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Abstract

With the advancement of personalized image generation
technologies, concerns about forgery attacks that infringe
on portrait rights and privacy are growing. To ad-
dress these concerns, protection perturbation algorithms
have been developed to disrupt forgery generation. How-
ever, the protection algorithms would become ineffective
when forgery attackers apply purification techniques to by-
pass the protection. To address this issue, we present a
novel approach, Anti-Tamper Perturbation (ATP). ATP in-
troduces a tamper-proof mechanism within the perturba-
tion. It consists of protection and authorization perturba-
tions, where the protection perturbation defends against
forgery attacks, while the authorization perturbation de-
tects purification-based tampering. Both protection and
authorization perturbations are applied in the frequency
domain under the guidance of a mask, ensuring that the
protection perturbation does not disrupt the authorization
perturbation. This design also enables the authorization
perturbation to be distributed across all image pixels, pre-
serving its sensitivity to purification-based tampering. ATP
demonstrates its effectiveness in defending forgery attacks
across various attack settings through extensive experi-
ments, providing a robust solution for protecting individ-
uals’ portrait rights and privacy. Our code is available at:
https://github.com/Seeyn/Anti-Tamper-Perturbation .

1. Introduction
In recent years, with the development of personalized gen-
eration technology, online services for creating customized
individual images have become widely available [8, 14,
27]. Users can easily create customized individual images
with text prompts by submitting requests to online service
providers such as Civitai1 and Midjourney2. However, per-
sonalized generation technology also raises serious ethical
and legal concerns. As shown in Figure 1(a), forgery attack-
ers can create fake individual images using online personal-

1https://civitai.com
2https://www.midjourney.com

ized generation services, infringing on the data owner’s por-
trait rights and privacy. In this scenario, the online service
providers may inadvertently become accomplices of attack-
ers by providing easily accessible services [7].

To defend the forgery attack, a set of protection meth-
ods [18–21, 31] have been proposed. They disrupt the per-
sonalized generation process by injecting protection pertur-
bations into data owners’ images. As shown in Figure 1(b),
the service provider injects protection perturbations to de-
grade the quality of generated images to prevent the forgery
attacks. However, the protection perturbations can be easily
purified by even naive purification methods (e.g., resizing
or JPEG compression) [13, 34]. The forgery attacker can
purify the protection perturbations to bypass the protection
schemes and generate fake individual images again.

As the essence of purification is to tamper the protection
perturbation, the service provider can defend it by adopting
a tamper-proof mechanism. As shown in Figure 1(c), the
tamper-proof mechanism alerts the service provider when
the protection perturbation is altered, allowing the service
provider to counteract attacks by refusing generation re-
quests from tampered images. This approach is similar to
the Not Safe For Work (NSFW) content filtering mecha-
nism [2], where the service provider inspects the genera-
tion request and its output to ensure no harmful content
is present. Likewise, the tamper-proof mechanism detects
and prevents attacks targeting tampering protection pertur-
bations, enhancing the service provider’s defense capabil-
ities. It is noteworthy that the tamper-proof mechanism
is designed from the perspective of the service provider,
where the purpose is to prevent the forgery attacker from
misusing the service to launch a forgery attack. The attack-
ers may still be able to launch the attack on their own de-
vices. However, it is not the focus of this paper because it is
not the service provider’s responsibility and requires high-
performance computing resources from the attacker rather
than the effortless API calls used to exploit the service.

Implementing a tamper-proof mechanism is challenging,
as tamper-proofing requires protection perturbations to con-
tain verifiable information that can be checked for potential
tampering. However, protection perturbations are funda-
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Figure 1. (a) The forgery attacker generates fake individual images of the data owner by taking pictures from social media and submitting
them to the service provider. (b) The data owner can inject protection perturbation into their images with assistance from the service
providers, causing low-quality results if an attacker tries to generate fake individual images. However, the protection can fail if the attacker
purifies the protected images. (c) Our solution: We propose Anti-Tamper Perturbation with a tamper-proof mechanism. If no purification
is applied, the perturbation protects the data owner’s portrait rights and privacy by degrading the quality of generated images. Conversely,
if a forgery attacker applies purification, the image becomes unauthorized, and the service provider rejects the generation request.

mentally adversarial noise, inherently designed to mislead
deep learning models rather than encode structured infor-
mation [9]. Its creation depends on specific model architec-
tures, loss functions, and input images, making it unsuitable
for information embedding.

Considering this challenge, we propose a new perturba-
tion design, Anti-Tamper Perturbation (ATP). The ATP
consists of two components: protection and authorization
perturbations. The protection perturbation is responsible
for safeguarding the image against the forgery attacks. The
authorization perturbation encodes an authorization mes-
sage into the image. When purification occurs, the in-
tegrity of this message is disrupted, signaling that an unau-
thorized tamper attempt has occurred. It functions like a
watermark [24, 33], yet the difference is that the existing
watermark design is not sensitive to purification, making
it incompatible with the authorization perturbation design.
When both protection and authorization perturbations func-
tion simultaneously, we can achieve the objective of tamper-
proofing. However, a fundamental challenge arises as the
protection perturbation alters image information, making it
conceptually a tampering manner. This creates an appar-
ent dilemma: the authorization perturbation must remain
intact despite changes induced by protection perturbation
while still being vulnerable to removal by purification-

based tampering attacks. To address this challenge, we first
adopt a Block Discrete Fourier Transformation (BDCT) to
transform the image to the frequency domain. We design a
gradient descent algorithm to generate protection perturba-
tions in the frequency domain. An authorization perturba-
tion network is proposed to generate the authorization per-
turbation, embedding an authorization message in the fre-
quency domain. Both perturbations can be guided by a bi-
nary mask, which specifies the regions in the frequency do-
main where perturbations should be applied. The mask en-
sures that the authorization perturbation remains intact even
after the protection perturbation is applied, as they are po-
sitioned in different regions of the frequency domain deter-
mined by the mask. Block Inverse Fourier Transformation
(BIDCT) is then adopted to transform the image back to
the pixel domain. Due to the transformation, the authoriza-
tion perturbation is distributed across all pixels of the image,
guaranteeing its sensitivity to purification-based tampering.
Since ATP combines both protection and authorization per-
turbations, it is notable that ATP can work with various ex-
isting protection perturbation algorithms. The contributions
of this work can be summarized as follows:

1. To the best of our knowledge, our work is the first to
introduce a tamper-proof mechanism for individual im-



age generation protection, creating a novel approach to
defend against forgery attacks with purification.

