
Symbolic Execution in Practice: A Survey of

Applications in Vulnerability, Malware, Firmware,

and Protocol Analysis

Joshua Bailey (jbailey4@umbc.edu)
Charles Nicholas (nicholas@umbc.edu)

University of Maryland, Baltimore County

August 12, 2025

1 Introduction

Program testing is an essential aspect of software development. Testing
not only helps to verify a program’s capabilities, it also uncovers potential
vulnerabilities that adversaries could exploit, and offers an opportunity to
verify the correctness of an implementation. Traditionally, program verifica-
tion relied on rigorous formal methods to prove the correctness of a program;
while testing, it could be said, used a more practical, but less exhaustive
approach where inputs were carefully chosen and run against the program.
The outputs were manually inspected and compared against expected out-
comes [1]. Although formal methods provide strong guarantees about pro-
gram behavior, its often impractical against large scale software. Simpler
testing strategies, while fast, may fail to detect deep, subtle bugs. Because
of the complexity of modern software, a middle ground that provides both
thoroughness and practicality became necessary.

In the 70s, researchers proposed such a middle ground in symbolic ex-
ecution [1]–[4]. At the time, the approach was limited by the capability
of theorem provers. However, the advent and advancement of satisfiability
modulo theories (SMT) solvers [5], [6] have since made symbolic execution
practical. The core idea is to analyze a program with symbolic variables that
represent all possible inputs instead of concrete ones. This allows a symbolic
execution engine to systematically explore multiple execution paths, offering
greater code coverage and more precise bug finding.

1

ar
X

iv
:2

50
8.

06
64

3v
1

 [
cs

.C
R

]
 8

 A
ug

 2
02

5

https://arxiv.org/abs/2508.06643v1

This paper presents a comprehensive survey of how symbolic execution
aids in the analysis of large and complex software systems. Rather than sim-
ply cataloging tools and techniques, we synthesize the surveyed literature
to reveal a unifying theme: strategies to manage the complexity of sym-
bolic execution is critical to practicality. We introduce a framework that
categorizes these techniques into broad categories: scope reduction, hybrid
analysis, and a taxonomy of guidance heuristics. We use this framework
to analyze applications across diverse domains. The low-level mechanics
of search strategies have been previously surveyed [7], our work provides
a higher-level analysis of how these strategies are applied in practice in
domains such as vulnerability research, program verification, emulation and
firmware analysis, and obfuscated and malicious code analysis. For an intro-
duction to many of these domains, we refer the reader to a modern software
engineering textbook such as [8].

By examining representative tools and relevant research, we aim to help
researchers and practitioners understand when and why symbolic execution
is beneficial, and how they can select or adapt tools for their specific scenar-
ios. In doing so, we highlight current strengths and identify areas requiring
further development.

The remainder of this paper is organized as follows. Section 2 provides
an overview of symbolic execution, detailing the core challenges and common
mitigations in the field. Section 3 presents a landscape of popular symbolic
execution engines, examining their high-level design, strengths and weak-
nesses. Section 4 introduces a taxonomy of guidance heuristics commonly
employed in symbolic execution research and surveys how symbolic execu-
tion has been applied in various application domains. Section 5 outlines
potential research directions. Section 6 offers concluding thoughts.

2 Symbolic Execution Fundamentals

Symbolic execution is a program analysis technique that explores executable
paths by treating inputs as symbolic variables. For example, instead of run-
ning the program with specific inputs like x = 4, symbolic execution uses
symbolic values, like x = λ, to represent a range of possible inputs, gener-
ating expressions that capture the behavior of the program along different
paths.

As the symbolic execution engine traverses a program, it builds up path
conditions which are logical expressions representing the constraints on in-
puts required to follow a particular execution path. In addition, the symbolic

2

execution engine may also maintain a store of symbolic memory which maps
variables to symbolic expressions or values. In order to determine whether
an execution path is feasible, the engine leverages a constraint solver (e.g.,
SMT solvers like Z3 or CVC4) which act as the brains of the operation.
Path conditions are fed to the constraint solver and, if a feasible path exists,
it will generate concrete inputs that trigger specific behaviors or bugs.

Symbolic execution allows for:

• Comprehensive Path Exploration: By considering multiple exe-
cution paths, symbolic execution can uncover edge cases and hidden
bugs that might be missed by traditional testing. For example, in a
program that computes the square root of a real number, symbolic ex-
ecution should introduce conditions where the input is negative, zero,
or positive, whereas traditional testing might only check positive in-
puts.

• Automated Test Case Generation: Symbolic execution can gener-
ate inputs that achieve high code coverage, aiding in thorough software
testing.

• Vulnerability Detection: Symbolic execution can identify security
vulnerabilities by exploring paths that lead to unsafe states or violate
security properties.

Despite its effectiveness and versatility, symbolic execution is not without
its challenges. Limitations such as path explosion, constraint solving, and
scalability must be carefully evaluated to determine its feasibility for a given
project.

2.1 Common Challenges in Symbolic Execution

As noted above, symbolic execution is a powerful technique program analysis
technique, but it is not without its difficulties. The core challenges include
path explosion, constraint solving difficulties, and environment modeling. In
this section, we will describe these challenges, and others, in greater detail.
Later, in Section 2.2 we discuss ongoing research and advances aimed at
addressing these issues.

2.1.1 Path Explosion

Symbolic execution’s strength lies in its ability to explore all possible exe-
cutions paths of a program simultaneously. While this property allows for

3

thorough code coverage, it’s this very strength that’s also one its greatest
weaknesses. The sheer number of paths to analyze can make analysis in-
creasingly resource intensive. This phenomenon is known as path or state
space explosion. As the number of paths increases, the symbolic execution
engine has to manage memory, CPU time, and solver queries, ultimately lim-
iting the scalability of the analysis. The following examples, while trivial,
illustrate how quickly this complexity can arise.

A common cause of path explosion are loops with symbolic conditions.
Consider the code snippet in Listing 1:

Listing 1: A loop with a symbolic condition

void loop example (int n) {
for (int i = 0 ; i < n ; i++) {

// Some code dependent on ’ i ’
}

}

In Listing 1, if n is symbolic, the loop’s iteration count is effectively un-
bounded. The symbolic execution engine must consider all possible values
of n, leading to a potentially infinite number of paths. To mitigate infi-
nite exploration, symbolic execution engines typically impose loop unrolling
limits [9]. Alternatively, the variable could be concretized or constrained.
However, such heuristics risk missing bugs that only manifest at larger iter-
ation counts. Techniques like loop summarization [10] or state merging [11]
can help reduce the number of paths while preserving a meaningfully high
level of coverage.

Nested conditionals are another major contributor to path explosion.
Listing 2 shows how even a small number of symbolic conditionals can cause
exponential growth of the state space:

Listing 2: Path explosion caused by nested conditional statements

void cond i t i ona l example (int a , int b) {
i f (a < 0) {

i f (b > 0) {
// Path 1

} else {
// Path 2

}
} else {

i f (b > 0) {
// Path 3

4

} else {
// Path 4

}
}

}

For two symbolic variables a and b, there are four distinct paths. Adding
a third symbolic variable c would create eight paths. Because symbolic
execution must analyze the true and false branch every time a conditional
expression is encountered. Consequently, the symbolic execution engine in-
creases the number of paths by a factor of two, leading to an exponential
growth of up to 2n paths.

Certain design decisions, like input-dependent branching, exacerbate the
path explosion problem. Consider the code in Listing 3 that independently
checks multiple input bytes. Here, the variable input is treated as a sym-
bolic array where each element represents a symbolic variable. While struc-
turally different from nested conditionals, this pattern produces the same
exponential effect since each if statement also introduces two branches.
This branching pattern appears frequently in device drivers, file parsers,
and embedded systems.

Listing 3: Path explosion caused by input-dependent branching

void input branch ing (char ∗ input) {
i f (input [0] == ’A ’) {

// case where f i r s t charac t e r i s ’A’
}
i f (input [1] == ’B ’) {

// case where second charac t e r i s ’B ’
}
i f (input [2] == ’C ’) {

// case where t h i r d charac t e r i s ’C ’
}
// . . . a d d i t i o n a l cond i t i on s

}

In each of these examples, the engine must carefully track path conditions
and program state which can become unwieldy and consume substantial
resources. Techniques such as path pruning and heuristic search strategies
can tame path explosion, though each comes with their own limitations,
discussed in Section 2.2.

5

2.1.2 Constraint Solving Difficulties

Constraint satisfaction problems are applicable in a wide array of applica-
tions such as software and hardware verification, type-checking, test-case
generation scheduling, planning, to name a few [12]. Boolean satisfiability
(SAT) is a well-known constraint satisfaction problem that determines if a
formula over Boolean variables can be made true. SAT solvers, while pow-
erful, are limiting in that they are not able to reason about complex logic
that might be encountered in modern programming languages. Satisfiability
Modulo Theories (SMT) generalize the SAT problem to make them more
amenable to such complex paradigms such as bit-vectors, arrays, and linear
integer and real arithmetic, and non-linear arithmetic. Consider the simple
function check 4:

Listing 4: An illustration of path condition generation

void check (int x) {
int y = x ∗ 2 ;
i f (y == 12) {

// I n t e r e s t i n g path
}

}

If we want to determine whether the interesting path is reachable, the sym-
bolic execution engine would generate the following path condition (x sym

* 2) == 12, where x sym is a symbolic variable. This formula is sent to the
SMT solver where it’s task is to determine if a value exists that makes this
formula true. In this example, the SMT solver would determine this path is
satisfiable and provide the concrete example, x = 6.

Symbolic execution heavily relies on constraint solvers to determine path
feasibility. By only analyzing feasible paths, symbolic execution can accu-
rately explore multiple execution paths and reason about program behaviors
and variable properties. Early symbolic execution work by King [1] demon-
strated that constraint solving is fundamental since symbolic execution re-
quires evaluating path conditions and determining satisfiability of symbolic
expressions. However, King noted that the theorem proving capabilities
available at the time made symbolic execution impossible even for modest
programming languages. At that time, efficient theorem solvers capable
of handling the complex constraints generated during symbolic execution
were not available.However, modern SMT solvers like STP [13] and Z3 [5]
have enabled practical analysis by efficiently handling complex constraints
over arithmetic, bit-vectors, arrays, and other operations. Despite these

6

advancements, constraint solving remains a bottleneck. Certain classes of
constraints, such as non-linear arithmetic constraints [14], remain difficult
to solve, and the presence of path explosion and complex theories can limit
scalability. Even powerful solvers such as Z3 cannot fully mitigate these
challenges, requiring researchers and practitioners to employ heuristics, ap-
proximations, or domain-specific optimizations.

2.1.3 Environmental Interaction Modeling

Any useful software application does not operate in a vacuum. Even modest
application must interact with their environment via I/O operations, net-
work communication, interfacing with hardware peripherals or some other
external component. The challenge for symbolic execution engines is de-
termining how to symbolically represent these interactions. As a result,
the symbolic execution engine must simulate file systems, protocols, and
devices with sufficient fidelity to avoid unsound assumptions or missing cru-
cial paths. As mentioned in Section 2.1.4, concurrency can exacerbate en-
vironmental modeling complexity, as timing-dependent interactions across
multiple threads interacting with external systems increase the number of
scenarios to consider. Domain-specific knowledge, auxiliary models, or hy-
brid symbolic-concrete execution strategies are often required. However,
these solutions may limit general applicability or require extensive manual
effort.

Understanding these core challenges: path explosion, floating-point han-
dling, concurrency, constraint solving difficulties, obfuscated code, scalabil-
ity, and environmental modeling, provides a foundation for evaluating sym-
bolic execution tools and the research efforts which aim to overcome these
hurdles. In Section 2.2, we explore ongoing efforts and innovative techniques
designed to address these persistent issues.

2.1.4 Other Challenges

Beyond the core foundational issues, there are more specialized issues that
hamper the technique’s effectiveness.

Floating-Point Arithmetic Handling Floating-point arithmetic is a
critical part of modern computing, specifically in scientific computing where
accuracy is paramount. However, real numbers are infinite so represent-
ing them in a finite binary format pose a real challenge in computer sys-
tems. While the IEEE 754 [15] standard provides a uniform representation

7

of floating-point values, it does not eliminate the fundamental rounding er-
rors and precision loss that can make program behavior difficult to reason
about [16].

For symbolic execution, handling floating-point arithmetic is especially
challenging. The issues primarily stem from constraint solvers having dif-
ficulty solving formulas with floating-point values. Many solvers handle
floating-point constraints using approximations, potentially leading to in-
complete or inaccurate analyses [17].

As a result, floating-point computations remain an open problem area,
with ongoing research trying to provide sound and efficient handling [17],
[18]. For a comprehensive survey of the different techniques being developed
to address these challenges, we refer the reader to work by Zhang et al. [19].

