and number of end devices, in order to assess
the company’s ability to maintain operational stability during and after an at-
tack. A broader socio-technical perspective is adopted in [124] to evaluate the
security impact on complex organizations’ networks. In particular, the model
incorporates the roles of the human agents, defined as the sets of rights and
responsibilities, expectations, behaviors, or expected behaviors and norms. The
simulation reproduces the consequences that occur when a compromised agent
cannot fulfill a responsibility, analyzing how cascading effects propagate through
business processes, technical systems, and human decision-making.

Certain types of malware, such as worms and viruses, do not aim to infect
a single device or system, but they attempt to spread across multiple nodes,
exploiting network connectivity and user interactions. The speed and capillar-
ity of dissemination depend on several factors, including user behavior, security
policies, and the structural properties of the network. Actions such as open-
ing malicious files or forwarding infected messages strongly boost the propaga-
tion, while network topology and access control policies influence how malware
moves between nodes. In [125], the propagation of email-borne viruses is in-
vestigated using a stochastic model based on Interactive Markov Chains. The
study combines analytical techniques and discrete event simulations to assess
the speed and extent of malware dissemination, considering factors like user
behavior (e.g., opening infected emails) and network topology.

Finally, economic factors play a crucial role in ransomware attacks, influenc-
ing both attacker strategies and the decisions of the targeted system. Models
must account not only for the technical impact of ransomware, but also for
the financial consequences and decision-making policies that organizations can
adopt. In [126], a Partially Observable Markov Decision Process is used to sim-
ulate ransomware attacks and evaluate economic decision-making in response
to infections. The model considers uncertainty in system states, allowing orga-
nizations to weigh different actions, such as paying the ransom, attempting to
repair the system, or shutting down operations.
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7.2 Evaluate Countermeasures

Multiple countermeasures can be implemented to mitigate the effect of cyber-
attacks, and simulation can be employed to compare their effectiveness, helping
identify the most suitable solution in a certain context. While certain defen-
sive strategies are thought to mitigate specific threats, others are designed to
protect the targeted system as a whole. Typical defensive mechanisms include
Web Application Firewalls (WAFs), Intrusion Prevention Systems (IPSs), IDSs,
and Endpoint Detection and Responses (EDRs) [127]. These solutions vary in
scope and functionality: WAFs protect web applications by monitoring and fil-
tering HTTP traffic, IDSs analyze network traffic to detect malicious activity
without direct intervention, IPSs actively block detected threats, and EDRs fo-
cus on endpoint security by detecting, investigating, and responding to threats
at the device level. In [128], multiple defensive mechanisms against DoS have
been considered, such as Pushback (i.e., when congestion is detected, routers
limit the flow by blocking suspicious packets upstream), Stateless Internet Flow
Filter (SIFF) (i.e., a network mechanism that establishes reserved communica-
tion channels, ensures packet authenticity, and filters traffic independently of
flow states), Active Internet Traffic Filtering (AITF) (i.e., a victim requests its
gateway to block malicious traffic and collaborates with the attacker’s nearest
router to enforce packet filtering), and Traffic Validation Architecture (TVA)
(i.e., network traffic is regulated through a token-based validation). In [129], an
automated decision-support system assists in the selection of effective network
segmentation strategies. Network segmentation is a security measure that splits
a network into isolated fragments, regulating communication between the vari-
ous parts to limit unauthorized access and contain the propagation of security
breaches. In [130], both natural and cyber-induced faults are introduced into a
power distribution system to observe how the system detects, locates, and iso-
lates them, and eventually recovers. Agents monitor current measurements and
breaker statuses, exchanging data to identify fault locations and determine the
nature of disruptions. A key metric is fault localization time, which measures
how quickly the system identifies the location of faults or attacks.

Cybersecurity does not depend only on technological features but also on
human factors, as cyber situation awareness (i.e., the ability of defenders to
perceive, understand, and anticipate threats) is crucial for detecting the attacks
that exploit cognitive limitations, such as delayed anomaly detection or misjudg-
ment of risk. In [131], a simulator based on Instance-Based Learning Theory
(i.e., a theory that explains how people make decisions based on past experi-
ences, using stored examples to handle dynamic and complex situations) is used
to assess defenders’ awareness against impatient attacks, where threats appear
early to overwhelm them, and patient attacks, where threats are delayed to
evade detection. The simulation processes sequences of network events through
memory-based mechanisms, where decisions are influenced by the similarity,
frequency, and recency of past experiences.