2. We design the Anti-Tamper Perturbation (ATP) to im-
plement the tamper-proof mechanism. ATP comprises
protection and authorization perturbations. The protec-
tion perturbation defends the image against forgery at-
tacks, while the authorization perturbation remains un-
affected by the protection perturbation yet retains sensi-
tivity to purification-based tampering.

3. We evaluate the effectiveness of ATP in various attack
scenarios through extensive experiments. The results
show that ATP can be integrated with different protec-
tion perturbation designs. Existing solutions face an in-
evitable performance drop under attacks with purifica-
tion. In contrast, ATP achieves a 100% protection suc-
cess rate due to the sensitive tamper-proof mechanism
triggered by purification tampering.

2. Related Works

Individual Image Generation. The diffusion model is a
leading technique in image generation [6, 12, 26]. It can
generate an image by using text as a condition to guide the
generation process [28]. However, text conveys less de-
tail than images, making it difficult to achieve specific re-
sults through text prompts alone, particularly for generating
personalized content such as customized selfies [27]. To
address this limitation, individual image generation meth-
ods (e.g., Text Inversion [8], DreamBooth [27]) were devel-
oped. These approaches aim to “learn” a unique token (e.g.,
sks) that can represent a specific person or object. Diffusion
models can apply this token to generate images with specific
subjects [8, 27]. Online service providers use individual im-
age generation methods to provide the customized genera-
tion service, but the service might be misused for forgery
attacks. ATP is designed to address this by preventing unau-
thorized use of personal images.

Protection Perturbation. Protection perturbation can be
embedded within the image to safeguard against unautho-
rized generation. The perturbation is typically generated
by maximizing the diffusion model’s loss function, as first
proposed by Liang et al. [19], who demonstrated that these
perturbed images could act as adversarial examples for
diffusion models. Le et al. [18] then introduced Anti-DB
that enhanced AdvDM by incorporating Projected Gradi-
ent Descent (PGD) along with an Alternating Surrogate and
Perturbation Learning strategy. Xu et al. [31] presented
CAAT to demonstrate that the cross-attention layer is crit-
ical in training diffusion models. This indicates that tar-
geting the perturbation to disrupt image-text mapping can
effectively enhance protection performance. Liu et al.
[21] proposed Metacloak that learns perturbations over a

pool of surrogate models and applies the expectation-over-
transformation technique to enhance the protection pertur-
bation robustness against purification.

Perturbation Purification. A key limitation of the pro-
tection perturbation is its protection performance drop when
purification occurs. The purification can disrupt the per-
turbation’s integrity and weaken its protective capabil-
ity [13, 34]. It is reported that naive purification tech-
niques, such as image resizing and JPEG compression,
would allow attackers to bypass the protection perturbation
designs [13, 34]. Furthermore, Zhao et al. [34] introduced
an advanced method, GridPure, to effectively purify protec-
tion perturbations. As reported by [13, 34], the protection
performance drop caused by purification remains a signif-
icant challenge. To address this issue, we introduce ATP,
which shifts the focus from resisting purification to verify-
ing perturbation integrity. ATP implements a tamper-proof
mechanism for protection perturbation, allowing the service
provider to reject generation requests of purified images.

3. Anti-Tamper Perturbation

The pipeline of Anti-Tamper Perturbation is shown in Fig-
ure 2. The image is transformed by Block Discrete Co-
sine Transformation (BDCT) into the frequency domain.
Guided by a binary mask, the authorization and protection
perturbations are applied separately in the frequency do-
main before being transformed back to the pixel domain.

Mask-Guided Perturbation Blending. Both protection
and authorization perturbation work by altering the image
information. They can interfere with each other by altering
the same image pixel. To address this problem, we propose
distinguishing the perturbation by a mask as follows:

PAP (I) = M ⊙ PAuth(I) + (1−M)⊙ PProt(I), (1)

where I denotes the image, and M represents the mask,
composed of 0 and 1. The mask consists of the values
{x|x ∈ {0, 1}} sampled from the Bernoulli distribution
x∼Bernoulli(p). As a result, we can adjust the hyper-
parameter p to control the ratio of 0s and 1s in the mask. The
PAP (·), PAuth(·), PProt(·) refer to the Anti-Tamper Pertur-
bation, Authorization Perturbation, and Protection Pertur-
bation, respectively. The mask allows the two perturbations
to function separately, ensuring they do not interfere with
each other. However, this design also introduces a limita-
tion: the perturbations become distinguishable in the pixel
space, which may allow purification methods to target the
protection perturbation selectively.

To address this issue, we can adopt a transformation
function that maps the image to the frequency domain, ap-
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Figure 2. Pipeline of the Anti-Tamper Perturbation. The original image is first transformed to the frequency domain using Block Discrete
Cosine Transformation (BDCT). Guided by a binary mask, the authorization and protection perturbations are independently applied in the
frequency domain to obtain a protected and authorized image.

plying perturbations in the frequency domain:

PAP (I) = F−1[M⊙PAuth(F (I))+(1−M)⊙PProt (F (I))],
(2)

where F (·) and F−1(·) denote the function projecting the
image from the pixel domain to the frequency domain and
its inverse function. As each pixel value is a linear combi-
nation of frequency domain coefficients, both perturbations
are uniformly distributed within the pixel domain. This ap-
proach ensures that the authorization and protection pertur-
bations are indistinguishable in the pixel domain. The uni-
form spread of the perturbation also improves the sensitivity
of authorization perturbation to purification attempts.

Block Discrete Cosine Transformation. We employ a
BDCT function as the transformation function F , which is
more efficient than directly adopting Discrete Cosine Trans-
form (DCT) [1] to the whole image [25]. Specifically, we
first divide image I into non-overlapping blocks in the pixel
domain. We record the position of the block in the pixel
domain, for each block, we apply DCT as follows:

Cu,v = α(u)α(v)

N−1∑
i=0

N−1∑
j=0

Ii,jϕ(u, i,N)ϕ(v, j,N), (3)

where ϕ(u, i,N) = cos
(

π(2u+1)i
2N

)
, α(i) =

√
2
N when

i = 0, α(i) =
√

1
N otherwise. N represents the height

and width of the block. C denotes the frequency coeffi-
cients. Then, we merge the blocks based on their posi-
tions in the pixel domain. As a result, we can obtain a
tensor of frequency coefficients with the same scale as the
original image. We do the mask-guided authorization and
protection perturbation to the tensor. To transform the im-
age back from the frequency domain to the image domain,
we apply the Block Inverse Discrete Cosine Transformation

(BIDCT). We split the tensor into blocks in the same way
as BDCT and apply Inverse-DCT to obtain the perturbed
image in the pixel domain:

Ii,j =

N−1∑
u=0

N−1∑
v=0

α(u)α(v)Cu,vϕ(u, i,N)ϕ(v, j,N). (4)

Authorization Perturbation. Drawing inspiration from
previous work on image steganography [15], we consider
embedding the authorization message in the frequency do-
main as a viable approach for authorization perturbation.
Referring to the work [35], which has been proven to be ef-
fective in hiding information in the pixel domain, we use a
convolutional autoencoder fθ(·) to complete the authoriza-
tion perturbation. As illustrated in Figure 2, the encoder
extracts intermediate feature maps from masked input fre-
quency coefficients. The authorization message m, repre-
sented as a binary string of length L composed of {0, 1}, is
spatially replicated and concatenated with the intermediate
feature map. The decoder then reconstructs the coefficients
from these modified feature maps. A message decoder Dm

is also trained to retrieve the encoded information from the
reconstructed coefficients. The entire pipeline of the autho-
rization perturbation can be formulated as follows:

gθ(C) = (1−M)⊙C+M⊙fθ(M⊙C,m), Ienc = F−1[gθ(F (I))],
(5)

where Ienc denotes the image with authorization perturba-
tion. Referring to the model training of [35], we incorpo-
rate an image reconstruction loss Lrec and an adversarial
loss Ladv,G to minimize alterations to the image content af-
ter perturbation. For the accuracy of information hiding, we
adopt a mask-guided message consistency loss and a regu-
larization loss calculated in the frequency domain:

Lcon = ||Dm(M⊙fθ(C))−m||22,Lreg = ||fθ(C)−C||22. (6)

The consistency loss facilitates message hiding, while the
regularization suppresses significant changes in the fre-
quency domain to keep the pixel domain values within the



Algorithm 1 Improved Frequency Domain PGD
Input: Loss for perturbation L, Image for perturbation I , Guiding Mask

Mp, Block DCT F , Block IDCT F−1, PGD radius ϵ, Step size α.
Output: Perturbed Image Iper .
∇ ← ∂L

∂I
∇freq ←Mp ⊙ F (∇)
∇ ← F−1(α · sgn(∇freq))
Iper ← I +∇
Iper ← F−1(Πϵ,F (I)(F (Iper))) ▷ Πϵ,I(·) constrain its output
within an ϵ-ball around F (I)
return Iper

allowable range after inverse transformation. The total loss
is formulated as follows:

L = Lcon + λadvLadv,G + λrecLrec + λregLreg. (7)

By combining these loss functions, the authorization pertur-
bation can embed messages covertly within the frequency
domain of the image.

Protection Perturbation. All the protection perturbation
algorithms essentially generate the perturbation according
to gradients derived from the diffusion model loss func-
tion. Based on the gradients, Projected Gradient Descent
(PGD) [22] is the commonly used algorithm to update the
perturbation. As suggested by [10], in the frequency do-
main, performing mask-guided perturbation is analogous to
omitting gradients that would alter frequency coefficients
outside the target region for modification:

Iper ← Πϵ,I(I + α · sgn(F−1(Mp ⊙ F (∇)))), (8)

where ∇ denotes the gradient calculated from diffusion
model loss and ϵ is the PGD radius. Πϵ,I(·) constrains its
output within an ϵ-ball around I . sgn(·) is the sign func-
tion and α is the step size. Mp is a binary mask, where
entries with value 1 indicate the frequency coefficients to
be updated by the gradient, and entries with value 0 indi-
cate those to remain unchanged. As shown in Figure 2, we
can flip the mask M for authorization perturbation to obtain
this mask. However, we find that updating the perturbation
by Equation 8 can invalidate the mask guidance. The rea-
son is that each pixel value is a linear combination of all
frequency coefficients. The modification of a single pixel
value influences all the frequency coefficients. The transfor-
mation of Π(·), sgn(·) in the pixel domain inevitably alters
the frequency coefficients the mask intended to preserve. To
address this problem, we propose our improved frequency
domain PGD algorithm in Algorithm 1. Π(·), sgn(·) are
moved to apply in the frequency domain to ensure accurate
modification of specific frequency coefficients based on the
mask. A comparison experiment is placed in Appendix B.1
to show the accuracy improvement.

Since existing protection perturbation methods rely on
PGD for optimization, their algorithms can be directly

adapted to use our Improved Frequency Domain PGD (Al-
gorithm 1), facilitating integration into ATP with minimal
changes.

4. Experiments
In this section, we evaluate our ATP design from different
perspectives. First, we assess the effectiveness of ATP in de-
fending against forgery attacks. Three attack scenarios are
evaluated: 1) attacks with purification, 2) attacks without
purification, and 3) adaptive attacks for ATP. Second, we
evaluate the aesthetic impact of ATP on the image. Third,
we assess the robustness of the authorization perturbation
to modifications induced by the protection perturbation and
its sensitivity to purification tampering.

Datasets. To train the authorization perturbation network,
we utilize the FFHQ dataset [17], which comprises 70,000
high-quality images of human faces. For generating the pro-
tection perturbation, we follow the dataset selection of [18],
using subsets of high-quality face image datasets CelebA-
HQ [16] and VGGFace2 [3]. We select 50 subjects from
each dataset, each represented by eight images, and split
them equally into two subsets. One subset is used for train-
ing the protection perturbation, and the other is reserved for
the algorithm requirement of [18] and metric calculations.

Evaluation Metrics. For authorization performance eval-
uation, we calculate the bit error of the extracted and origi-
nal authorization messages, denoted as Bit-error. This met-
ric represents how accurately the authorization perturbation
hides the information in the image. The Bit-error increases
when the purification attempts alter the authorization pertur-
bation. Following the choice of [18, 21], for protection per-
formance evaluation, we take Stable Diffusion v2-1 [26] as
the base generation model and apply DreamBooth [27] for
personalized image generation. We generate 16 images for
each subject by prompt “a photo of sks person.” (Additional
results for a different generation model, personalized gener-
ation algorithm, and prompt can be found in Appendix B.2
& B.3). We assess the protection performance using four
metrics: 1) CLIP-IQAC: CLIP-IQAC is proposed by [21]
and adapted from CLIP-IQA [29], this metric evaluates hu-
man images in quality. 2) LIQE: LIQE is an image quality
assessment metric that aligns well with human perception
and applies to human and non-human images [32]. 3) Face
Detection Failure Rate (FDFR): FDFR measures the fail-
ure rate of face detection using Retinaface [4]. 4) Identity
Score Matching (ISM): ISM evaluates the identity consis-
tency between the generated image and the original image.
The identity embedding of generated images and the origi-
nal images are extracted by Arcface [5]. ISM is computed
by measuring the cosine similarity between the generated



image’s identity embedding and the average embedding of
the original images.