Multi-threading and Concurrency Multi-threaded programs enable
software to make efficient use of CPU resources. Threaded applications
are able to handle multiple streams of input concurrently, perform com-
plex computations in parallel, and distribute work among various compute
resources. While threads offer significant performance gains, it also intro-
duces substantial challenges in debugging and analysis due to the inherent
complexity and non-determinism of concurrent execution.

The non-determinism arises because the order in which threads execute
is not strictly defined. Consequently, certain bugs are difficult to reproduce
since the same sequence of operations might not occur consistently across
multiple runs. Furthermore, multiple threads accessing the same shared
resource without proper synchronization can lead to race conditions causing
unpredictable and subtle-to-detect bugs. Another consequence of threads is
the exacerbation of the path explosion problem. Moreover, the shared state
must be accurately modeled across all thread, significantly increasing the
complexity of the analysis. As discussed in Section 2.1.3, concurrency can
also magnify the challenges of modeling external environments. Timing and
ordering constraints introduced by multiple threads interacting with external
resources or devices can greatly complicate environmental modeling. This
forces the symbolic execution engine to consider more nuanced scenarios.

Approaches to mitigating concurrency-related challenges, such as pro-
gram sequentialization [20], can simplify thread interleaving but introduce
scalability issues, risk losing concurrency semantics, and rely on simplifying
assumptions that may overlook critical issues.

8

Handling Obfuscated and Self-Modifying Code Code obfuscation is
a technique that transforms a program into a form that is more difficult to
understand. Obfuscation techniques such as self-modifying code complicate
analysis by altering control flow and data structures in ways that hinder the
engine’s assumptions and simplifications. Self-modifying code forces a sym-
bolic execution engine to adapt dynamically to changing code and maintain
soundness despite transformations intended to confuse analysis. To this end,
researchers have developed specialized techniques to counter specific types
of obfuscation. For instance, some approaches combine symbolic execution
with taint analysis to reverse virtualized code [21], while others use novel
methods like backward-bounded dynamic symbolic execution (DSE) [22] to
defeat opaque predicates. Despite these advances, such solutions are often
tailored to particular obfuscation schemes, and creating a robust, general-
purpose deobfuscation framework remains a significant and open research
challenge.

Scalability It is often desirable to analyze software at scale whether it be
analyzing one project with millions of lines or analyzing multiple projects
efficiently. Applying symbolic execution to large-scale, real-world software
systems involves addressing thousands if not millions of lines of code, exter-
nal libraries, complex data types, and intricate state spaces. The core chal-
lenges presented earlier in this section contribute to the challenge of making
symbolic execution scalable. Managing resource consumption, which may
include efficient path pruning, leveraging parallelization, and distributed
analysis, is essential to making symbolic execution practical at scale. Ul-
timately, achieving scalable analysis with symbolic execution requires miti-
gating one or more of the challenges presented here. We will discuss various
scalability-improving techniques in Section 2.2.

2.2 Addressing Core Symbolic Execution Challenges

While Section 2.1 identified several ongoing difficulties in applying symbolic
execution to real-world software, most research efforts have focused on the
most pressing and foundational problems, particularly path explosion and
constraint solving difficulties. By making path exploration more tractable,
these approaches also improve scalability, reduce server load, and indirectly
aid in handling other challenges like environmental modeling and complex-
ity in multi-threaded scenarios. In symbolic execution, every path analyzed
by the engine must maintain a consistent view of the environment (e.g.,
registers, file systems, etc.). Reducing the sheer number of states to track,

9

whether it be by pruning or merging paths, reduces the number of environ-
mental states the engine must manage.

In this section, we highlight notable strategies and techniques that have
proven effective in mitigating path explosion and, to a lesser extent, improv-
ing constraint handling. Although not every challenge from Section 2.1 is
directly addressed here, many of the solutions are broad in scope, offering
partial relief or foundational improvements that can be adapted or extended
to tackle additional issues.

2.2.1 Techniques for Managing Path Explosion and Scalability

State Merging and Pruning. As highlighted in Section 2.1.1, path
explosion often occurs because each symbolic branch creates new states.
However, not all branches lead to unique states. Therefore similar states
can be merged and redundant paths eliminated drastically reducing the
number of paths to explore [11]. Likewise, certain paths may not yield
promising results. These ”low-value” paths can be pruned using heuristics
to focus analysis on the most promising execution paths [23]. Bounded
exploration [24], which limits the depth or number of paths explored, further
controls resource usage. While these techniques do not solve path explosion
entirely, they make symbolic execution more feasible for larger and more
complex programs.

Concolic Execution As we’ve noted, constraint solving is computation-
ally expensive and remains the primary bottleneck in symbolic execution [25].
To address this, researchers have employed a method that combines concrete
execution with symbolic execution resulting in what is called concolic ex-
ecution. The idea is to utilize concrete runs of the program under test to
drive the symbolic execution engine in the right direction. As we will see in
Section 4 guiding symbolic execution is a popular mechanism to reduce path
explosion. Because determining path feasibility is not required (due to the
concrete run providing inputs), it reduces the load on the constraint solver
which continues to be the largest bottleneck for practical symbolic execution
on large programs. In addition, because it is intractable to keep track of the
entire environment and effects from a given function call, blending concrete
execution with symbolic analysis guides path exploration on the basis of
actual execution traces.

Heuristic Search Strategies. Because symbolic execution aims to cover
all paths, providing guidance to focus its exploration is critical. As a result,

10

many researchers employ heuristics to prioritize certain paths over others.
For example, SAVIOR [26] (detailed in Section 4.2) uses a bug-driven ap-
proach. First, it identifies code regions that trigger a undefined behavior ad-
dress sanitizer alerts. Then symbolic execution is focused on paths that are
more likely to lead to vulnerable code. This selective exploration can rapidly
surface interesting program behaviors without exhaustively enumerating all
paths, thus mitigating path explosion and accelerating bug discovery.

2.2.2 Parallelization

Distributing symbolic execution workloads across multiple processors or ma-
chines allows engines to handle more states in parallel. While parallelization
does not inherently eliminate path explosion, it leverages additional com-
putational resources to process a larger number of paths simultaneously,
improving scalability and practical applicability. One example of this is the
Cloud9 [27] platform which executes symbolic execution work on hardware
clusters.

2.2.3 Hybrid Approaches

As noted earlier, fuzzing alone often yields limited code coverage. In con-
trast, symbolic execution excels in deeper analysis, but there are severe per-
formance penalties. A promising approach combines both techniques: using
a fuzzer for rapid exploration and symbolic execution for precision. The
idea is to aid the fuzzer when it becomes ”stuck” (i.e., fails to explore new
paths), symbolic execution can generate inputs to expand coverage. This
synergy can reduce the overall complexity that the symbolic engine faces,
indirectly helping with path explosion and constraint-solving challenges. In
Section 4 there are a few examples of systems which show how fuzzing and
symbolic execution can be utilized together. Although hybrid approaches do
not directly address all challenges, they improve the engine’s efficiency and
effectiveness in practice by leveraging symbolic execution when necessary.

Symbolic execution has made significant strides in becoming a viable and
practical option for analyzing large-scale software systems, and a wide array
of tools exist to support this endeavor. In the next section, we highlight only
a few of these tools in an effort to provide a broad overview of the symbolic
execution frameworks. Rather than directly comparing the tools against one
another, we focus on their diverse applications in tackling challenges such
as vulnerability research, program verification, analysis of obfuscated and
malicious code, emulation and firmware analysis, and protocol inference.

11

Following Section 3, we highlight how symbolic execution has been used in
various application domains.

3 Symbolic Execution Tools Landscape

Symbolic execution has matured into a practical technique, supported by
a diverse landscape of tools. While not an exhaustive list, this curated
set showcases tools chosen for their influence, current relevance, and varied
capabilities. These tools differ in their operational approach: some operate
directly on binaries, while others require source code to translate into LLVM
bitcode [28] and operate on that. These tools also differ in their primary
focus, supported architectures, and performance characteristics and strate-
gies for mitigating core challenges like path explosion. Understanding these
distinctions is crucial for selecting the appropriate tool for a given analysis
task.

Symbolic execution tools strive to balance factors such as speed, ease
of implementation, and architecture independence. Tools like KLEE [29]
and SymCC [30] closely integrate with source-level representations (typi-
cally LLVM bitcode), enabling comprehensive analysis integrated early in
the development cycle. Conversely, tools such as angr and Triton adopt
binary-only approaches, lifting machine instructions to an intermediate rep-
resentation (IR) for analysis. This lifting is useful in scenarios where source
code is not available, such as malware analysis or closed-source vulnerabil-
ity analysis. Furthermore, frameworks like S2E [31] combine symbolic and
concrete execution to handle entire system stacks, including operating sys-
tems and device drivers, while hybrid approaches, exemplified by Driller,
fuse symbolic execution with fuzzing to leverage the strengths of both tech-
niques.

These diverse approaches can be broadly categorized based on their pri-
mary input analysis strategy: source-based analysis, binary-level analysis,
and hybrid analysis (often combining symbolic execution with fuzzing or
concrete execution). We will now discuss prominent examples within each
category, outlining their methodologies, strengths, weaknesses, and typical
application domains.

3.1 Source-Based Analysis

Source-based tools typically operate on intermediate representations such
as LLVM bitcode, requiring access to the original source code or a compi-

12

lable form. The most prominent tools in this category are KLEE [29] and
SymCC [30].

KLEE Developed in 2008 as an evolution of the earlier EXE tool [32],
KLEE remains one of the most widely used symbolic execution frameworks,
cited in numerous publications. KLEE’s primary goal is high-coverage au-
tomated test generation for C/C++ programs. Key technical contribu-
tions include an efficient state representation using object-level copy-on-
write memory to minimize state duplication overhead, and optimizations
for constraint solving. Specifically, KLEE employs constraint independence
(reducing solver queries), significantly reducing the burden on the underly-
ing SMT solver (originally STP, now also supporting Z3). To use KLEE,
programs must be compiled to LLVM bitcode. Developers can annotate
their code to mark specific inputs as symbolic and add assumptions (e.g.,
constraining input values). KLEE’s reliance on source/bitcode makes it par-
ticularly well-suited for integration into software development workflows for
thorough testing and bug finding.

SymCC Introduced in 2020, SymCC [30] represents a distinct approach
inspired by performance analysis [33] showing significant overhead from
IR interpretation. Instead of interpreting bitcode symbolically like KLEE,
SymCC compiles symbolic execution capabilities directly into the binary
using a custom compiler pass built on LLVM. While SymCC still requires
LLVM bitcode as input, the resulting instrumented binary performs sym-
bolic tracking natively during execution. When run, SymCC’s instrumen-
tation interacts with a symbolic backend (runtime library) to explore new
paths and generate inputs that increase code coverage. This compile-time
approach allows, in theory, for recompiling libraries like libc to achieve com-
prehensive environment modeling. SymCC also handles calls to uninstru-
mented code gracefully by treating their effects concretely. The developers
provide specialized code symbolic models for common C library functions
(e.g., memset and memcpy). While initially focused on C/C++, the au-
thors suggest the approach could be extended to other languages supported
by LLVM.

KLEE and SymCC, while both source-based, reflect different design pri-
orities originating from how they evaluated their tools. KLEE focused
on whether test cases generated by KLEE improved code-coverage while
SymCC focused on raw speed and correctness. The creators of KLEE pri-
marily emphasized achieving high code coverage demonstrating effectiveness

13

in finding deep bugs in complex software, with constraint solving optimiza-
tions aimed at making this feasible. In contrast, the SymCC developers
focused heavily on execution performance, comparing runtime overhead of
their direct compilation approach against traditional interpretation meth-
ods, alongside code coverage metrics. This difference highlights a key trade-
off: KLEE’s architecture facilitates deep program state analysis and complex
environment modeling, while SymCC prioritizes minimizing the performance
impact of symbolic instrumentation.

3.2 Binary-Based Analysis

On the other end of the spectrum there are engines which do not require
access to the source code. Due to the lack of semantic information, binary-
based tools typically utilize a ”lifter” to transform the machine code up to
an intermediate representation (IR). The IR used varies, but the results al-
low for symbolic analysis on programs where source code is not available.
The most prominent tools in this category are S2E, angr, Triton, and BIN-
SEC/SE.

S2E Introduced in 2011, S2E (Selective Symbolic Execution Engine) [31]
was designed as a general platform for in-vivo multi-path analysis of complex
software systems, scaling even to full OS stacks like Windows [31]. It ad-
dresses the significant challenge of analyzing software behavior within its real
environment (libraries, kernel, drivers) without resorting to potentially inac-
curate or labor-intensive abstract models. S2E achieves this by combining
virtualization (using QEMU [34]), dynamic binary translation (interpreting
x86 machine code directly), and symbolic execution (leveraging KLEE).