Besides assessing the effectiveness of defensive mechanisms against cyber
threats, M&S may also focus on the associated costs, including deployment,
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maintenance, and resource consumption. The cost-effectiveness trade-off in In-
dustrial Control Systems is evaluated in [132], analyzing the balance between
security investment and risk reduction. The model reflects how early invest-
ments in defense provide significant protection gains, while additional spending
yields progressively smaller improvements. The diminishing return effect high-
lights the importance of strategic allocation during the design phase.

Implementing security measures might increase the protection of a system
against attacks, but defensive assets must be positioned strategically in order to
minimize unnecessary costs or overhead. Simulation allows researchers to test
various configurations, helping identify the best policy to balance protection,
cost, and operational efficiency. In [133], ABM is used to evaluate and optimize
the allocation of officers in a community-based fraud detection system designed
to identify fraudulent internet resources. The system follows a three-tier struc-
ture, where Level-1 officers, drawn from an open pool of internet users, issue
initial verdicts on reported fraud cases. Their evaluations are then reviewed
by Level-2 officers, who assess and validate the decisions, while Level-3 officers
make the final determination based on accumulated approvals.

7.3 Assist ML models

Other than evaluating how a system responds to cyber attacks and the effec-
tiveness of defense measures, simulation can be combined with machine learning
to conduct data-driven cybersecurity investigations.

One key application is the generation of realistic data (e.g., service logs,
network traffic traces, system metrics) for training machine learning models,
assisting in the classification of suspicious activity [134]. In fact, sometimes it
is hard to obtain such data from real-world systems due to privacy concerns,
operational risks, or the rarity of certain events. This approach is frequently
used to detect fraudulent activities in smart city environments. In [135], both
legitimate clients and malicious users performing DoS attacks are modeled. The
generated network traffic data is then fed to train machine learning classifiers,
which analyze patterns to distinguish between regular and malicious activity.
This methodology is also applied in [136] to train intrusion detection models
for botnet-driven DDoS in IoT networks. Multiple machine learning models
are considered, such as K-Means, Random Forest, and Convolutional Neural
Networks. Similarly, in [137], simulation is used to generate traffic data for
training machine learning models in both detecting and classifying IoT-related
DDoS attacks. Once malicious behaviors have been detected, attacks are fur-
ther classified into specific types using machine learning models trained on a
combination of simulated and real attack datasets. Classification capability can
strengthen the effectiveness of defensive mechanisms like IDSs, allowing them
to recognize specific threats based on detected patterns. In [138], simulation
generates realistic data about military avionics communication to train an IDS
through reinforcement learning techniques. This strategy can also be applied
to generate a data log for UAV missions. To enhance threat detection capabil-
ity, in [139] simulation introduces various anomalies, including sensor failures,
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component malfunctions, and communication attacks.
In cybersecurity, AI not only refers to classifiers that identify suspicious pat-

terns, but machine learning techniques can be used to make strategic decisions
in an adversarial scenario. In [140], data generated from the simulation is used
to support the training of Reinforcement Learning algorithms for cybersecurity.
In the architecture, both the main network and a honeynet are represented,
with hosts having customizable features, including vulnerabilities drawn from
the National Vulnerability Database.

Simulation can be used to recreate realistic attack scenarios and system be-
haviors, providing a controlled environment where machine learning techniques
can be applied to detect patterns, make predictions, and evaluate security mea-
sures. In [141], ABM is integrated with a neural network to assess cybersecurity
risk for business entities. The simulation represents network components, attack
propagation, and defense mechanisms, while the neural network, trained on the
UNSW-NB15 dataset, classifies attacks based on network traffic features. The
output of the ML model then updates asset states in the simulation, influencing
attack spread and defense activation. A predator-prey model engages the best-
performing defense mechanisms based on detected threats, allowing dynamic
risk assessment and cost evaluation.

Finally, neural networks can be integrated into a digital twin platform to en-
able real-time process control with the aim to enhance the safety and reliability
of the physical plant. For instance, in [142] an Model Predictive Control (MPC)-
based digital twin is developed for a fused deposition modeling printer, inte-
grating machine learning-driven anomaly detection to safeguard against cyber
threats. The neural network processes sensor data in real time to identify
anomalies in the printing process, such as deviations in nozzle temperature,
bed temperature, extruder vibration, and position shift.