The four metrics assess the impact of perturbations on
generation quality from different perspectives. However,
there is no clear standard for defining a “successful protec-
tion.” As a result, we propose the Protection Success Rate
(PSR), which quantifies the effectiveness of protection by
establishing a threshold for CLIP-IQAC, where any gen-
erated image with a quality score below this threshold is
deemed as successfully protected. We also define a Bit-
error threshold. Any generation request with an unautho-
rized image whose Bit-error exceeds the threshold will be
rejected. If a user submits four images for generation, and
at least one of them is unauthorized, the service provider can
reject the generation request. This is considered a success-
ful protection, resulting in a PSR of 1.0. The experiments
about why we select the CLIP-IQAC to calculate PSR and
how we set the threshold for Bit-error and CLIP-IQAC are
placed in Appendix A.2 & A.3.

Baselines. As ATP can be integrated with different
protection algorithms, we select four state-of-the-art
protection algorithms for our experiments: Anti-DB
(2023)[18], AdvDM (2023)[19], CAAT (2024)[31], Meta-
Cloak (2024)[21]. By modifying the gradient descent ap-
proach of these protection algorithms as described in Algo-
rithm 1, we can adapt the baseline protection perturbation
to ATP. The details of ATP’s implementation are in Ap-
pendix A.1. The mask ratio p = 0.5 and the BDCT block
width N = 16 are determined based on the ablation studies
in Appendix B.4 and B.5.

Protection Performance Under Attacks with Purifica-
tion. In this experiment, we demonstrate the ATP design
is effective for protecting individual image generation under
attacks with purification. We select two purification meth-
ods for naive purification: JPEG compression and image
resizing, which have been reported to be effective [21, 34]
to purify the protection perturbation. For the advanced pu-
rification method, we choose GridPure (2024) [34]. The
PSR metric is used to evaluate different methods across two
datasets, and the results are shown in Figure 3. The results
show, in the “clean” condition where no purification is ap-
plied, all methods achieve relatively high protection success
rates. In this setting, ATP’s tamper-proof mechanism is not
triggered, and no unauthorized image is found. When pu-
rification is applied, the performance of different methods
faces an unavoidable reduction in protection performance.
Such performance decline is especially noticeable in set-
tings like Resize 4x, JPEG 50, and GridPure (Visual results
of the generated images after purification are provided in
Appendix B.9). Even MetaCloak, a robust protection per-
turbation algorithm designed against purification, its PSR

Figure 3. Comparison of Protection Success Rate for different
methods across various purification settings.

CelebA-HQ VGGFace2
CLIP-

IQAC ↓LIQE ↓ ISM ↓ FDFR ↑ CLIP-
IQAC ↓LIQE ↓ ISM ↓ FDFR ↑

Anti-DB -0.2870 1.1168 0.4619 0.4575 -0.4340 1.0282 0.3201 0.6788
Anti-DB+Ours -0.3139 1.0741 0.4647 0.5213 -0.3864 1.0984 0.2549 0.8188

AdvDM -0.3361 1.0287 0.4166 0.6638 -0.3797 1.0163 0.4061 0.6100
AdvDM+Ours -0.3621 1.0312 0.4119 0.6675 -0.4370 1.0355 0.2540 0.8638

CAAT -0.3261 1.0872 0.4577 0.4700 -0.5008 1.0139 0.2977 0.7825
CAAT+Ours -0.3568 1.0768 0.4315 0.6338 -0.4673 1.0291 0.2497 0.7863
MetaCloak -0.3418 1.4243 0.4911 0.4850 -0.3358 1.2247 0.4857 0.5025

MetaCloak+Ours -0.3639 1.3140 0.4048 0.7038 -0.3628 1.1573 0.4179 0.6338

Table 1. Quantitative results for CelebA-HQ and VGGFace2
datasets across various metrics.

still inevitably drops. However, when combined with ATP,
MetaCloak and other baselines all achieve a 100% Protec-
tion Success Rate, as ATP’s tamper-proof mechanism re-
liably detects various purifications and triggers generation
rejection. It indicates the effectiveness of ATP in defending
against attacks with purification.

Protection Performance Under Attacks without Purifi-
cation. In this experiment, we show the protection per-
formance of adopting an ATP design under attacks with-
out purification, where the tamper-proof mechanism is not
triggered. The results are shown in Table 1. By adding
baseline protection perturbation with ATP design, we ob-
serve a consistent increase in FDFR, a decrease in ISM and
CLIP-IQAC in most cases, and similar results for LIQE.
As illustrated in Figure 4, each baseline retains its orig-
inal capability to degrade image quality after adapting to
ATP. The results show that although tamper-proof mecha-
nism will not be triggered under attacks without purifica-
tion, ATP can still achieve performance comparable to the
original protection perturbation.
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Figure 4. Qualitative comparison of original perturbation algo-
rithms and their ATP modified versions in CelebA-HQ. More vi-
sual results from the VGGFace2 are provided in Appendix B.10.

Protection Performance Under Adaptive Attacks. For
the adaptive attack, we consider three settings: (1) the at-
tacker knows the mask value but not the BDCT hyper-
parameters, (2) the attacker knows the hyper-parameters
but not the mask value, and (3) the attacker knows both.
We conduct experiments on MetaCloak with ATP using the
VGGFace2 dataset and apply a rounding function to purify
perturbations in the frequency domain. In setting (1), we
change the BDCT block size from 16 to 8, leading to a sig-
nificant increase in Bit-error from 6.25×e−4 to 3.18×e−1,
causing the authorization verification to fail. For (2), we ap-
ply the rounding action to all frequency coefficients, which
raises the Bit-error from 6.25 × e−4 to 5.04 × e−1, also
resulting in verification failure. In (3), the attack success-
fully bypasses verification, reducing the Protection Success
Rate to 0.33. While ATP is ineffective in setting (3), its
strong resistance in (1) and (2) highlights its robustness
against attackers with partial knowledge. The vulnerability
in (3) is due to the complete leakage of both BDCT hyper-
parameters and the mask value, which is extremely unlikely
to happen. Even without considering variations in BDCT
hyperparameters, the search space of a binary random mask
(with a size of 512 × 512 × 3) remains C393216

786432 ≈ 2786414

given a known mask ratio of 0.5. Such a large search space
makes it practically impossible for an attacker to retrieve
the mask without human-induced leakage. Therefore, ATP
remains a viable defense under adaptive attack conditions,
particularly when attackers have only partial knowledge.