The primary contribution of S2E is the idea of selective symbolic exe-
cution. Instead of executing the entire system symbolically, which is often
infeasible due to path explosion, S2E allows analysts to precisely target
specific code regions for symbolic exploration while executing the rest of
the system concretely. It manages seamless, automatic, bi-directional tran-
sitions between concrete and symbolic modes, ensuring that interactions
with the real symbolic state space and focuses analysis effort where needed.
S2E is modular in structure, featuring path selectors (to guide exploration)
and path analyzers (plugins that observe or check properties along explored
paths). The authors provide several plugins with its release, and they claim
that developing new analyzers is trivial. They corroborate this by developing
three analyzers using their system, DDT+, a tool for testing closed-source

14

Windows device drivers, REV +, a tool for reverse engineering binary Win-
dows device drivers, and PROFs, a performance profiler and debugger.

Overall, the strength of S2E lies in enabling complex, system-wide anal-
yses directly on binaries within their native environment.

Triton Introduced in 2015, Triton [35] is presented as a dynamic binary
analysis framework built upon Intel Pin [36]. The authors’ primary motiva-
tion was to provide a modular binary analysis framework that is well suited
to handle obfuscation in modern binaries.

Triton offers Python bindings and integrates several key components:
dynamic taint analysis (”Hue Engine”), a symbolic execution engine, a snap-
shot engine for replaying/backtracking execution paths, x86-64 instruction
semantics translated to the SMT2-LIB standard format, and an interface to
the Z3 SMT solver. These components allow external Python tools built on
Triton to perform tasks like symbolic fuzzing, trace analysis, and runtime
analysis for vulnerability research. The authors acknowledge path explosion
as a general challenge and describe the standard dynamic symbolic exe-
cution to negate branch conditions from previous runs. However, they do
not explicitly discuss any heuristics to mitigate path explosion beyond the
standard dynamic symbolic execution (DSE) workflow.

For constraint solving, Triton performs ”backward reconstruction” to
build solvable formulas from symbolic expressions. It also provides robust
mechanisms to manage constraint complexity through SMT simplification
passes. The framework offers two primary approaches to this simplification:
an analyst can register custom simplification callbacks based on user-defined
rules, or they can convert Triton’s internal expressions into a Z3-compatible
format to leverage the solver’s simplification engine. The authors do not
provide a formal evaluation, but rather demonstrate Triton’s capabilities
through illustrative examples and descriptions of specific runtime analyses
implemented using the framework.

angr Next to KLEE, angr [37], developed in 2016, is the most influen-
tial binary analysis framework. The developers of angr aimed to overcome
challenges associated with the reproducibility and comparability of previous
research prototypes. Key design goals included cross-architecture support,
cross-platform compatibility, support for different analyses, and usability
via a Python interface.

In order to achieve cross-architecture support, angr utilizes Valgrind’s
VEX IR [38], although angr’s modular design allows for other IRs. Cross-

15

platform binary loading, including dependencies, is handled by the CLE
(CLE Loads Every) module. Program state, including registers, memory,
filesystem, etc., is managed by the SimState object within the SimuVEX
module, which uses a plugin system to support different memory models and
track environment interactions. Just like KLEE, angr has a rich ecosystem
of tools built with angr including angrop [39] for automating the construc-
tion of ROP chains, patchrex [40] for patching binaries, and rex [41] for
automated exploit generation.

The angr system incorporates several strategies to address common sym-
bolic execution challenges. To address path explosion, angr implements ad-
vanced techniques like Veritesting [42] for state merging and support path
prioritization strategies. For constraint solving they implement optimiza-
tions like splitting constraints into independent sets or using Value-Set Anal-
ysis (VSA) [43] to approximate solutions quickly. Finally, to model the en-
vironment, angr utilizes ”SimProcedures” which are Python functions that
model their effect on the SimState.

BINSEC/SE BINSEC/SE [44], introduced in 2016, is a dynamic sym-
bolic execution toolkit for binary-level security analysis, particularly reverse
engineering tasks like malware analysis and vulnerability research. It is
based on the open-source BINSEC [45] platform, which provides a formal,
modular environment for binary analysis, featuring disassembly, intermedi-
ate representation translation, simulation, and static analysis capabilities.
BINSEC/SE leverages the platform’s front-end for translating x86 binaries
into the Dynamic Bit-vector Automata (DBA) [46] IR. The BINSEC/SE
architecture is notable for its modularity, comprising of a PIN-based tracer
(PINSEC), a core DSE engine with advanced constraint optimizations, and
a flexible path selection module inspired by OSMOE [47]. The initial re-
lease of BINSEC/SE only supported x86. However, since its inception, it
has evolved to support a broader range of architectures including 64-bit
architectures and ARM.

The authors evaluate BINSEC/SE through two reverse engineering case
studies:

• Solving a Flare-On challenge crackme by using DSE to find the cor-
rect input bytes satisfying path conditions, demonstrating the ability
to handle iterative constraints and interact with the tracer to force
specific paths.

• Performing malware exploration on 11 samples from the VX Heaven
dataset[48], where BINSEC/SE automatically discovered 43 new be-

16

haviors by systematically negating branch conditions found in initial
traces.

3.3 Hybrid Analysis

Driller Driller [49] is a hybrid vulnerability analysis tool designed to find
deep bugs in binary applications by combining fuzzing with concolic execu-
tion. Driller aims to address the weaknesses inherent in fuzzing and concolic
execution by playing off the strengths of both techniques. Driller attempts
to mitigate path explosion by offloading most of the path exploration task
to its fuzzing engine, using concolic execution only to satisfy complex checks
in the application [49].

Driller employs a feedback loop between a fuzzer (American Fuzzy Lop
(AFL) [50]) and angr as its concolic execution engine. The process begins
with AFL fuzzing the application. Once AFL fails to find new interesting
states, Driller invokes the concolic execution engine which solves for a specific
input and passes it back to the fuzzing component.

For the most part, Driller tackles path explosion by relying on the fuzzer
for broad path discovery, and invoking the concolic engine only selectively.
Likewise, it mitigates the cost of constraint solving by ensuring the solver
is only used to generate the specific inputs necessary to bypass checks that
are blocking the fuzzer. Because Driller is built on top of angr and AFL
QEMU, it relies on those components for modeling the environment and
therefore suffers the same drawbacks.

Driller was evaluated on the DARPA CGC dataset[51] containing 126 bi-
naries. The authors compared it against standalone AFL and pure symbolic
execution (angr with Veritesting). Driller did offer some improvements over
AFL, identifying crashes in 77 binaries compared to 68 and 16 in AFL and
angr respectively.

3.4 Selecting the Right Tool

While the tools described above offer powerful capabilities, they differ signif-
icantly in their underlying methodologies, target scope, and approaches to
core challenges. Understanding these distinctions is crucial for researchers to
select the appropriate tool for their specific analysis goals and constraints.
In a development environment, KLEE and SymCC would be the obvious
choices given access to source code. Tables 1 and 2 illustrate the character-
istics and use-cases for each of the tools reviewed.

These selected tools represent a broad spectrum of symbolic execution

17

F
ig
u
re

1
:
C
om

p
ar
at
iv
e
O
ve
rv
ie
w

of
S
y
m
b
ol
ic

E
x
ec
u
ti
on

T
o
ol
s,

P
a
rt

1
of

2

T
o
o
l
N
a
m
e

R
e
fe
re

n
c
e

P
ri
m
a
ry

C
a
te
g
o
ry

In
p
u
t
R
e
q
u
ir
e
d

C
o
re

T
e
ch

n
iq
u
e
(s
)

K
e
y
F
e
a
tu

re
s

K
L
E
E

[2
9
]

S
ou

rc
e-
B
a
se
d

L
L
V
M

B
it
co
d
e

S
y
m
b
ol
ic

E
x
ec
u
ti
on

O
b
je
ct
-l
ev
el

C
O
W

C
on

st
ra
in
t
In
d
ep

en
d
en

ce
C
ou

n
te
re
x
am

p
le

C
ac
h
in
g

H
ig
h
-c
ov
er
a
ge

te
st

g
en

er
a
ti
on

,
B
u
g
fi
n
d
in
g

E
n
v
ir
on

m
en
t
m
o
d
el
in
g

S
y
m
C
C

[3
0
]

S
ou

rc
e-
B
a
se
d

L
L
V
M

B
it
co
d
e

C
om

p
il
e-
ti
m
e
S
E

In
st
ru
m
en
ta
ti
on

,
C
on

co
li
c

H
ig
h
p
er
fo
rm

a
n
ce

(a
vo
id
s
IR

in
te
rp
.)

F
le
x
ib
le

so
lv
er

in
te
gr
a
ti
on

a
n
g
r
[3
7
]

B
in
a
ry
-B

as
ed

B
in
ar
y

(M
u
lt
i-
A
rc
h
)

D
S
E
,
V
S
A
,

C
F
G

re
co
ve
ry
,

V
er
it
es
ti
n
g,

P
at
h
p
ri
or
it
iz
at
io
n

P
y
th
on

fr
am

ew
or
k

F
le
x
ib
le
,
E
x
te
n
si
b
le

A
rc
h
-a
g
n
o
st
ic

L
ar
g
e
co
m
m
u
n
it
y

T
ri
to
n
[3
5
]

B
in
a
ry
-B

as
ed

B
in
ar
y

(M
u
lt
i-
A
rc
h
)

C
on

co
li
c

D
y
n
am

ic
B
in
ar
y
A
n
al
y
si
s

T
ai
n
t
T
ra
ck
in
g

S
M
T

C
on

ve
rs
io
n

P
y
th
o
n
sc
ri
p
ti
n
g

R
u
n
ti
m
e
tr
a
ci
n
g

T
a
in
t
a
n
a
ly
si
s
fo
cu

s

S
2
E

[3
1
]

F
u
ll
-S
y
st
em

B
in
a
ry
-B

as
ed

B
in
ar
y
x
86

F
u
ll
S
y
st
em

Im
ag

e

S
el
ec
ti
ve

S
y
m
b
ol
ic

E
x
ec
u
ti
on

V
ir
tu
al
iz
at
io
n
(Q

E
M
U
)

D
B
T

an
d
R
el
ax

ed
C
on

si
st
en

cy
M
o
d
el
s

F
u
ll
sy
st
em

a
n
a
ly
si
s

(i
n
cl
.
k
er
n
el
/
d
ri
v
er
s)

In
-v
iv
o
a
n
a
ly
si
s

N
o
en
v
.
m
o
d
el
s
n
ee
d
ed

C
on

si
st
en

cy
tr
ad

e-
off

s

B
IN

S
E
C
/
S
E

[4
4
]

B
in
a
ry
-B

as
ed

B
in
ar
y

(M
u
lt
i-
A
rc
h
)

D
S
E

M
o
d
u
la
r,

C
o
n
fi
gu

ra
b
le

D
ri
ll
er

[4
9
]

H
y
b
ri
d

B
in
a
ry
-B

as
ed

B
in
ar
y

F
u
zz
in
g
(A

F
L
)
+

S
el
ec
ti
ve

C
on

co
li
c

E
x
ec
u
ti
on

(a
n
g
r
)

C
om

b
in
es

fu
zz
in
g
b
re
ad

th
+

S
E

d
ep

th
F
in
d
s
d
ee
p
b
u
gs

18

F
ig
u
re

2
:
C
om

p
ar
at
iv
e
O
ve
rv
ie
w

of
S
y
m
b
ol
ic

E
x
ec
u
ti
on

T
o
ol
s,

P
a
rt

2
of

2

T
o
o
l
N
a
m
e

R
e
fe
re

n
c
e

P
ri
m
a
ry

U
se

C
a
se
(s
)

C
o
n
st
ra

in
t
S
o
lv
e
r(
s)

L
im

it
a
ti
o
n
(s
)

T
ra

d
e
-o
ff
s

K
L
E
E

[2
9
]

S
o
ft
w
ar
e
T
es
ti
n
g

B
u
g
D
et
ec
ti
on

S
ou

rc
e/
B
it
co
d
e
av
ai
la
b
le

S
T
P
,
Z
3,

et
c.

R
eq
u
ir
es

so
u
rc
e/
b
it
co
d
e

P
at
h
ex
p
lo
si
on

S
y
m
C
C

[3
0
]

E
ffi
ci
en
t
te
st

ge
n
.

