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Abstract

Graph-based malware classifiers can achieve over 94% ac-
curacy on standard Android datasets, yet we find they suf-
fer accuracy drops of up to 45% when evaluated on pre-
viously unseen malware variants from the same family—
a scenario where strong generalization would typically be
expected. This highlights a key limitation in existing ap-
proaches: both the model architectures and their structure-
only representations often fail to capture deeper semantic pat-
terns. In this work, we propose a robust semantic enrichment
framework that enhances function call graphs with contextual
features, including function-level metadata and, when avail-
able, code embeddings derived from large language models.
The framework is designed to operate under real-world con-
straints where feature availability is inconsistent, and sup-
ports flexible integration of semantic signals. To evaluate gen-
eralization under realistic domain and temporal shifts, we
introduce two new benchmarks: MalNet-Tiny-Common and
MalNet-Tiny-Distinct, constructed using malware family par-
titioning to simulate cross-family generalization and evolv-
ing threat behavior. Experiments across multiple graph neu-
ral network backbones show that our method improves clas-
sification performance by up to 8% under distribution shift
and consistently enhances robustness when integrated with
adaptation-based methods. These results offer a practical path
toward building resilient malware detection systems in evolv-
ing threat environments.

Introduction

Android malware continues to evolve rapidly, posing persis-
tent challenges to the reliability and robustness of automated
detection systems. Recent advances in graph-based learning
have led to promising approaches for malware classification
by representing applications as function call graphs (FCGs),
where nodes correspond to individual functions and directed
edges represent invocation relationships (Yang et al. 2021;
Harang and Rudd 2020; Joyce et al. 2021). Graph Neural
Networks (GNNs) (Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2018) applied to these graphs enable the mod-
eling of structural and behavioral patterns that are indica-
tive of malicious behavior (Li et al. 2022). Compared to
image-based approaches like byteplot representations (Fre-
itas, Duggal, and Chau 2022), graph-based methods provide
a more interpretable, semantically structured, and function-
ally meaningful abstraction.

Graph-based malware classification gained momentum
with the release of MalNet (Freitas et al. 2021), a large-
scale dataset comprising over 1.5 million Android malware
samples represented as FCGs. A smaller, balanced subset
known as MalNet-Tiny was released to support benchmark-
ing. Since then, MalNet-Tiny has become a standard testbed
for evaluating GNN architectures, with state-of-the-art mod-
els achieving over 94% accuracy (Rampések et al. 2023;
Shirzad et al. 2023). However, these results often assume
standard data splits. Recent work (Wu et al. 2024) shows that
performance drops significantly when models are evaluated
on samples from malware families not seen during training,
highlighting a critical weakness under distribution shift.

A key limitation underlying this brittleness is the lack of
semantic information in MalNet-Tiny. During graph con-
struction, all function-level metadata—such as names, types,
and code—was removed to avoid exposing potentially sensi-
tive artifacts (Freitas et al. 2021). While this decision aimed
to reduce reverse-engineering risks, we argue it unnecessar-
ily restricts the model’s ability to reason about functional
behavior. First, the full malware binaries used to generate
these graphs are publicly available (Allix et al. 2016; Freitas,
Duggal, and Chau 2022). Second, prior work has shown that
semantic features can be integrated without compromising
security (Anderson and Roth 2018; Yang et al. 2021).

Moreover, we hypothesize that this omission impairs gen-
eralization for FCGs, whose edges denote information flow
rather than structural similarity. In such graphs, node seman-
tics are essential for effective message passing and repre-
sentation learning (Hamilton, Ying, and Leskovec 2018; Hu
et al. 2020). Without them, models tend to memorize local
structures that do not transfer well across malware families.

Motivated by this insight, we propose an enhanced at-
tributed graph construction framework tailored for An-
droid malware classification under distribution shift. Our
method enriches each function call graph (FCG) with
semantic node features extracted directly from the mal-
ware’s code structure. Specifically, we extract a set of
lightweight, widely available metadata features—including
function names, method signatures, access flags, instruc-
tion statistics, and Android-specific behaviors—commonly
used in malware analysis (Anderson and Roth 2018; Yang
et al. 2021). When decompiled source code is available,
we embed function bodies using a large language model
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(LLM), providing dense representations of behavioral se-
mantics. These semantic vectors are combined with stan-
dard structural features and injected as node attributes for
downstream graph neural networks (GNNs). Importantly,
our framework is designed for real-world deployment sce-
narios, where semantic features may be partially missing. To
address this, we introduce three collation strategies—Trim,
Zero, and Prune—that transform partially defined graphs
into a consistent format suitable for learning.

To evaluate robustness under distribution shifts, we con-
struct and release two new benchmark variants of MalNet-
Tiny. In MalNet-Tiny-Common, training and test samples are
drawn from overlapping malware families, while in MalNet-
Tiny-Distinct, test samples originate from families unseen
during training (Wu et al. 2024). Across multiple GNN
backbones, we find that our proposed semantic graph con-
struction significantly improves classification accuracy un-
der both settings. These results highlight the critical role
of semantic information in improving the generalization of
graph-based malware classifiers in realistic settings.

Our key contributions are as follows:

* We identify and empirically demonstrate the brittleness
of state-of-the-art graph-based Android malware clas-
sifiers under distribution shift, where accuracy drops
sharply on test samples drawn from previously unseen
malware families.