Aesthetic Impact of Perturbation. The perturbation
may degrade image quality and compromise identity con-
sistency, potentially leading to poor aesthetics and discour-
aging image owners from adopting such techniques. In this
experiment, we evaluate the aesthetic impact of ATP and
other protection perturbations using ISM and CLIP-IQAC.
Since both metrics are computed on the perturbed images

Cases from CelebA-HQ
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Figure 5. Perturbed images of different methods from CelebA.

CelebA VGGFace
CLIP-IQAC↑ ISM↑ CLIP-IQAC↑ ISM↑

Anti-DB 0.3925 0.7569 0.4220 0.7224
Anti-DB+Ours 0.5744 0.7716 0.4195 0.6934
AdvDM 0.5115 0.7686 0.4986 0.7289
AdvDM+Ours 0.5785 0.7703 0.4280 0.6910
CAAT 0.3886 0.7608 0.4211 0.7230
CAAT+Ours 0.5733 0.7712 0.4519 0.7088
MetaCloak -0.0139 0.7126 0.2046 0.6766
MetaCloak+Ours 0.4923 0.7581 0.4390 0.6982

Table 2. Quantitative evaluation of the aesthetic impact of different
perturbation algorithms across two datasets.

BDCT Improved-PGD Mask Bit-error (e−3 )↓
(a) 349.84
(b) ✓ 42.031
(c) ✓ 360.31
(d) ✓ ✓ 81.719

Ours ✓ ✓ ✓ 0.4688

Table 3. Comparison of different fusion designs with Bit-error
values. BDCT determines whether the BDCT is used to trans-
form the image to the frequency domain; If not, the perturbation
is applied directly in the pixel domain. Improved-PGD indicates
whether we adopt Algorithm 1; If not, we adopt Equation 8. Mask
specifies whether we use the guiding mask of ratio 0.5; If not, the
perturbations are applied without the guidance of the mask.

rather than the generated ones, higher values indicate less
aesthetic impact. As shown in Table 2, the combination
with ATP generally leads to increases in both ISM and
CLIP-IQAC, suggesting that ATP introduces minimal aes-
thetic degradation. This observation is further supported by
the qualitative comparisons in Figure 16. Additional visual
results from VGGFace2 are provided in Appendix B.8.

Robustness to Protection Perturbation. In this experi-
ment, we evaluate different perturbation fusion strategies to
analyze the factors that influence the robustness of the au-



Figure 6. Sensitivity of ATP to different types of purification.
The x-axis indicates the hyperparameter of different purifications,
while the y-axis indicates the Bit-error.

thorization perturbation against interference from the pro-
tection perturbation. We incorporate Anti-DB into ATP for
this experiment on CelebA-HQ. VGGFace2 results are pro-
vided in Appendix B.7. The robustness is evaluated by
the Bit-error, the lower the error, the higher the robustness.
From the results in Table 3, we observe that settings (a) and
(c) exhibit a large Bit-error, underscoring the importance of
mask guidance. Comparing setting (b) with “Ours”, we find
that encoding messages in the frequency domain leads to
less Bit-error than in the pixel domain. The comparison be-
tween setting (d) and “Ours” indicates that Equation 8 inval-
idates the mask guidance, which results in an increased Bit-
error. The experiment highlights the importance of using
a mask to guide the fusion of authorization and protection
perturbations. It also demonstrates that frequency-domain
authorization perturbation is more effective at concealing
information than its pixel-domain counterpart. Moreover,
the results underscore the necessity of Algorithm 1 for ac-
curate mask guidance.

Sensitivity to Purification. In this experiment, we com-
pare the sensitivity of frequency-domain ATP versus pixel-
domain ATP to purification. We also compare the perfor-
mance with the existing watermark method FaceSigns [24].
For the pixel-domain design, we adopt setting (b) from the
robustness experiment. We incorporate Anti-DB into ATP
for this experiment on CelebA-HQ. VGGFace2 results are
provided in Appendix B.7. We select four types of purifi-
cation to purify the images with ATP: Resize, JPEG, Gaus-
sian Blur, and Gaussian Noise. The hyperparameters in-
clude the JPEG compression quality, downsampling scale
for resizing, the sigma value for Gaussian blur (with a ker-
nel size of 3), and Gaussian noise. The results are shown
in Figure 6. The Bit-error rises sharply as purification in-
tensity increases, indicating the high sensitivity of ATP to
various types of purification. Compared to its pixel-domain
counterpart, the frequency-domain implementation of ATP

achieves a lower Bit-error when no purification is applied,
but exhibits a steeper increase under purification. This sug-
gests that frequency-domain authorization perturbations are
both more effective at concealing messages and more sen-
sitive to purification. This increased sensitivity arises from
the fact that frequency-domain perturbations are uniformly
distributed across the pixel domain, making them more vul-
nerable to purifications. Additional theoretical analysis of
this phenomenon is provided in Appendix A.4. In contrast,
FaceSigns exhibits low sensitivity to purification due to its
robustness against such operations, indicating that existing
solutions are not directly compatible with ATP design.

5. Discussion

While ATP demonstrates strong effectiveness in our evalu-
ated scenarios, it introduces additional computational cost
and degrades to a regular protection perturbation when at-
tackers operate on their own devices to bypass the verifica-
tion process. To address concerns about deployment cost,
we provide a scalability analysis in Appendix B.11, show-
ing that ATP remains computationally affordable for the ser-
vice provider. Despite these limitations, ATP still offers a
practical and robust defense mechanism by preventing ser-
vice providers from inadvertently contributing to forgery at-
tacks. Meanwhile, since image generation requires signif-
icantly more computational resources than purification at-
tacks, the need for a generation-capable device raises the
barrier for potential attackers. These limitations also point
to a promising direction for future work: eliminating the
need for an explicit verification process from the service
provider. One possible direction is to design authorization
perturbations whose disruption degrades the generation re-
sult, thereby removing the reliance on explicit verification.

6. Conclusion

This paper introduces a novel perturbation design called
Anti-Tamper Perturbation (ATP), motivated by the chal-
lenge that forgery attackers can bypass protection pertur-
bation defenses through purification techniques. To address
this issue, the ATP incorporates a tamper-proof mechanism.
When purification occurs, the integrity of the ATP is com-
promised, signaling to the service provider that the image
has been altered. This allows the provider to reject the
unauthorized image and mitigate the threat of forgery at-
tacks with purification. Extensive experiments conducted
on two datasets demonstrate that ATP consistently outper-
forms state-of-the-art baselines in preventing forgery at-
tacks under a wide range of purification methods. This pa-
per highlights the potential of ATP as a solution for resisting
forgery attacks, offering greater feasibility for safeguarding
portrait rights and personal privacy in real-world scenarios.
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Supplementary Material

In the appendix, we will include more experimental re-
sults and the detailed settings for anti-tamper perturbation
(ATP).