In
te
gr
at
io
n
in
to

b
u
il
d
p
ro
ce
ss

Z
3
(d
ef
au

lt
),
ot
h
er
s

R
eq
u
ir
es

so
u
rc
e/
b
it
co
d
e

N
ew

er
to
o
l/
ec
os
y
st
em

a
n
g
r
[3
7
]

B
in
ar
y
A
n
al
y
si
s,

V
R
,

M
a
lw
ar
e
A
n
al
y
si
s,

R
E
,
C
T
F
s

Z
3
(d
ef
au

lt
),
C
la
ri
p
y

C
a
n
b
e
sl
ow

d
u
e
to

P
a
th

ex
p
lo
si
o
n

E
n
v
.
m
o
d
el
in
g
co
m
p
le
x
it
y

T
ri
to
n
[3
5
]

O
b
fu
sc
at
ed

/M
al
w
ar
e
an

al
y
si
s

R
E
,
D
y
n
am

ic
an

al
y
si
s

Z
3
(v
ia

S
M
T
2-
L
IB

)
R
el
ie
s
o
n
In
te
l
P
in

(m
o
st
ly

x
86

)
In
p
u
t
d
et
er
m
in
is
m

as
su
m
p
ti
o
n

S
2
E

[3
1
]

F
ir
m
w
ar
e
an

al
y
si
s

D
ri
ve
r
te
st
in
g/

R
E

O
S
-l
ev
el

P
er
f.

an
al
y
si
s

K
L
E
E

so
lv
er
s
(S
T
P
,
Z
3)

C
o
m
p
le
x
se
tu
p

P
er
fo
rm

an
ce

ov
er
h
ea
d

S
ta
te

ex
p
lo
si
o
n

B
IN

S
E
C
/
S
E

[4
4
]

M
a
lw
ar
e
ex
p
lo
ra
ti
on

R
ev
er
se

E
n
gi
n
ee
ri
n
g

(Z
3,

C
V
C
4,

B
o
ol
ec
to
r)

R
el
ie
s
on

P
IN

tr
a
ce
s

D
ri
ll
er

[4
9
]

V
u
ln
er
ab

il
it
y
R
es
ea
rc
h

(d
ee
p
b
u
gs
)

a
n
g
r
so
lv
er
s
(Z

3)
C
o
m
p
le
x
it
y
o
f
co
or
d
in
a
ti
n
g
fu
zz
er
/S

E
R
el
ie
s
o
n
u
n
d
er
ly
in
g
to
o
ls

19

approaches, from source-based test generation (KLEE, SymCC) to binary-
focused analysis (angr, Triton, S2E, Driller). Their differing methodologies,
integrations with constraint solvers, and architectures highlight the flexibil-
ity and adaptability of symbolic execution to various analysis challenges.
Subsequent sections will reference these tools as examples when discussing
how symbolic execution addresses specific problems in areas like vulnerabil-
ity research, firmware analysis, and obfuscated code analysis.

4 Applications and Guidance Strategies in Sym-
bolic Execution

This section surveys the practical application of symbolic execution across
several challenging application domains. The tools presented in Section 3
have diverse design and goals. As a result, they are better suited towards
specific tasks. For instance, source-based tools like KLEE are ideal in a
development environment, but ill-suited for analyzing malware, which is
typically obfuscated and source code is not available.

A unifying theme emerges from the surveyed literature: the practical
success of symbolic execution hinges on the ability to intelligently its in-
herent complexity. Pure, unguided exploration is often intractable for any
non-trivial program, a fact established in Section 2.1. Consequently, the
practical applications detailed in this section are the result of applying vari-
ous strategies to make the analysis possible. These strategies can be broadly
categorized into:

• Scope Reduction, which limits the analysis to smaller manageable units
of code.

• Guidance Heuristics, which intelligently steer the search to prioritize
more promise execution paths.

Recently, it has become common to utilize hybrid analysis to implement the
strategies above. Hybrid analysis combines symbolic execution with some
another analysis technique (often fuzzing) to complement their strengths.
This hybrid architecture is not a separate category of complexity manage-
ment, but rather a powerful pattern for achieving scope reduction, by apply-
ing symbolic execution on targeted pieces of code, or implementing guidance
heuristics.

Out of the categories outlines above, guidance heuristics represent a
diverse and powerful set of techniques. Table 1 presents a taxonomy of

20

common guidance strategies that will serve as an analytical framework for
the remainder of this section.

Guidance
Strategy

Guiding Principle Example Paper(s) Target Domain

Bug-Driven /
Vulnerability-
Oriented

Prioritize paths that
are statistically or
structurally more
likely to contain
known bug patterns
(e.g., near sanitizer
alerts or type-unsafe
operations).

Saviour,
UAFDetect, Vital

General
Vulnerability
Research

Specification-Guided Explore paths to
check for
conformance with,
or violations of, a
formal protocol
specification (e.g.,
an RFC).

Wen et al., Asadian
et al.

Protocol
Conformance
Testing

Model-Guided Learn a state
machine or model of
the system’s
behavior first, then
use that model to
guide exploration
towards interesting
or uncovered states.

MACE, PISE Protocol Inference &
Analysis

Goal-Directed Focus exploration
exclusively on
finding a path to a
specific target state
or program location,
pruning all other
paths.

Jetset Firmware
Re-hosting,
Targeted Analysis

Invalidity-Guided Learn correct
system behavior by
analyzing and
reasoning about
inputs that cause
the system to enter
an invalid state (e.g.,
a crash or stall).

uEmu Firmware Peripheral
Modeling

Table 1: Guidance Strategies in Software Analysis

4.1 Program Verification

A key goal in software development is verifying correctness. For simple
systems, this is straightforward, however, as software complexity increases,
so does the task of validating correctness across all possible inputs. Sym-
bolic execution enables formal verification by exhaustively exploring pro-

21

gram paths and checking properties like safety, liveness, or adherence to
protocols. The works surveyed here provide examples in all three broad
categories outlined Table 1.

As noted earlier scope reduction is one strategy to enable scalable sym-
bolic execution. For example under-constrained symbolic execution [52]
which analyzes individual functions in isolation. Ramos and Engler [53]
apply this technique in UC-KLEE, a framework that bypasses the costly
analysis from a program’s main function to test individual functions in isola-
tion. Hybrid analysis is another powerful option which combine the analysis
prowess of symbolic execution with a faster technique. Map2Check [54], for
example, adopts this approach by integrating fuzzing to quickly find shal-
low bugs with symbolic execution used for deeper path exploration. Finally,
many approaches rely on guidance heuristics. In the specialized domain of
hardware verification, SEIF provides a clear example of a model-guided so-
lution. It addresses information flow in RTL Verilog designs by building a
static signal connectivity graph, which then acts as a guide for the symbolic
execution engine [55]. SEIF prunes paths that are logically or architecturally
impossible.

These approaches, while powerful, highlight persistent challenges. Tech-
niques like under-constrained symbolic execution can suffer from false posi-
tives due to missing context or unresolved external calls, while hybrid meth-
ods still struggle with complex data structure modeling. Domain-specific
approaches like SEIF are effective but may require bounding analysis depth,
potentially missing subtle bugs. Future work in this area will likely focus
on automatically inferring function preconditions and invariants to reduce
false positives and more tightly integrating diverse analysis techniques to
improve both speed and precision.

4.2 Vulnerability Research

Vulnerability research is a critical area of study that interests security prac-
titioners, white hat hackers, and developers alike. Identifying vulnerabilities
in large, complex software systems is challenging due to code size, execution
complexity, and diverse behaviors. Additionally, it can be difficult to verify
that a vulnerability identified in an isolated function is truly reachable from
an external entry point.

The strength of symbolic execution lies in its ability to reason about
a program’s internal behavior and automatically generate concrete inputs
that trigger specific bugs. This greatly simplifies the task of creating proof-
of-concept exploits, streamlining the verification and reproduction of vul-

22

nerabilities. However, given the vast search space of modern software, a
dominant theme in this area is the use of bug-driven guidance to better ex-
plore the program. This strategy focuses the symbolic execution engine on
paths that are more likely to contain bugs.

This section surveys various approaches that tailor this bug-driven strat-
egy to specific bug classes, discussing their strengths and weaknesses.

Memory Corruption Vulnerabilities: Memory corruption vulnerabili-
ties represent the majority of vulnerabilities discovered in software. Despite
the software community’s comprehensive understanding of various memory
corruption vulnerability classes (e.g., buffer overflows, use-after-free (UAF)
vulnerabilities), these flaws remain challenging to detect reliably. Their trig-
gers often depend on intricate program states and specific input sequences,
making them challenging to detect. Symbolic execution provides an ap-
proach to reliably detect these code violations.

Many tools focusing on bug finding leverage a hybrid analysis archi-
tecture while implementing a bug-driven guidance heuristic. SAVIOR [26]
represents such an example. It uses UbSan [56] to label suspicious code
regions, guiding the fuzzer toward potentially vulnerable paths, and then
uses selective symbolic execution to validate errors and generate concrete
test cases. UAFDetect [57] uses a bug-driven guidance heuristic approach
to constrain symbolic execution and operates in two phases. First, it stat-
ically identifies potential UAF code regions. Second, it employs symbolic
execution to perform dynamic typestate analysis [58] to track the lifecycle of
pointers (e.g., Init, Allocated, Deallocated). UAFDetect prunes paths that
are unlikely to cause UAF violations. Vital [59] also utilized a bug-driven
approach guiding symbolic execution towards paths containing a high num-
ber type-unsafe pointers. The key insight here is that paths with a greater
number of type-unsafe pointers are more likely to contain vulnerabilities.
VITAL uses Monte Carlo Tree Search (MCTS) to proactively guide KLEE
toward vulnerability-rich paths, prioritizing paths in the symbolic execution
tree that contain larger numbers of unsafe pointers.

To tackle binary-only targets, researchers often turn to angr. UbSym [60]
employs scope reduction introducing a unit-based methodology that ad-
dresses scalability challenges differently from the source-code approaches.
Instead of applying symbolic execution to whole programs, UbSym breaks
programs into smaller units and performs symbolic analysis on individual
units that are statically identified as potentially containing vulnerabilities
based on defined memory corruption vulnerability specifications. When vul-

23

nerabilities are detected at the unit level, UbSym utilizes machine learning
techniques, specifically the TAR3 learning algorithm [61], a machine learning
heuristic for feature ranking, to predict which paths will trigger program-
level vulnerabilities.

Collectively, these studies demonstrate a clear trend: guided symbolic
execution is essential for efficiently targeting memory corruption vulnerabil-
ities. The strategies for guiding symbolic execution vary significantly based
on both the vulnerability class being targeted and the analysis scope. SAV-
IOR, UAFDetect, and Vital all utilize a two-pass system. First, features are
discovered through static analysis, then guiding symbolic execution along
paths deemed interesting. In contrast, UbSym focuses on structural proper-
ties, decomposing the program and using ML predictions based on unit-level
behavior. Furthermore, these approaches differ in scope and tooling. SAV-
IOR, UAFDetect, and Vital operate at the whole-program level and leverage
KLEE as their symbolic execution engine. This makes them more suited for
analysis when source code is available. UbSym’s use of angr and unit-level
decomposition showcases an approach for tackling binary-only targets and
managing scalability by analyzing smaller code chunks. These complemen-
tary approaches highlight the diversity of strategies available for addressing
the path explosion problem in symbolic execution while maintaining focus
on vulnerability detection.

Concurrency Vulnerabilities: Analyzing multi-threaded programs is a
challenge for even human programmers. In symbolic execution, a key chal-
lenge in analyzing multi-threaded programs is managing the dual nonde-
terminism of both symbolic inputs and thread scheduling, both of which
exacerbate the path explosion problem. Within concurrency analysis, re-
search has tackled both the correctness of thread interleaving and the raw
scalability of the analysis. Research in this space shift the challenge from
”which of these millions of paths is most interesting” to ”how do we manage
the explosion of thread interleavings and shared state?” The surveyed works
generally fall into one of two categories: Managing Interleaving Explosion
and Providing Foundational Support and Scalability.

To address interleaving explosions, Schemmel et al., [62] integrate sym-
bolic execution into a partial-order reduction [63] (POR). They developed
a KLEE-based prototype that constructs an unfolding of the program that
captures concurrent behaviors while merging equivalent execution prefixes.
To prune redundant paths, they employ cutoff events, detecting when a
state has already been reached via a shorter path, and restrict scheduling

24

decisions to synchronization primitives (mutex, condition variables), also
reporting data races as errors. While this technique has proved effective
at identifying previously unknown vulnerabilities in Memcached [64], it fo-
cuses on reducing interleaving explosion rather than providing comprehen-
sive threading models. As a result, it may still face scalability issues with
very large programs. To address the separate challenge of scalability, re-
searchers have explored distributing the symbolic workload itself. Bucur et
al., [27] parallelize symbolic execution across a commodity cluster using a
dynamic load-balancing scheme. The Cloud9 system, built on top of KLEE,
distributes states among multiple nodes and provides a comprehensive sym-
bolic model of the POSIX interface, including robust support for threads,
networking, and I/O.

To provide better foundational support for analyzing multi-threaded pro-
grams, two works provide prominent examples. Notable efforts from Vish-
nyakov et al.’s Symbolic DynamoRIO (Sydr) [65], which leverages the Triton
symbolic engine to analyze multi-threaded binaries. Sydr manages separate
symbolic states for each thread and handles context switches but, as the
authors note, it currently does not influence thread scheduling, a feature
planned for future work. Similarly, Niskov et al. [66] introduced enhance-
ments to the S2E platform. Their contributions include enabling S2E to
support multiple virtual cores and implementing a plugin that functions as
a data race checker for multi-threaded programs. This race checker’s design
is inspired by the DJIT+ algorithm [67], aiming to detect concurrency de-
fects within the symbolic execution framework. These developments signify
important strides in extending the capabilities of binary symbolic execution
to the complex domain of multi-threaded software analysis.