7.4 Others

While the discussed objectives are recurrent in cybersecurity studies, certain
investigations do not fall within the mentioned categories. For instance, sim-
ulation can be used to evaluate the effectiveness and accuracy of testing tools
or experimental setups. In [143], the reliability of OMNeT++ in simulating
DoS attacks on wireless networks was evaluated by comparing simulation re-
sults with a real testbed. The study focused on attacks targeting control frames
(ACK, RTS, CTS), assessing their impact on network performance through key
metrics such as end-to-end delay, throughput, and packet loss. The OMNeT++
extension module developed for this purpose was validated against experimen-
tal results, showing a high degree of accuracy under heavy load conditions.
Simulation can also be used to assess the effectiveness of specific metrics in
detecting cyberattacks. By modeling different attack scenarios and analyzing
system responses, simulations can help determine whether certain parameters
serve as reliable indicators of malicious activity. In [144], packet loss and energy
consumption are evaluated as potential metrics for intrusion detection in IoT
networks.
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Simulation can also support classification tasks, distinguishing between dif-
ferent types of attacks based on the observable behavior. In [145], synthetic
attack streams are generated based on attack dynamics observed in real-world
traffic to validate a classifier that distinguishes between single-source DoS and
DDoS. The classifier first analyzes packet headers, then checks how the attack
ramps up over time, and finally analyzes the traffic’s spectral content. Simula-
tions confirm that multi-source attacks, due to a lack of synchronization, exhibit
lower-frequency spectral concentration. Similarly, in [146], the purpose of the
simulation is to recognize the real intention behind network attacks. Interac-
tions between attackers and defenders are modeled as a signaling game, where
the defender interprets attack behaviors to infer the attacker’s true objective.

Finally, simulation can help evaluate cyber risks in real-time, flagging suspi-
cious activities and identifying and classifying cyberattacks like DDoS in satellite
communication [147].

7.5 Discussion

Table 6: Key characteristics depending on the goal of the simulation
Goal Outputs or metrics Modeling Focus

Attack impact
& system resilience

Latency
Packet loss

Service downtime Predict effects of attacks
Discover vulnerabilities

Threshold analysis

Defensive
measures evaluation

Detection rate
Delay mitigation
Resource overhead

Compare strategies
Assess countermeasures

Attack
propagation

Infection rate
Peak spread time

Model infection
mechanisms

ML
training

Synthetic logs
Generate realistic

labeled data

Economic
analysis

Expected
economic losses Correlate attack intensity

with economic impact

The goal of the simulation drives the model design, determining its focus
as well as the metrics and parameters to be used, as shown in Table 6. In
most cases, simulations have two main objectives: evaluating the resilience of
a system under attack conditions and assessing the effectiveness of defensive
mechanisms. These goals are often interdependent, as the ability to represent
the consequences of attacks provides the foundation to evaluate the effectiveness
of security measures in response. When examining the impact of cyberattacks,
simulations seek to quantify the extent of system degradation under different
conditions. By varying attack parameters and system configurations, simula-
tions help researchers assess worst-case scenarios and identify critical failure
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points. Depending on the context, different metrics may describe the level of
impairment of a system, such as response time, resource consumption, service
availability, data integrity, system recovery time, and economic losses. Analo-
gously, these metrics can be employed to evaluate and compare different mitiga-
tion strategies, where an additional important factor is the ability and the time
to detect malicious patterns. Given the close relationship between attack impact
and defense performance, many simulations integrate both aspects into a single
framework. An attack scenario can serve not only to measure system resilience
but also to test how various countermeasures perform in reducing damage and
restoring normal operations. Finally, the ability to customize system parameters
makes simulation particularly suitable to generate data that are used to train
machine learning models, which typically require a large volume of labeled data
that possibly covers a wide range of attack scenarios and operating conditions.

8 Conclusions

Simulation is a widely employed approach for cybersecurity investigations, pro-
viding a controlled environment to analyze threats, test defense mechanisms,
and assess system resilience by evaluating the impact of cyberattacks on net-
work stability, resource consumption, operational availability, data integrity,
and confidentiality. Over the last 25 years, researchers have carried out several
studies, which differ for the considered application domain, the cyber threats
analyzed, the modeling techniques employed, and the goal of the investigations.

However, despite its benefits, simulation-based research has limitations. So-
me models fail to fully capture the complexity of cyberattacks, while human
factors, such as user behavior and employee decision-making, remain challeng-
ing to represent with accuracy. Thus, it turns out that simulation is more
suited for modeling attacks that have a measurable, system-level impact, such
as DoS, where variables like traffic volume, resource consumption, and service
availability can be easily quantified.
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