A. Details of the Anti-tamper Perturbation

A.1. Hyper-parameter configuration

Experiment Environment. All experiments were con-
ducted on a server equipped with 4 L40S GPUs (each with
48G) and an Intel(R) Xeon(R) Gold 6426Y CPU. The sys-
tem had 251 GB of RAM. The software environment in-
cluded Pytorch 2.4.1 running on Ubuntu 22.04.4 LTS, with
CUDA 12.3 and cuDNN 9.1.0.70 for GPU acceleration. We
didn’t do distributed training, so the experiment can be con-
ducted using one GPU.

Authorization Perturbation Hyper-Parameters. The
authorization perturbation network is trained on FFHQ for
65,000 steps with a batch size of 8. For the weights of the
loss function: λadv = 1e − 3, λrec = 0.7, λreg = 10. The
length of the authorization message m is 32, and the default
mask ratio p is 0.5.

Protection Perturbation Hyper-Parameters. APT can
adopt the existing protection design, and different baselines
have varying choices for PGD radius and step size. Un-
like the baselines, our method performs calculations in the
frequency domain, so we did not select the same hyperpa-
rameters as the baseline.

Method CelebA-HQ VGGFace2

Radius / Step Size Radius / Step Size

Anti-DB+ours 5e-2 / 5e-3 250e-3 / 25e-3
AdvDM+ours 1e-1 / 2e-3 250e-3 / 25e-3
CAAT+ours 5e-2 / 5e-3 250e-3 / 25e-3
MetaCloak+ours 150e-3 / 5e-3 200e-3 / 5e-3

Table 4. PGD Radius and Step Size for different methods on
CelebA-HQ and VGGFace2.

We observed the loss performance after adapting the base-
line to our algorithm and selecting the appropriate PGD ra-
dius and step sizes. However, we did not perform detailed
hyperparameter tuning experiments, as our main objective
was to demonstrate that our method does not degrade the
baseline’s protection performance.

Figure 7. The ROC curve of different metrics.

A.2. Metric Selection
To select suitable metrics for evaluating the protection per-
turbation, we choose six metrics from the metrics adopted
by existing works [18, 21, 31]: ISM [18], CLIP-IQA [29],
BRISQUE [23], LIQE [32], CLIP-IQAC [21], IR [30].
When the model can’t detect the face, the ISM value is set
to -1 to guarantee that all generated images can get a cor-
responding ISM value. We first generate individual images
using unprotected images from CelebA-HQ and those pro-
tected with Anti-DB. For each subject, we generate 16 im-
ages (50 subjects in total). We then calculate the value of the
generated image’s six metrics accordingly. We assume that
the Anti-DB can often successfully protect the image when
attackers do not make purification attempts. As a result,
if the metric can classify images generated from protected
images and those generated from unprotected images, it
should be a reliable metric for evaluating protection per-
formance. Images generated from protected images are cat-
egorized as negative samples, while those generated from
unprotected images are categorized as positive samples. We
then draw the ROC curves of the protection performance
metrics, as shown in Figure 7. Among the metrics, CLIP-
IQAC and LIQE show the highest AUC values, demon-
strating the strongest discriminatory ability. As a result,
we adopt them for the Standard Protection Performance
Comparison in Section 4 (FDFR and ISM are also adopted,
as ISM is the only metric among them that is directly related
to facial identity. Furthermore, FDFR and ISM are typically
computed together [18].). For the experiment of the Protec-
tion Performance Under Attack Scenario, we need to se-
lect one metric for calculating the Protection Success Rate
(PSR). We use the property of the ROC curve to decide the



(a) (b)

Figure 8. (a) Distributions of generated images evaluated by LIQE metric. (b) Distributions of generated images evaluated by CLIP-IQAC
metric. The red dashed line illustrates the PSR threshold.

threshold of PSR. We select the threshold that can mini-
mize

√
(1− TPR)2 + FPR2, where TPR denotes true

positive rate and FPR denotes false positive rate. The
threshold for CLIP-IQAC and LIQE are 0.1318359375,
2.05078125, respectively.

Subsequently, we evaluate the performance of these met-
rics in capturing the impact of purification attempts on the
protection mechanism. The distribution of the metrics for
generated images is visualized through kernel density es-
timation. Specifically, “clear” and “origin” represent the
generation results using unprotected and protected images,
respectively. At the same time, the remaining categories
correspond to the outcomes of applying the respective pu-
rification methods to protected images before generation.

As shown in Figure 8, the results demonstrate that CLIP-
IQAC and LIQE effectively reflect the influence of purifica-
tion attempts. Notably, following “resize 4x”, “jpeg 50”,
and “GridPUre”, the resulting distributions exhibit a con-
vergence trend toward those of “clear.” However, it can be
observed that the PSR threshold of LIQE fails to capture
the trend, as the majority of the samples fall to the left of
the threshold. In contrast, CLIP-IQAC does not exhibit this
issue, making it the preferred choice for calculating PSR.

A.3. Threshold Setting
We adopt Anti-DB for ATP to perturb the images in the
CelebA-HQ test set. Then, we adopt purification techniques
to purify the image. Figure 9 shows distinct differences in
bit-error rate with and without purification. Since we aim
to detect the occurrence of purification through the bit-error
threshold, when the occurrence of purification significantly
impacts the distribution of bit-errors, setting the threshold
becomes a straightforward task. As a result, we set the bit-
error threshold of PSR to 3/32. We adopt this value across
different datasets and various protection perturbations, con-

Figure 9. The distribution of bit-error under different purification
settings. “Origin” denotes no purification applied. The red dashed
line illustrates the PSR bit-error threshold.

sistently finding that it can be effectively used to reject pu-
rification attempts.