The primary limitations in this area remain performance and modeling
complexity. Even with techniques like POR, memory usage can become
prohibitive for long-running programs, and not all tools can yet influence
thread scheduling to explore specific interleaving. Future improvements will
likely focus on more advanced heuristics for path pruning and richer model-
ing of both synchronization primitives and external library calls to increase
precision and scalability.

Specialized Vulnerability Domains: The previous paragraphs covered
research in well-known application domains. However, symbolic execution
has applications in a wide variety of specialized areas. While we cannot
discuss all of the different domains, we highlight research we found most in-
teresting. Specifically, we examine how symbolic execution has been applied

25

to specialized domains, focusing on smart contracts and microarchitecural
side-channel attacks.

In the smart contract space, we highlight two prominent studies, both
taking a learning-based approach. He et al. [68] employ a hybrid approach
and introduce Imitation Learning Fuzzer (ILF) where a fuzzer learns to im-
itate the behavior of a symbolic execution ’expert’ 1, aiming to combine
the strengths of both techniques. The core idea is for the fuzzer to learn
an effective fuzzing policy for generating input sequences by observing a
symbolic execution ’expert’. Because symbolic execution of entire smart
contracts is expensive even for small contracts, the expert symbolically exe-
cutes a individual transactions and concretizes inputs to optimize coverage.
The symbolic execution engine generates inputs leading to maximum cov-
erage or indicates when no input would improve coverage. This enables the
fuzzer to achieve better coverage than existing smart contract fuzzers. ILF’s
primary goal is to detect vulnerabilities in Ethereum [69] smart contracts 2

using specific detectors for each vulnerability class. MythrilQL [70] is an
example of bug-driven guidance. It leverages Q-learning as a mechanism
to guide the symbolic execution engine’s path selection towards vulnerable
paths. Additionally, they implement an incentive based path pruning strat-
egy to eliminate redundant or useless paths. Finally, for constraint solving
efficiency, they predict solution time to determine whether a constraints
should be passed to the solver.

Another compelling research direction utilizes symbolic execution to
identify Spectre vulnerabilities [71]. These vulnerabilities differ from tra-
ditional memory safety bugs because they only manifest during speculative
execution. That is when processors execute instructions based on predic-
tions that may prove incorrect. Attacks against these vulnerabilities exploit
side effects resident by these executions even if the processor reverts its
state when predictions fail. The challenge for detection tools is modeling
both regular execution paths and speculative (transient) paths simultane-
ously while managing exponential explosion of possible execution traces.
This creates a unique state explosion problem, similar to the interleaving
explosion in concurrent programs. To tackle this, Daniel et al.’s [72] BIN-
SEC/HAUNTED utilize relational symbolic execution [73], [74] (RelSE) 3

to tackle the challenge of detecting Spectre vulnerabilities [71]. This al-

1ILF utilizes the VerX symbolic execution engine
2The specific vulnerabilities are Locking, Leaking, Suicidal, Block Dependency, Un-

handled Exception, and Controlled Delegatecall
3Relational symbolic execution is a technique that analyzes pairs of execution traces

simultaneously.

26

lows them to analyze both regular and transient execution paths in a single
run, enabling efficient reasoning about side-channel leaks caused by specula-
tive misprediction. Haunted RelSE represents transient executions alongside
regular executions without explicitly exploring all speculative paths.

While these specialized approaches show great promise, their focus is
also their limitation. Learning-based tools like ILF may struggle with smart
contracts that have unique logic that is not present in the training data.
Similarly, while BINSEC/HAUNTED scales better than explicit speculative
exploration, it remains infeasible for very large binaries and is currently
limited to detecting specific Spectre variants (PHTand STL). Future work
could refine these specialized heuristics and extend them to cover a broader
range of behaviors of attack classes.

4.3 Obfuscated and Malicious Code Analysis

Obfuscation is often used to hinder reverse engineering and make static
analysis difficult by transforming code logic into more complex or mislead-
ing forms. Common techniques include control-flow flattening, encryption
of constants, and self-modifying code, all of which complicate attempts to
reason about program behavior. Malware authors routinely exploit such
obfuscation to evade detection, creating an ongoing arms race where secu-
rity researchers strive to uncover malicious intent and shared code patterns
across evolving malware variants.

Symbolic execution offers a powerful countermeasure by systematically
exploring paths within obfuscated binaries and reasoning about hidden logic.
That is, symbolic execution can reveal malicious routines, identify hidden
command structures, and generate meaningful inputs to drive deeper anal-
ysis. However, symbolic execution still faces significant hurdles in practice:
large search spaces, runtime-based anti-analysis, and environment-specific
dependencies can all limit its effectiveness. To overcome these hurdles, re-
searchers have employed a variety of strategies, including goal-directed guid-
ance to focus on malicious behaviors, scope reduction to make large-scale
analysis feasible, hybrid analysis to combine complementary techniques, and
specialized methods like invalidity-guided analysis to defeat specific obfus-
cation schemes.

Several approaches use symbolic execution to extract semantic features
for malware classification and analysis. For instance, SEMA [75] utilize a
goal-directed guidance strategy to build System Call Dependency Graphs
(SCDGs) that serve as behavioral signatures. The goal is not necessarily a
specific line of code, but rather to generate a behavioral signature. To al-

27

leviate path explosion, they implement a custom breadth-first search strat-
egy [76] that prioritizes interesting paths for exploration. SEMA extends
angr with specialized strategies to create representative signatures based on
SCDGs to feed machine learning models for classification. Vouvoutsis et
al. [77] take a different approach, applying scope reduction at the dataset
level. They developed a detection pipeline that balances accuracy and auto-
mated detection of evasive malware. Their pipeline clusters malware using
TLSH, performs symbolic execution on representatives from each cluster
using angr to gather API call features, applies unification to the extract
API features, and finally feeds these features to machine learning classi-
fiers. Beyond classification, Botacin et al. [78] introduce Malverse, which
uses a goal-directed approach to automatically identify execution paths hid-
den behind evasive conditions and automatically patch the binary. Malverse
uses a Bayesian model as the heuristic to steer symbolic execution toward
potentially malicious paths. Malverse uses symbolic execution to discover
function inputs and returns that trigger malicious behaviors, the malware
is then patched with values satisfying the conditions forcing the malware to
execute its malicious behavior.

Symbolic execution has also been employed to automatically deobfuscate
code. Salwan et al. [21] implement a unique hybrid approach that combines
symbolic execution with taint analysis to automatically deobfuscate virtual-
ized code. Their approach, built on Triton, uses taint analysis to isolate the
pertinent instructions related to the original program logic, and then uses
symbolic execution to reconstruct their behavior. Another common obfus-
cation technique is an opaque predicate. Bardin et al. [22] take an invalidity-
guided approach. The authors introduce a technique, Backward-Bounded
Dynamic Symbolic Execution (BB-DSE), to identify opaque predicates by
proving their branches are unreachable. BB-DSE works backward from a
suspicious region of code to determine if they can ever be satisfied allowing
the obfuscation artifacts to be eliminated.

These approaches reveal several methods in which symbolic execution
provides leverage against obfuscated and evasive malware. While powerful,
these applications highlight the persistent challenges of scalability and envi-
ronment modeling. Strategies to cope with these challenges include reduc-
ing the analysis scope via clustering (Vouvoutsis et al.), employing heuristics
and targeted analysis (SEMA, MalVerse, BB-DSE), and focusing on specific,
constrained problems (Salwan et al).

28

4.4 Emulation and Firmware Analysis

Embedded systems are becoming increasingly popular. Unfortunately, their
increased popularity and widespread use has not resulted in better software
hygiene when developing for embedded systems. Because these systems are
often constrained in both compute power and storage, developers want to
get the absolute most out of the hardware on these systems. As a result,
security is often overlooked for the sake of performance.

Firmware analysis presents unique challenges due to its dependence on
hardware for execution. Tools like QEMU4 and Unicorn 5 allow firmware
emulation, but replicating behavior of hardware peripherals often requires
detailed hardware specifications that are not always available. The concept
of firmware re-hosting was usually done in ad-hoc environments for smaller
projects. However, the rise of the use of embedded devices has brought
scrutiny to the field of firmware re-hosting. Fasano et al [79] described
the challenges in re-hosting embedded devices. In order to properly em-
ulate firmware, you often need a significant amount of information about
the hardware (e.g., memory maps, peripheral register behaviors) which is
not always readily available. Symbolic execution can bridge this gap by
learning peripheral responses dynamically, reducing the reliance on hard-
ware models. Research in the area of firmware emulation has diverged into
two main camps: high-fidelity analysis using hardware-in-the-loop (HIL),
and hardware-free analysis that infers peripheral behavior using strategies
like hybrid analysis and various forms of guidance.

HIL approaches offer the best fidelity. By incorporating physical hard-
ware, there is no need to speculate peripheral responses or firmware be-
havior. Avatar2 [80] stands out not as an analysis technique, but rather
a mature orchestration platform. It addresses the interoperability problem
between analysis tools by enabling coordination among emulators (QEMU,
PANDA), debuggers (GDB, OpenOCD), symbolic execution engines (angr),
and physical hardware. While angr was used in their original implementa-
tion, Avatar2’s modular design allows many different configurations. An-
other HIL technique is CO3 [81] which utilizes a hybrid approach. CO3
brings hybrid (concolic) execution to resource-constrained MCUs by offload-
ing the complex analysis to a powerful workstation while executing on the
real device.

In contrast, several systems use symbolic execution to enable firmware
analysis without physical hardware by modeling or inferring peripheral be-

4https://www.qemu.org/
5https://github.com/unicorn-engine/unicorn

29

https://www.qemu.org/
https://github.com/unicorn-engine/unicorn

havior. These approaches differ in their specific goals and methodologies.
Despite a lack of hardware, a hybrid approach is still feasible through em-
ulation. For instance, Fuzzware [82] takes a hybrid approach which uses
angr to learn precise Memory Mapped Input Output (MMIO) models that
guide fuzzing to more meaningful inputs. Specifically, Fuzzware uses angr to
determine precise models of how the firmware reads from MMIO registers
allowing Fuzzware to build abstract models providing meaningful choices
to the fuzzer. For instance, if angr classifies a peripheral interaction as
constant, the fuzzer consistently produces the same value for that periph-
eral access. uEmu [83] takes a different approach. It uses invalidity-guided
symbolic execution with S2E to infer correct register responses by learning
from states that cause the firmware to crash or stall. The peripheral re-
sponses are stored in a knowledge base which can be used to subsequently
run the firmware in an emulator for fuzzing. For targeted re-hosting sce-
narios, Jetset [84],implemented using angr and QEMU, uses goal-directed
symbolic execution to find only the specific I/O constraints necessary to
boost a firmware image to a target address. These methods demonstrate a
trade-off between the high fidelity of HIL systems and the broader applica-
bility and scalability of peripheral inference techniques.

Firmware analysis is challenging due to how tightly coupled the behavior
is tied to specific hardware peripherals, which are often undocumented or
hard to accurately emulate. While Avatar2 and CO3 aim for high fidelity
by integrating hardware in their analysis, uEmu, Jetset, and Fuzzware take
a different approach by utilizing symbolic execution to infer peripheral be-
havior. Still, the approaches to infer peripheral behavior differ significantly.
uEmu uses invalidity guidance to infer correct register responses. Jetset uses
goal-directed symbolic execution to find constraints just sufficient to reach
a target state for rehosting. Finally, Fuzzware uses symbolic execution to
learn precise, compact models of MMIO behavior to optimize fuzzing. Each
approach has its own tradeoffs and goals. However, the key insight across
all peripheral modeling approaches is that emulating sufficient peripheral
behavior to enable firmware execution and testing does not require perfect
accuracy.

4.5 Protocol Inference and State Analysis

Effective communication requires protocols that establish an agreement be-
tween the communicating parties on how communication is to proceed [85].
While formal methods can verify protocol designs using tools such as CPSA [86],
ensuring that a software implementation correctly adheres to its specifica-

30

tion is a distinct and critical challenge. Deviations from specifications can
introduce vulnerabilities, potentially subverting the protocol’s intended se-
curity guarantees. For example, implementation vulnerabilities such as the
Heartbleed vulnerability [87], [88], the POODLE attack [89], and a recent
OpenSSL Vulnerability [90] arise from deviations or errors in protocol im-
plementations. This challenge is heightened when analyzing proprietary or
malicious protocols (e.g., malware command and Control), where the spec-
ification is unknown and must be reverse engineered.

Symbolic execution is a powerful technique for this domain, but the state-
ful nature of protocol can quickly lead to path explosion. To manage this
complexity, researchers primarily employ two powerful guidance strategies:
model-guided analysis, where a state machine is learned from the implemen-
tation, and specification-guided analysis, which uses a formal specification,
such as an RFC, to direct the search for bugs.