A.4. Frequency-domain Sensitivity Analysis

In this section, we analyze why frequency-domain perturba-
tion is inherently more sensitive (i.e., vulnerable) than the
pixel-domain perturbation to the purifications. For pixel-
domain purification (e.g., resizing), the vulnerability arises
because the Block DCT computes each frequency coeffi-
cient as a weighted sum of all pixel values in a block. Thus,
even a minor modification to a single pixel can affect all
frequency coefficients. For frequency-domain purification
(e.g., JPEG), the vulnerability stems from the fact that JPEG
compression directly quantizes the frequency coefficients.
These changes may be smoothed out in the pixel domain
due to the inverse DCT and pixel rounding. To support this
explanation, we define the change rate as the proportion



Figure 10. Comparison of Protection Success Rate for different methods across various purification settings. (Generated by prompt “a dslr
portrait of sksperson”)

Average Change Rate Frequency Domain Pixel Domain

4× Resizing 0.9714 0.7788
JPEG Compression (Q=50) 0.9594 0.8445

Table 5. The average change rate of coefficients and pixel values
after performing different purifications.

of frequency coefficients or pixel values that vary before
and after purification. We evaluate it on CelebA-HQ. As
shown in Table 5, the frequency-domain perturbations have
a higher probability of being changed after the purification,
resulting in the inherent vulnerability.
Comparison of high- vs. low-frequency resilience to
purification. While it is commonly assumed that high-
frequency components are more vulnerable to traditional
purification methods (e.g., resizing), our findings show that
advanced purification techniques such as GridPure chal-
lenge this assumption. We want to share that different pu-
rification techniques have different preferences for altering
frequency bands. We computed the average normalized
variance of the DCT coefficient differences (within 16×16
blocks) before and after purification. As shown in the Fig-
ure 11, resizing primarily affects higher frequency bands
(green-box region), whereas GridPure significantly alters
low-frequency bands (red-box region).

Consequently, we adopt a random and uniform perturba-
tion design in this project to ensure sensitivity to different
purifications.

Figure 11. Visualization of the average normalized variance of
the DCT coefficient differences (within 16×16 blocks) before and
after purification.

B. More Experiment Results

B.1. Influence of Algorithm Design on Mask-
guidance

In this experiment, we aim to demonstrate that Algorithm 1
validates the mask guidance. As outlined in the methodol-
ogy section, the design of the projected gradient descent al-
gorithm using Equation 8 is intended to invalidate the mask
guidance. We verify this through a simulation experiment.

Specifically, we generate random gradients in the fre-
quency domain, ensuring they are concentrated in the top-
left 128 × 128 region. A 512 × 512 image is transformed
into the frequency domain via DCT, and a one-step gradi-



(a) By Equation 8 (b) By Algorithm 1

Figure 12. Visualization of change in the frequency domain af-
ter the gradient descent. The visualizations depict the changes in
frequency domain coefficients after the updates, where black rep-
resents no change, and brighter values indicate greater changes.

Figure 13. Visualization of the absolute difference in one 16×16
DCT coefficient map before and after applying the protection per-
turbation, along with the corresponding guiding mask.

ent descent is conducted using Equation 8 and Algorithm 1
(the step size is 1, and the PGD radius is 1). Subsequently,
we visualize the changes in frequency domain coefficients
after the single gradient descent step. As illustrated in Fig-
ure 12, our algorithm successfully confines the coefficient
updates to the designated region in the frequency domain,
whereas the original algorithm fails to achieve such precise
localization.

In addition to the simulation experiment, we also provide
a visualization of the absolute difference in one 16×16 DCT
coefficient map before and after applying the protection per-
turbation using Algorithm 1, along with the corresponding
guiding mask used during optimization. As illustrated in
Figure 13, the perturbation primarily affects regions where
the guiding mask is activated (i.e., mask value = 1), con-
firming that the mask guidance effectively constrains the
perturbation by Algorithm 1 (Improved Frequency Domain
PGD).

B.2. Repeat Main Experiments with different
prompt

Following the experimental setup described in [18, 21], we
evaluate the protection performance of our method using an

alternative prompt: “a dslr portrait of sks person”, to gen-
erate individual images. We adopt the same experimental
setup described in Section 4, with the sole distinction being
the prompt utilized.

Figure 10 shows that, with the new prompt, ATP con-
tinues to safeguard individual image generation effectively.
This is because the integrity-check mechanism prevents
generation before the prompt is utilized, ensuring that the
performance of this mechanism remains unaffected by vari-
ations in the prompt. Table 6 reveals that, under the new
prompt, ATP still performs comparably to the original pro-
tection perturbation approaches when the purification tech-
niques are not applied.

B.3. Generalizability Analysis

We report the protection performance of ATP (CAAT)
trained on SD2.1 when applied to a different diffusion
model (SD1.5) and personalization method (SVDiff [11])
using CelebA in Table 7. We compare the protection per-
formance of ATP against that of the unprotected baseline
(i.e., without any perturbation applied).

The results demonstrate that ATP is generalizable across
diffusion models and personalization techniques.

B.4. Performance Trade-off on Mask Ratio

The authorization and protection perturbations in the fre-
quency domain can be distinguished based on the ran-
dom mask M . The mask ratio p controls the region in
the frequency domain used for authorization versus protec-
tion. This experiment shows that adjusting the mask ratio
achieves a performance balance between protection and au-
thorization for the ATP.

For example, as the mask ratio increases, a larger portion
of the frequency domain will be allocated to authorization.
As shown in Table 9 and Table 10, the increase in mask ratio
leads to a decrease in bit-error, reflecting an improvement in
message embedding accuracy. It also decreases protection
performance, as LIQE, CLIP-IQAC, ISM, and FDFR scores
indicate. Thus, we adopt a mask ratio of 0.5 as the default
setting to achieve a balanced trade-off between authoriza-
tion and protection performance.

B.5. Performance Trade-off on Block Size

The frequency domain transformation is achieved by
BDCT. One of the hyperparameters for it is the size of the
Block. In this section, we report the influence of this hyper-
parameter on the information hiding of authorization per-
turbation. We train the authorization model using different
block sizes and evaluate it on CelebA-HQ. Figure 14 visu-
alizes the variation in Bit-error under different block sizes.
Since the block is square-shaped, we use its side length to
represent the block size. It can be observed that a size of



CelebA-HQ VGGFace2
CLIP-IQAC ↓ LIQE ↓ ISM ↓ FDFR ↑ CLIP-IQAC ↓ LIQE ↓ ISM ↓ FDFR ↑

AntiDB -0.2047 1.3403 0.3944 0.3775 -0.4274 1.0228 0.3233 0.7950
AntiDB+Ours -0.3085 1.1027 0.3509 0.4513 -0.4635 1.0250 0.3073 0.6850

AdvDM -0.2979 1.0450 0.3193 0.6325 -0.3763 1.0305 0.3650 0.6213
AdvDM+Ours -0.3367 1.0459 0.3634 0.4638 -0.4703 1.0126 0.3103 0.6538

CAAT -0.1927 1.3018 0.4139 0.3025 -0.4890 1.0080 0.2819 0.7888
CAAT+Ours -0.3257 1.0999 0.3725 0.4075 -0.4902 1.0192 0.2914 0.6963
Metacloak -0.2573 1.4254 0.3892 0.5000 -0.4485 1.1075 0.3513 0.8613