A dominant strategy is model-guided symbolic execution, where a state
machine is first learned from the implementation and then used to steer anal-
ysis. L* [91] is the primary algorithm used to infer a protocol. MACE [92],
PISE [93], and Wen et al. [94] employ this strategy. MACE iteratively
infers a finite-state protocol model from the application’s input/output be-
havior, which is then used to guide concolic execution using DART [95].
PISE uses symbolic execution with angr to guide message exchanges and
pair it with an extended L* automata-learning algorithm. By instrument-
ing send/receive functions and systematically constraining message bytes,
PISE discovers valid protocol states and message formats through incremen-
tal collision resolution and alphabet refinement. While we have primarily
used our taxonomy to label research into one of the guidance strategies, we
note that some systems may employ a blend of these strategies. Wen et
al. combine both approaches: they start with an RFC-defined message for-
mat (spec guidance) to build an initial model, then use L* to infer a state
machine (model-guided). With this, they are able to utilize L* to gener-
ate a finite-state machine which guides the symbolic execution engine, S2E,
to less traversed paths. Asadian et al. [96] follow a purely specification-
driven approach. First, they translate the protocol’s RFC message and
state rules into logical assertions for KLEE. Then KLEE explores those as-
sertions to uncover implementation paths that conflict with the spec. To
demonstrate the effectiveness of their approach, the authors applied it to
the Datagram Trannsport Layer Security (DTLS) protocol and successfully
reproduced CVE-2014-0195. The primary drawback is manually extracting
and formalizing an RFC’s details is labor-intensive and potentially error-
prone. Another interesting approach is from Sun et al. [97] who introduce

31

Spenny, which uses a ”field coverage” metric to guide the analysis of pro-
prietary Industrial Control System (ICS) protocols from firmware binaries.
A fundamental challenge in this domain is handling cryptography; Vanhoef
and Piessens [98] tackle this by simulating cryptographic primitives under
the Dolev-Yao model [99], enabling analysis of security protocol implemen-
tations without getting stalled by complex SMT constraints.

As we observed in Section 4.2, guiding symbolic execution is crucial es-
pecially when dealing with stateful protocols. The guidance provided varies
from inferred models, specifications, or domain-specific heuristics. As with
all other challenges, path/state explosion remains a concern even with guid-
ance. Furthermore, handling complex environment interaction (network re-
sponses, timing) complicates analysis.

5 Challenges and Future Directions

While symbolic execution has matured into a practical analysis technique,
its full potential is constrained by foundational challenges that continue to
drive research. As discussed in Section 2.1, issues such as path explosion,
the computational cost of constraint solving, and the complexities of envi-
ronment modeling remain significant hurdles. While much progress has been
made, future work will likely focus not only on refining existing solutions
but also on pioneering new approaches that integrate symbolic execution
more deeply into the software life-cycle and apply it to increasingly sophis-
ticated problem domains. This section outlines several promising research
directions, moving from core technique enhancements to domain-specific ap-
plications.

5.1 Adapting Symbolic Execution to Real-Time Operating
Systems

Throughout this survey, we have presented the plethora of applications in
which symbolic execution has been used. The application of symbolic exe-
cution in analyzing real-time operating systems (RTOS) remains underrep-
resented. RTOSes are widely deployed in safety and mission-critical appli-
cations including automotive, aerospace, and medical industry. Given their
key role in critical systems, ensuring their implementation are correct and
secure is essential. RTOSes pose unique analysis challenges. because timing
guarantees are fundamental to their correct operation Modeling this in a
symbolic execution environment requires explicitly representing time with
symbolic variables. This would enable the engine to reason about deadlines

32

and worst-case execution times (WCET). The challenge lies in determining
which timing-related constraints should be modeled while balancing preci-
sion with practicality.

Furthermore, RTOSes typically leverage multitasking with priority-based
scheduling, preemptions, and interrupts, all of which significantly hinder
path exploration. As with the analysis of multi-threaded systems, symbolic
execution must consider various ways tasks can interleave under preemption
and time constraints. As a result, the path explosion problem is amplified.
Partial-order reduction has proved effective at managing thread interleav-
ings, however, it would like need to be adapted to fit this specific execution
environment.

5.2 Automated Characterization of Evasive Triggers in Mal-
ware

Symbolic execution is often applied to extract features for classification, de-
scribed in Section 4.3. However, a significant opportunity exists to move
beyond classification and toward characterization, that is, understanding
precisely how a malware specimen avoid detection. Symbolic execution could
be used to automate this characterization to pinpoint the exact environmen-
tal conditions a malware sample checks. Instead of just bypassing a check,
the research would focus on using the path constraints generated by the
symbolic execution to produce a human-readable ”trigger signature.” For
example, the analysis would not just find an input to bypass an anti-VM
check; it would produce the very predicate the malware is solving for: (re-
sult of cpuid vendor string == ”VMWareVMWare”). This research would
address several open questions:

• Can symbolic constraints generated from analyzing anti-analysis code
be automatically simplified into concise, semantic predicates repre-
senting the evasion check?

• How can this technique scale to handle complex, multi-stage checks
or environmental interactions (e.g., checking for specific registry keys,
file paths, or running processes)?

• Could the resulting database of trigger signatures be used to auto-
matically classify evasion techniques across different malware families,
providing a deeper understanding of the attacker’s toolkit?

33

5.3 Analyzing Type-Safe Languages

The increasing adoption of type-safe languages like Rust and Go is shifting
the focus of vulnerability research from detecting memory corruption bugs
to identifying logic errors and concurrency issues. This shift necessitates an
evolution in how symbolic execution is applied. While significant research
by Schemmel et al. [62] and others has advanced the analysis of traditional
thread-based concurrency in C programs, the structured concurrency models
of modern languages like Rust and Go present new and distinct challenges.
This future work would build upon foundational concepts like partial-order
reduction but would require re-imagining them for these new paradigms.

For a language like Rust, a primary research thrust is the formal verifica-
tion of unsafe blocks. Symbolic execution is an ideal tool to formally analyze
these small, critical sections of code where the language’s safety guarantees
are manually suspended. Furthermore, with memory safety largely guaran-
teed in safe code, symbolic execution can focus on program correctness. This
leads to questions such as: can symbolic execution find inputs that trigger
denial-of-service conditions by causing a panic? Or can it verify higher-level
semantic properties, such as ”this function should never return an error if
the input is positive”? While Rust’s ownership model prevents data races
at compile time, it does not prevent all concurrency bugs, such as dead-
locks or logical race conditions. Symbolic execution could explore thread
inter-leavings with Rust’s concurrency primitives to find these higher-level
bugs.

Similarly, a language like Go introduces its own unique modeling chal-
lenges, particularly concerning its garbage collector. Since the symbolic
state of memory can be altered at any point by the garbage collector, this
raises a critical research question: how can the effects of a garbage collector
be soundly modeled within a symbolic execution engine without sacrificing
performance, or can its effects be safely abstracted away?

5.4 LLM-Assisted Symbolic Execution

The rise of large language models (LLMs) presents an opportunity to blend
these two technologies. While research in LLMs is still in its infancy, sev-
eral promising directions have begun to emerge [100]–[103]. LLMs could
be applied to address the primary challenges in symbolic execution: path
explosion, constraint solving, and environment modeling.

• Path Explosion: To manage potentially infinite state spaces, LLMs
can assist in both the selection of paths and pruning of states. A

34

hybrid system using an LLM can analyze a codebase to identify critical
sections and guide symbolic execution towards those paths, avoiding
those that are less relevant. This approach helps prioritize paths based
on the user’s goal and prune paths that do not align with those goals.

• Constraint Solving: LLMs can also be used to lessen the high compu-
tational cost of the constraint solving process. There are a few ways in
which LLMs can be applied here. First, as a means of supporting new
languages that are difficult to model. For example, utilizing an LLM
to support the list data type in Python [100]. Alternatively, LLMs
might be used as either a constraint solver for simpler queries, reliev-
ing the more expensive solver of that work, or as a means to simplify
constraints before passing them onto a more robust solver.

• Environment Modeling: LLMs can provide great utility in environment
modeling. Instead of requiring developers to manually write models for
complex system calls or library functions, an LLM can be used to infer
and predict the behavior of these external interactions [103]. In this
scenario, the LLM can act as the environment with which the symbolic
execution engine interacts, improving the fidelity of the analysis.

A primary concern regarding using LLMs in symbolic execution is managing
the probabilistic nature of LLMs. In addition, working with LLMs could
require more fine-tuned models specifically designed for the domain to ensure
maximum fidelity and accuracy.

In addition to these directions, new application domains continue to
emerge. The rise of IoT devices, automotive software, and even quantum
computing platforms expands the frontier for symbolic execution, creating
a need for multi-architecture, domain-specific solutions. While these chal-
lenges may not have immediate solutions, ongoing research seeks to adapt
symbolic execution frameworks and constraint solvers to handle unconven-
tional architectures and computation models.

Overall, the future of symbolic execution lies in making the technique
more scalable, more versatile, and more accessible. This could be in the
form of utilizing guidance strategies more effectively more robust environ-
ment modeling. By building on established suggestions from the literature
and drawing on insights from research efforts in program analysis, auto-
mated reasoning, and domain-specific tool development, the community can
continue to refine symbolic execution as a critical tool for understanding and
securing complex software systems.

35

6 Conclusion

Symbolic execution continues to be a critical tool in various application do-
mains. Our survey demonstrates that despite foundational issues such as
path explosion, complex constraint solving, and accurate environment mod-
eling (Section 2.1), researchers have employed sophisticated guidance strate-
gies and heuristics to mitigate these issues and broaden the applicability of
symbolic execution.

Combining fuzzing with symbolic execution has shown promise in ad-
dressing the weaknesses of both techniques. Fuzzing often can ”stall” and
fail to discover new and interesting code paths. Hybrid approaches, ex-
emplified in tools like Driller [49] and guided techniques like SAVIOR [26],
capitalize on fuzzing’s speed for broad exploration while using symbolic ex-
ecution’s analytical power to bypass complex checks. Future work could
focus on enabling richer feedback between the fuzzer and symbolic engine.
This might involve leveraging detailed constraint metrics or incorporating
lightweight static analyses to more intelligently guide the exploration pro-
cess.

In vulnerability research, guided symbolic execution has proven effective
for memory corruption issues. Researchers have utilized heuristics based on
runtime events [26], [57], static properties [59], or structural decomposition
[60]. A natural progression is to extend these guided techniques to detect
other classes of bugs such as type confusion and logic errors at both the
binary and source levels.

The challenges posed by analyzing malware and obfuscated code continue
to be of great interest. We’ve seen symbolic execution be used as another
method to extract features for malware classification. Future directions in
this area include developing techniques to systematically explore malware
binaries and identify hidden checks the malware performs before triggering
the malware. This could be taken further to use constraint solving to identify
the exact check the malware performs (e.g., ”Is the result of CPUID vendor
string ’VMWare?’”). This would provide an automated identification and
characterization of these evasion triggers directly from the binary code which
could be used to classify different evasion techniques based on the patterns
observed in their symbolic constraints.

In firmware and protocol analysis, the need to balance fidelity with scal-
ability remains a challenge. Symbolic execution has been utilized to in
hardware-software co-execution frameworks [80], [81], for inferring periph-
eral behavior to enabled emulation or guided fuzzing [82]–[84], [104], and
for protocol inference or conformance testing using learned models or spec-

36

ifications [92]–[94], [96], [97]. Future work could focus on improving the
fidelity/scalability or achieving more complete automated inference of com-
plex or encrypted protocols.

Overall, the future of symbolic execution likely lies in its intelligent in-
tegration with other techniques, fuzzing, static analysis, machine learning,
and its specialization for challenging domains like firmware, protocols, and
concurrent systems. These advances are essential as software systems grow
ever more complex, ensuring that both vulnerabilities are detected early and
that our defenses remain robust in the face of evolving threats.

References

[1] J. King, “Symbolic execution and program testing,” in Communica-
tions of the ACM Volume 19 Number 7, 1976, pp. 385–394.

[2] W. Howden, “Symbolic testing and the dissect symbolic evaluation
system,” IEEE Transactions on Software Engineering, vol. SE-3, no. 4,
pp. 266–278, 1977. doi: 10.1109/TSE.1977.231144.

[3] R. S. Boyer, B. Elspas, and K. N. Levitt, “Select—a formal system
for testing and debugging programs by symbolic execution,” ACM
SigPlan Notices, vol. 10, no. 6, pp. 234–245, 1975.

[4] J. King, “A new approach to program testing,” in Communications
of the ACM Volume 19 Number 7, 1975, pp. 228–233.

[5] L. D. Moura and N. Bjorner, “Z3: An efficient smt solver,” in Pro-
ceedings of the Theory and Practice of Software, ACM, 2008, pp. 337–
340. doi: 10.1145/2345156.2254088.

[6] C. Barrett, C. L. Conway, M. Deters, et al., “Cvc4,” in Computer
Aided Verification: 23rd International Conference, CAV 2011, Snow-
bird, UT, USA, July 14-20, 2011. Proceedings 23, Springer, 2011,
pp. 171–177.

[7] A. Sabbaghi and M. R. Keyvanpour, “A systematic review of search
strategies in dynamic symbolic execution,” Computer Standards &
Interfaces, vol. 72, p. 103 444, 2020.

[8] P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineer-
ing Body of Knowledge, Version 3.0 (SWEBOK Guide V3.0). IEEE
Computer Society, 2014, isbn: 978-0769551661. [Online]. Available:
http://www.swebok.org.

37

https://doi.org/10.1109/TSE.1977.231144
https://doi.org/10.1145/2345156.2254088
http://www.swebok.org

[9] J. Jaffar, J. A. Navas, and A. E. Santosa, “Unbounded symbolic
execution for program verification,” in Runtime Verification: Sec-
ond International Conference, RV 2011, San Francisco, CA, USA,
September 27-30, 2011, Revised Selected Papers 2, Springer, 2012,
pp. 396–411.

[10] P. Godefroid and D. Luchaup, “Automatic partial loop summariza-
tion in dynamic test generation,” in Proceedings of the 2011 Interna-
tional Symposium on Software Testing and Analysis, 2011, pp. 23–
33.

[11] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” in Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI), ACM, 2012, pp. 193–204. doi: 10.1145/2345156.
2254088.

[12] L. De Moura and N. Bjørner, “Satisfiability modulo theories: An
appetizer,” in Formal Methods: Foundations and Applications, 12th
Brazilian Symposium on Formal Methods, SBMF 2009, Gramado,
Brazil, August 19-21, 2009, Revised Selected Papers, Springer, 2009,
pp. 23–36.

[13] V. Ganesh and D. Dill, “A decision procedure for bit-vectors and
arrays,” in Computer Aided Verification, 19th International Con-
ference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings,
vol. 4590, Jan. 2007, pp. 519–531, isbn: 978-3-540-73367-6. doi: 10.
1007/978-3-540-73368-3_52.

[14] E. Ábrahám and G. Kremer, “Smt solving for arithmetic theories:
Theory and tool support,” in 2017 19th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
IEEE, 2017, pp. 1–8.

[15] “Ieee standard for binary floating-point arithmetic,” ANSI/IEEE Std
754-1985, pp. 1–20, 1985. doi: 10.1109/IEEESTD.1985.82928.

[16] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM computing surveys (CSUR), vol. 23,
no. 1, pp. 5–48, 1991.

[17] D. Liew, D. Schemmel, C. Cadar, A. F. Donaldson, R. Zahl, and
K. Wehrle, “Floating-point symbolic execution: A case study in n-
version programming,” in 2017 32nd IEEE/ACM International Con-

38

https://doi.org/10.1145/2345156.2254088
https://doi.org/10.1145/2345156.2254088
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1109/IEEESTD.1985.82928

ference on Automated Software Engineering (ASE), IEEE, 2017, pp. 601–
612.

[18] Z. Fu and Z. Su, “Achieving high coverage for floating-point code
via unconstrained programming,” ACM SIGPLAN Notices, vol. 52,
no. 6, pp. 306–319, 2017.

[19] G. Zhang, Z. Chen, and Z. Shuai, “Symbolic execution of floating-
point programs: How far are we?” In 2022 29th Asia-Pacific Software
Engineering Conference (APSEC), 2022, pp. 179–188. doi: 10.1109/
APSEC57359.2022.00030.

[20] A. Bakst, K. Gleissenthall, R. Kici, and R. Jhala, “Verifying dis-
tributed programs via canonical sequentialization,” in Proceedings
of the ACM on Programming Languages, Volume 1 Issue OOPSLA,
ACM, 2017, pp. 1–27. doi: 10.1145/3133934.

[21] J. Salwan, S. Bardin, and M.-L. Potet, “Symbolic deobfuscation:
From virtualized code back to the original,” in Detection of Intru-
sions and Malware, and Vulnerability Assessment, 2018.

[22] S. Bardin, R. David, and J.-Y. Marion, “Backward-bounded dse: Tar-
geting infeasibility questions on obfuscated codes,” in 2017 IEEE
Symposium on Security and Privacy (SP), 2017, pp. 633–651. doi:
10.1109/SP.2017.36.

[23] J. Burnim and K. Sen, “Heuristics for scalable dynamic test genera-
tion,” in Proceedings of the 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering, ACM, 2008, pp. 443–446.
doi: 10.1109/ASE.2008.69.

[24] J. Siddiqui and S. Khurshid, “Scaling symbolic execution using ranged
analysis,” in Proceedings of the ACE International Conference on
Object Oriented Programming Systems Languages and Applications,
ACM, 2012, pp. 523–536. doi: 10.1145/2384616.2384654.

[25] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–
90, 2013.

[26] Y. Chen, P. Li, J. Xu, et al., “Savior: Towards bug-driven hybrid
testing,” in 2020 IEEE Symposium on Security and Privacy (SP),
IEEE, 2020, pp. 1580–1596.

[27] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel symbolic
execution for automated real-world software testing,” in Proceedings
of the sixth conference on Computer systems, 2011, pp. 183–198.

39

https://doi.org/10.1109/APSEC57359.2022.00030
https://doi.org/10.1109/APSEC57359.2022.00030
https://doi.org/10.1145/3133934
https://doi.org/10.1109/SP.2017.36
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1145/2384616.2384654

[28] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International symposium on
code generation and optimization, 2004. CGO 2004., IEEE, 2004,
pp. 75–86.

[29] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” in Proceedings of the 8th USENIX Conference on Operat-
ing Systems Design and Implementation, ser. OSDI’08, San Diego,
California: USENIX Association, 2008, pp. 209–224.

[30] S. Poeplau and A. Francillon, “Symbolic execution with symcc: Don’t
interpret, compile!” In 29th Usenix Security Symposium, 2020, pp. 123–
156.

[31] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for
in-vivo multi-path analysis of software systems,” in Proceedings of
the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI,
Newport Beach, California, USA: Association for Computing Ma-
chinery, 2011, pp. 265–278, isbn: 9781450302661. doi: 10 . 1145 /
1950365.1950396. [Online]. Available: https://doi.org/10.1145/
1950365.1950396.

[32] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. 1. R.
Engler, “Exe: Automatically generating inputs of death,” in Proceed-
ings of the 13th ACM Conference on Computer and Communications
Security, ACM, 2006, pp. 322–335.

[33] S. Poeplau and A. Francillon, “Systematic comparison of symbolic
execution systems: Intermediate representation and its generation,”
in Annual Computer Security Applications Conference, Dec. 2019,
p. 14.

[34] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Pro-
ceedings of the USENIX Annual Technical Conference, FREENIX
Track, 2005, pp. 41–46.

[35] F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution
framework,” in In Symposium sur la securite des technologies d l’information
et des communications, SSTIC, France, Rennes, 2015, pp. 31–54.

40

https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1950365.1950396

[36] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, “Pin: A
binary instrumentation tool for computer architecture research and
education,” in Proceedings of the 2004 Workshop on Computer Ar-
chitecture Education: Held in Conjunction with the 31st Interna-
tional Symposium on Computer Architecture, ser. WCAE ’04, Mu-
nich, Germany: Association for Computing Machinery, 2004, 22–es,
isbn: 9781450347334. doi: 10.1145/1275571.1275600. [Online].
Available: https://doi.org/10.1145/1275571.1275600.

[37] Y. Shoshitaishvili, R. Wang, C. Salls, et al., “SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis,” in IEEE Sym-
posium on Security and Privacy, 2016.

[38] N. Nethercote and J. Seward, “Valgrind: A framework for heavy-
weight dynamic binary instrumentation,”ACM Sigplan notices, vol. 42,
no. 6, pp. 89–100, 2007.

[39] salls. “angrop: Angr ROP gadget finder.” GitHub repository, Ac-
cessed. (), [Online]. Available: https://github.com/salls/angrop
(visited on 07/20/2025).

[40] angr Project Developers. “patcherex.” GitHub repository, Accessed.
(), [Online]. Available: https://github.com/angr/patcherex (vis-
ited on 07/20/2025).

[41] angr Project Developers. “rex: The angr Exploit Generator.” GitHub
repository, Accessed. (), [Online]. Available: https://github.com/
angr/rex (visited on 07/20/2025).

[42] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in Proceedings of the 36th Inter-
national Conference on Software Engineering, ser. ICSE 2014, Hyder-
abad, India: Association for Computing Machinery, 2014, pp. 1083–
1094, isbn: 9781450327565. doi: 10.1145/2568225.2568293. [On-
line]. Available: https://doi.org/10.1145/2568225.2568293.

[43] G. Balakrishnan and T. Reps, “Wysinwyx: What you see is not what
you execute,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 32, no. 6, pp. 1–84, 2010.

[44] R. David, S. Bardin, T. D. Ta, et al., “Binsec/se: A dynamic symbolic
execution toolkit for binary-level analysis,” in 2016 IEEE 23rd In-
ternational Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), IEEE, vol. 1, 2016, pp. 653–656.

41

https://doi.org/10.1145/1275571.1275600
https://doi.org/10.1145/1275571.1275600
https://github.com/salls/angrop
https://github.com/angr/patcherex
https://github.com/angr/rex
https://github.com/angr/rex
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/2568225.2568293

[45] A. Djoudi and S. Bardin, “Binsec: Binary code analysis with low-level
regions,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Springer, 2015, pp. 212–217.

[46] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent,
“The bincoa framework for binary code analysis,” in Computer Aided
Verification: 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings 23, Springer, 2011, pp. 165–
170.

[47] S. Bardin and P. Herrmann, “Osmose: Automatic structural testing
of executables,” Software Testing, Verification and Reliability, vol. 21,
no. 1, pp. 29–54, 2011.

[48] UCI Machine Learning Repository. “Malware static and dynamic fea-
tures vxheaven and virus total dataset.” Accessed. (2019), [Online].
Available: https://archive.ics.uci.edu/dataset/541/malware+
static+and+dynamic+features+vxheaven+and+virus+total.

[49] N. Stephens, J. Grosen, C. Salls, et al., “Driller: Augmenting fuzzing
through selective symbolic execution,” English (US), in 23rd Annual
Network and Distributed System Security Symposium, NDSS 2016,
ser. 23rd Annual Network and Distributed System Security Sympo-
sium, NDSS 2016, Publisher Copyright: © 2016 Internet Society.;
23rd Annual Network and Distributed System Security Symposium,
NDSS 2016 ; Conference date: 21-02-2016 Through 24-02-2016, The
Internet Society, 2016. doi: 10.14722/ndss.2016.23368.

[50] M. Zalewski, American Fuzzy Lop, http://lcamtuf.coredump.cx/
afl/, Accessed: 2025-03-30.

[51] M. L. Laboratory, Cyber grand challenge datasets, https://www.
ll.mit.edu/r-d/datasets/cyber-grand-challenge-datasets,
Accessed: April 30, 2025.

[52] D. R. Engler and D. Dunbar, “Under-constrained execution: Mak-
ing automatic code destruction easy and scalable,” in Proceedings
of the 2007 IEEE Symposium on Security and Privacy, IEEE, 2007,
pp. 360–371.

[53] D. A. Ramos and D. Engler, “{Under-constrained} symbolic execu-
tion: Correctness checking for real code,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015, pp. 49–64.

42

https://archive.ics.uci.edu/dataset/541/malware+static+and+dynamic+features+vxheaven+and+virus+total
https://archive.ics.uci.edu/dataset/541/malware+static+and+dynamic+features+vxheaven+and+virus+total
https://doi.org/10.14722/ndss.2016.23368
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.ll.mit.edu/r-d/datasets/cyber-grand-challenge-datasets
https://www.ll.mit.edu/r-d/datasets/cyber-grand-challenge-datasets

[54] H. Rocha, R. Menezes, L. C. Cordeiro, and R. Barreto, “Map2check:
Using symbolic execution and fuzzing: (competition contribution),”
in Tools and Algorithms for the Construction and Analysis of Sys-
tems: 26th International Conference, TACAS 2020, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Proceedings, Part
II 26, Springer, 2020, pp. 403–407.

[55] K. Ryan and C. Sturton, “Sylvia: Countering the path explosion
problem in the symbolic execution of hardware designs,” in 2023
Formal Methods in Computer-Aided Design (FMCAD), IEEE, 2023,
pp. 110–121.

[56] Clang Documentation,UndefinedBehaviorSanitizer, https://clang.
llvm . org / docs / UndefinedBehaviorSanitizer . html, Accessed:
2025-03-21.

[57] Z. Huang, “Targeted symbolic execution for uaf vulnerabilities,” in
2023 7th International Conference on System Reliability and Safety
(ICSRS), IEEE, 2023, pp. 282–289.