Metacloak+Ours -0.4049 1.0891 0.3488 0.7975 -0.4694 1.0447 0.3500 0.8875

Table 6. Quantitative results for CelebA-HQ and VGGFace2 datasets across various metrics. (Generated by prompt “a dslr portrait of sks
person”)

SD1.5 + DreamBooth

CLIP-IQAC↓ LIQE↓ ISM↓ FDFR↑
Origin 0.5007 4.5427 0.6824 0.0125
ATP -0.2893 1.1929 0.4329 0.2988

SD2.1 + SVDiff

CLIP-IQAC↓ LIQE↓ ISM↓ FDFR↑
Origin 0.3837 4.3704 0.6679 0.1338
ATP -0.3307 1.0484 0.3861 0.5575

Table 7. Protection Performance of ATP when generation model
and algorithm are changed.

Figure 14. The Bit-error variation under different block size.

16×16 yields the lowest Bit-error, supporting our design
choice adopted in the project.

B.6. Protection Performance Achieved Using Only
Authorization Perturbation

In this section, we discuss the protection performance when
we don’t include protection perturbation in the ATP de-
sign. We compare the protection performance of images
with no perturbation, images with authoirzation perturba-
tion and images with ATP (taking CAAT as protection per-
turbaiton) in CelebA-HQ. As shown in the Table 8, autho-
rization perturbation alone fails to provide strong protection
when purification is not applied.

As a result, the combination of protection perturbation
and authorization perturbation (ATP) is crucial for achiev-
ing reliable protection.

CLIP-IQAC↓ LIQE↓ ISM↓ FDFR↑

Origin (No Perturb) 0.4659 4.2340 0.7053 0.0975
Authorization Alone 0.3258 3.6935 0.6414 0.1075
ATP (CAAT) -0.3568 1.0768 0.4315 0.6338

Table 8. The protection performance using only the authorization
perturbation is significantly worse than that of ATP.

Ratio Bit-error (e−3) ↓ CLIP-IQAC ↓ LIQE ↓ ISM ↓ FDFR ↑
0.25 0.7813 -0.3561 1.0471 0.3805 0.6400
0.50 0.4688 -0.3139 1.0741 0.4647 0.5213
0.75 0.3125 -0.1480 1.3582 0.5765 0.2225

Table 9. Performance comparison for different mask ratios on
CelebA-HQ.

Ratio Bit-error (e−3) ↓ CLIP-IQAC ↓ LIQE ↓ ISM ↓ FDFR ↑
0.25 3.1250 -0.422682 1.135657 0.205465 0.91375
0.50 0.7813 -0.386397 1.098367 0.254911 0.81875
0.75 1.2500 -0.371436 1.03989 0.340458 0.70625

Table 10. Performance comparison for different mask ratios on
VGGFace2.

BDCT Improved-PGD Mask Bit-error (e−3)↓
(a) 366.09
(b) ✓ 43.594
(c) ✓ 503.75
(d) ✓ ✓ 79.844

Ours ✓ ✓ ✓ 0.7813

Table 11. Comparison of different fusion designs with Bit-error
values on VGGFace2.

B.7. Repeat Experiments on VGGFace2
We repeat the experiment on VGGFace2 to further validate
the credibility of our conclusions in Section 4. We adopt the
same experimental setup described in Section 4, with the
sole distinction being the dataset utilized. The experiment
results are shown in Table 11 and Figure 15.

B.8. Visualization of Perturbed Images
In Figure 16, we present perturbed images generated us-
ing different methods from the CelebA-HQ and VGGFace2



Figure 15. Sensitivity of ATP to different types of purification.
The x-axis indicates the hyperparameter of different purifications,
while the y-axis indicates the Bit-error. The images are from VG-
GFace2.

datasets. We observe that while perturbations are difficult
to detect at normal scales, they become noticeable when
viewed at an enlarged scale. This remains an unresolved
challenge in the field and a focus of our future research ef-
forts.

B.9. Visualization of Generation Results Applied
Purification Techniques

We prepared visual cases to illustrate how purification tech-
niques bypass existing protection mechanisms. Specifically,
we present the results of individual image generation for im-
ages from CelebA-HQ and VGGFace2 after applying differ-
ent protection perturbation algorithms. As demonstrated in
Figure 17 and Figure 18, purification can bypass the protec-
tion provided by protection perturbation, compromising the
safeguarding of individual image generation.

B.10. More Qualitative Results of Main Experi-
ments

We present additional qualitative comparison results across
various methods under two datasets (i.e., CelebA-HQ, VG-
GFace2) and two different prompts (i.e., a photo of sks per-
son, a dslr portrait of sks person) in Figure 19, Figure 20,
Figure 21, and Figure 22.

B.11. Scalability and Computational Efficiency
Analysis

Scalability. A safety checker is deployed by the widely
used diffusion model library “diffusers”, which takes up
1159.60 MB. The authorization model only takes up 1.58
MB, which should be affordable by the service providers.
Computational Efficiency. The ATP requires extra time in
authorization message hiding and verification. With batch
size = 4, the averaged inference time costs are: Autoen-
coder encoding/decoding: 0.0201s/0.0274s; BDCT + IB-
DCT: 0.0016s. In the protection phase, ATP using CAAT

as protection perturbation performs autoencoder encoding
once and applies mask-guided PGD, which requires two ad-
ditional BDCT+IBDCT operations per PGD step. This re-
sults in 0.38% increase of the total protection time com-
pared to the original CAAT protection (77.33s). In the
generation phase, autoencoder decoding is performed once.
When considering a generation method like DreamBooth
(341.9s), the added decoding introduces 0.008% increase.
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Figure 16. Perturbed images of different methods from two datasets.
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Figure 17. Visual cases showing the purification results bypassing the protection mechanisms on images from the CelebA-HQ dataset.
“Clean” indicates no purification applied.
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Figure 18. Visual cases showing the purification results bypassing the protection mechanisms on images from the VGGFace2 dataset.
“Clean” indicates no purification applied.
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Figure 19. Qualitative comparison of original perturbation algorithms and their ATP modified versions in CelebA-HQ.
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Figure 20. Qualitative comparison of original perturbation algorithms and their ATP modified versions in CelebA-HQ.
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Figure 21. Qualitative comparison of original perturbation algorithms and their ATP modified versions in VGGFace2
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Figure 22. Qualitative comparison of original perturbation algorithms and their ATP modified versions in VGGFace2
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