[58] R. E. Strom and S. Yemini, “Typestate: A programming language
concept for enhancing software reliability,” IEEE transactions on
software engineering, no. 1, pp. 157–171, 1986.

[59] H. Tu, L. Jiang, and M. Böhme, “Vital: Vulnerability-oriented sym-
bolic execution via type-unsafe pointer-guided monte carlo tree search,”
arXiv preprint arXiv:2408.08772, 2024.

[60] S. Baradaran, M. Heidari, A. Kamali, and M. Mouzarani, “A unit-
based symbolic execution method for detecting memory corruption
vulnerabilities in executable codes,” International Journal of Infor-
mation Security, vol. 22, no. 5, pp. 1277–1290, 2023.

[61] T. Menzies and Y. Hu, “Data mining for very busy people,” Com-
puter, vol. 36, no. 11, pp. 22–29, 2003.

[62] D. Schemmel, J. Büning, C. Rodŕıguez, D. Laprell, and K. Wehrle,
“Symbolic partial-order execution for testing multi-threaded programs,”
in International Conference on Computer Aided Verification, Springer,
2020, pp. 376–400.

[63] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal dynamic
partial order reduction,” ACM SIGPLAN Notices, vol. 49, no. 1,
pp. 373–384, 2014.

43

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

[64] Memcached Development Team. “Memcached.” Accessed. (), [On-
line]. Available: https://www.memcached.org/ (visited on 07/19/2025).

[65] A. Vishnyakov, A. Fedotov, D. Kuts, et al., “Sydr: Cutting edge dy-
namic symbolic execution,” in 2020 Ivannikov ISPRAS Open Con-
ference (ISPRAS), IEEE, 2020, pp. 46–54.

[66] F. Niskov, E. Kutovoy, and S. Kurmangaleev, “Enhancing s2e to
analyze multi-thread programs,”

[67] E. Pozniansky and A. Schuster, “Efficient on-the-fly data race de-
tection in multithreaded c++ programs,” in Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of parallel
programming, 2003, pp. 179–190.

[68] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC conference on
computer and communications security, 2019, pp. 531–548.

[69] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014,
pp. 1–32, 2014.

[70] M. Wang, W. Fei, M. Wang, and J. Cui, “Reinforcement learning
guided symbolic execution for ethereum smart contracts,” in 2023
30th Asia-Pacific Software Engineering Conference (APSEC), IEEE,
2023, pp. 91–100.

[71] P. Kocher, J. Horn, A. Fogh, et al., “Spectre attacks: Exploiting
speculative execution,” Communications of the ACM, vol. 63, no. 7,
pp. 93–101, 2020.

[72] L.-A. Daniel, S. Bardin, and T. Rezk, “Hunting the haunter-efficient
relational symbolic execution for spectre with haunted relse,” inNDSS
2021-Network and Distributed Systems Security, 2021.

[73] H. Palikareva, T. Kuchta, and C. Cadar, “Shadow of a doubt: Testing
for divergences between software versions,” in Proceedings of the 38th
International Conference on Software Engineering, 2016, pp. 1181–
1192.

[74] G. P. Farina, S. Chong, and M. Gaboardi, “Relational symbolic exe-
cution,” in Proceedings of the 21st International Symposium on Prin-
ciples and Practice of Declarative Programming, 2019, pp. 1–14.

44

https://www.memcached.org/

[75] C.-H. Bertrand Van Ouytsel, C. Crochet, T. Dam, and A. Legay,
“Tool paper - sema: Symbolic execution toolchain for malware anal-
ysis,” in May 2023, pp. 62–68, isbn: 978-3-031-31107-9. doi: 10.
1007/978-3-031-31108-6_5.

[76] C.-H. B. V. Ouytsel and A. Legay, Malware analysis with symbolic
execution and graph kernel, 2022. arXiv: 2204.05632 [cs.CR]. [On-
line]. Available: https://arxiv.org/abs/2204.05632.

[77] V. Vouvoutsis, F. Casino, and C. Patsakis, “Beyond the sandbox:
Leveraging symbolic execution for evasive malware classification,”
Computers & Security, vol. 149, p. 104 193, 2025.

[78] M. Botacin and A. Grégio, “Malware multiverse: From automatic
logic bomb identification to automatic patching and tracing,” arXiv
preprint arXiv:2109.06127, 2021.

[79] A. Fasano, T. Ballo, M. Muench, et al., “Sok: Enabling security anal-
yses of embedded systems via rehosting,” in Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security,
ser. ASIA CCS ’21, Virtual Event, Hong Kong: Association for Com-
puting Machinery, 2021, pp. 687–701, isbn: 9781450382878. doi: 10.
1145/3433210.3453093. [Online]. Available: https://doi.org/10.
1145/3433210.3453093.

[80] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, “Avatar 2:
A multi-target orchestration platform,” in Proc. Workshop Binary
Anal. Res.(Colocated NDSS Symp.), vol. 18, 2018, pp. 1–11.

[81] C. Liu, A. Mera, E. Kirda, M. Xu, and L. Lu, “{Co3}: Concolic
co-execution for firmware,” in 33rd USENIX Security Symposium
(USENIX Security 24), 2024, pp. 5591–5608.

[82] T. Scharnowski, N. Bars, M. Schloegel, et al., “Fuzzware: Using pre-
cise MMIO modeling for effective firmware fuzzing,” in 31st USENIX
Security Symposium (USENIX Security 22), Boston, MA: USENIX
Association, Aug. 2022, pp. 1239–1256, isbn: 978-1-939133-31-1. [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity22/
presentation/scharnowski.

[83] W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic firmware
emulation through invalidity-guided knowledge inference,” in 30th
USENIX Security Symposium (USENIX Security 21), USENIX Asso-
ciation, Aug. 2021, pp. 2007–2024, isbn: 978-1-939133-24-3. [Online].

45

https://doi.org/10.1007/978-3-031-31108-6_5
https://doi.org/10.1007/978-3-031-31108-6_5
https://arxiv.org/abs/2204.05632
https://arxiv.org/abs/2204.05632
https://doi.org/10.1145/3433210.3453093
https://doi.org/10.1145/3433210.3453093
https://doi.org/10.1145/3433210.3453093
https://doi.org/10.1145/3433210.3453093
https://www.usenix.org/conference/usenixsecurity22/presentation/scharnowski
https://www.usenix.org/conference/usenixsecurity22/presentation/scharnowski

Available: https://www.usenix.org/conference/usenixsecurity21/
presentation/zhou.

[84] E. Johnson, M. Bland, Y. Zhu, et al., “Jetset: Targeted firmware re-
hosting for embedded systems,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 321–338.

[85] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th. Pear-
son Education, 2011.

[86] M. D. Liskov, J. D. Ramsdell, J. D. Guttman, and P. D. Rowe, The
cryptographic protocol shapes analyzer: A manual for CPSA 4, CPSA
Version 4.3, January 13, 2023, The MITRE Corporation, 2023. [On-
line]. Available: https://hackage.haskell.org/package/cpsa-
4.4.1/src/doc/cpsa4manual.pdf (visited on 06/21/2025).

[87] Cve-2014-0160 (heartbleed), Common Vulnerabilities and Exposures
(CVE), Accessed: 03/26/2025. [Online]. Available: %5Curl%7Bhttps:
//www.cve.org/CVERecord?id=CVE-2014-0160%7D.

[88] OpenSSL,Openssl security advisory [07 april 2014], Accessed: 03/26/2025,
2014. [Online]. Available: url%7Bhttps://openssl-library.org/
news/secadv/20140407.txt%7D.

[89] Cve-2014-3566 (poodle), Common Vulnerabilities and Exposures (CVE),
Accessed: 03/26/2025. [Online]. Available: %5Curl%7Bhttps://www.
cve.org/CVERecord?id=CVE-2014-3566%7D.

[90] O. Project, OpenSSL Security Advisory: CVE-2024-12797, https:
//openssl-library.org/news/secadv/20250211.txt, Accessed:
2025-03-26, Feb. 2025.

[91] D. Angluin, “Learning regular sets from queries and counterexam-
ples,” Information and computation, vol. 75, no. 2, pp. 87–106, 1987.

[92] C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X. Wu, and
D. Song, “{Mace}:{model-inference-assisted} concolic exploration for
protocol and vulnerability discovery,” in 20th USENIX Security Sym-
posium (USENIX Security 11), 2011.

[93] R. Marcovich, O. Grumberg, and G. Nakibly, “Pise: Protocol infer-
ence using symbolic execution and automata learning,” in BlackHat
USA, 2022.

[94] S. Wen, Q. Meng, C. Feng, and C. Tang, “A model-guided symbolic
execution approach for network protocol implementations and vul-
nerability detection,” PloS one, vol. 12, no. 11, e0188229, 2017.

46

https://www.usenix.org/conference/usenixsecurity21/presentation/zhou
https://www.usenix.org/conference/usenixsecurity21/presentation/zhou
https://hackage.haskell.org/package/cpsa-4.4.1/src/doc/cpsa4manual.pdf
https://hackage.haskell.org/package/cpsa-4.4.1/src/doc/cpsa4manual.pdf
%5Curl%7Bhttps://www.cve.org/CVERecord?id=CVE-2014-0160%7D
%5Curl%7Bhttps://www.cve.org/CVERecord?id=CVE-2014-0160%7D
url%7Bhttps://openssl-library.org/news/secadv/20140407.txt%7D
url%7Bhttps://openssl-library.org/news/secadv/20140407.txt%7D
%5Curl%7Bhttps://www.cve.org/CVERecord?id=CVE-2014-3566%7D
%5Curl%7Bhttps://www.cve.org/CVERecord?id=CVE-2014-3566%7D
https://openssl-library.org/news/secadv/20250211.txt
https://openssl-library.org/news/secadv/20250211.txt

[95] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the ACM SIGPLAN 2005 Confer-
ence on Programming Language Design and Implementation (PLDI),
ACM, 2005, pp. 213–223. doi: 10.1145/1065010.1065036.

[96] H. Asadian, P. Fiterău-Broştean, B. Jonsson, and K. Sagonas, “Ap-
plying symbolic execution to test implementations of a network pro-
tocol against its specification,” in 2022 IEEE Conference on Software
Testing, Verification and Validation (ICST), IEEE, 2022, pp. 70–81.

[97] Y. Sun, Z. Li, S. Lv, and L. Sun, “Spenny: Extensive ics protocol
reverse analysis via field guided symbolic execution,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 20, no. 6, pp. 4502–
4518, 2022.

[98] M. Vanhoef and F. Piessens, “Symbolic execution of security pro-
tocol implementations: Handling cryptographic primitives,” in 12th
USENIX Workshop on Offensive Technologies (WOOT 18), 2018.

[99] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, pp. 198–208, 1983.

[100] W. Wang, K. Liu, A. R. Chen, et al., “Python symbolic execution
with llm-powered code generation,” arXiv preprint arXiv:2409.09271,
2024.

[101] Y. Li, R. Meng, and G. J. Duck, “Large language model powered
symbolic execution,” arXiv preprint arXiv:2505.13452, 2025.

[102] J. Chen, Z. Shao, S. Yang, et al., “Numscout: Unveiling numerical
defects in smart contracts using llm-pruning symbolic execution,”
IEEE Transactions on Software Engineering, 2025.

[103] J. Chen, L. Deng, Y. Qiu, P. Zhao, J. SONG, X. WANG, et al.,
“Llm-based automated modeling in symbolic execution for securing
medical software,” Jingcheng and WANG, Xiaopei, Llm-Based Auto-
mated Modeling in Symbolic Execution for Securing Medical Software,
2024.

[104] D. Davidson, B. Moench, S. Jha, and T. Ristenpart, “Fie on firmware:
Finding vulnerabilities in embedded systems using symbolic execu-
tion,” in Proceedings of the 22nd USENIX Conference on Security,
ser. SEC’13, Washington, D.C.: USENIX Association, 2013, pp. 463–
478, isbn: 9781931971034.

47

https://doi.org/10.1145/1065010.1065036

	Introduction
	Symbolic Execution Fundamentals
	Common Challenges in Symbolic Execution
	Path Explosion
	Constraint Solving Difficulties
	Environmental Interaction Modeling
	Other Challenges

	Addressing Core Symbolic Execution Challenges
	Techniques for Managing Path Explosion and Scalability
	Parallelization
	Hybrid Approaches

	Symbolic Execution Tools Landscape
	Source-Based Analysis
	Binary-Based Analysis
	Hybrid Analysis
	Selecting the Right Tool

	Applications and Guidance Strategies in Symbolic Execution
	Program Verification
	Vulnerability Research
	Obfuscated and Malicious Code Analysis
	Emulation and Firmware Analysis
	Protocol Inference and State Analysis

	Challenges and Future Directions
	Adapting Symbolic Execution to Real-Time Operating Systems
	Automated Characterization of Evasive Triggers in Malware
	Analyzing Type-Safe Languages
	LLM-Assisted Symbolic Execution

	Conclusion