* We propose a semantic feature enrichment framework
for Android function call graphs that augments structural
graphs with interpretable metadata and LLM-derived
embeddings. To address real-world data quality chal-
lenges—where semantic features may be inconsistently
available—we introduce three collation strategies that ro-
bustly transform incomplete graphs into usable inputs for
graph neural networks.

¢ We construct and release two new benchmark datasets,
MalNet-Tiny-Common and MalNet-Tiny-Distinct, de-
signed to evaluate classifier robustness under intra-family
and cross-family distribution shifts.

* Across multiple GNN architectures, we empirically show
that our approach significantly improves classification
performance under distribution shift and boosts robust-
ness when combined with adaptation-based training.

Preliminaries
MalNet and Graph-Based Malware Data

MalNet (Freitas et al. 2021) is a large-scale dataset of An-
droid malware samples, where each sample is represented as
a FCG extracted using AndroGuard (Desnos and Gueguen
2018). Each node in the FCG corresponds to a function, and
edges indicate function calls. Labels are derived from Virus-
Total reports and unified into a hierarchy of malware families
and types using Euphony (Hurier 2025). A cleaned and bal-
anced subset, MalNet-Tiny, was introduced to support man-
ageable training and evaluation, with each class defined by
a unique (family, type) pair. A more detailed discussion on
MalNet and an example of this labeling structure is shown
in Appendix.

MalNet-Tiny MNT-Common MNT-Distinct
addisplay / kuguo  addisplay / dowgin  spr/ lootor

adware / airpush adware / startapp clicker+trj / dowgin
benign / benign benign / benign riskware / nandrobox

downloader / jiagu  downloader / mixed — malware / mixed
trojan / artemis trojan / deng spyware / mixed

Tab. 1: Malware labels of MalNet-Tiny variants.

Distribution Shift in Malware Classification

We consider a standard supervised classification setting,
where each malware sample is denoted by X, and its as-
sociated label by Y. The training data is drawn from a
source distribution D, while test-time samples may be drawn
from a different target distribution D’. Distribution shift then
refers to the condition where the distributions of training
and testing data differ, leading to a performance drop dur-
ing model evaluation. While there are many types of dis-
tribution shifts (Quifionero-Candela et al. 2022), we focus
only on settings where labels for malwares do not change,
i.e. ]P)(X’y),\,D(Y|X) = I[D(X’Y)ND/ (Y‘X) Among them,
covariate shift happens when malwares of the same labels
are collected from different sources, meaning Pp(Y) =
Pp/(Y) but Pp(X) # Pp/(X). Domain shift is a more
general form of distribution shift where the training and
test data come from completely different distributions, i.e.
Pp(Y) # Pp/(Y) and Pp(X) # Pp/(X). Temporal shift
is similar to covariate shift, but differs in that the distribution
mismatch is caused by malwares changing over time.

Research Objectives

Malware classifiers must remain effective under distribution
shift, as new variants often differ from prior data. Our goal
is to build a single classifier that maintains high accuracy de-
spite such shifts. To support this, we introduce two MalNet-
Tiny-style datasets simulating covariate and domain shifts
for robust evaluation, and propose a framework that en-
hances attributed graph construction, mitigates data-quality
issues, and incorporates distribution-aware graph learning.

Constructing Distribution-Shifted Datasets

Recall that each malware label in MalNet-Tiny is a mal-
ware family/type pair, where family is a broader category of
malwares with similar characteristics, and type is a subcat-
egory within a family. Leveraging this hierarchical label-
ing, we construct new datasets from the original MalNet
to realistically simulate different distribution shifts from
MalNet-Tiny: MalNet-Tiny-Common for covariate shift,
and MalNet-Tiny-Distinct for domain shift. These datasets
are curated to have these same properties for both compat-
ibility and a fair comparison with the baselines. Malware
families/types and their corresponding samples are selected
to be as disjoint as possible, with the chosen labels listed
in Tab. 1. We also intended to create a dataset for temporal
shift, but were unable to do so due to MalNet having too few
malwares belonging to MalNet-Tiny classes despite its large
size. While we believe our proposed method is also robust
to temporal shift, we leave this as a future work.
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Fig. 1: Overview of the robust graph learning pipeline.

Covariate Shift: MalNet-Tiny-Common

We construct MalNet-Tiny-Common to have the same mal-
ware families but different malware types to MalNet-Tiny
to simulate a covariate shift scenario. The label correlation
between the two datasets let us alternatively interpret the
training process as fitting malwares to their corresponding
family labels instead of types, implying that a model trained
on MalNet-Tiny can be used as-is to classify MalNet-Tiny-
Common, but performance will drop due to the distribution
shift. For the sampling process, we seed all random sampling
with 0. We start by sampling types from the same families
as MalNet-Tiny, and then sample 1,000 samples from each
type. The two exceptions to the label selection are: (i) the
unchanged benign class is sampled from a disjoint set of
malware samples, and (ii) the downloader family included
multiple malware types, as it does not have any other one
type with 1,000 qualifying samples.

Domain Shift: MalNet-Tiny-Distinct

The construction process for MalNet-Tiny-Distinct is sim-
ilar to MalNet-Tiny-Common, but with different malware
families/types to simulate domain shift. This dataset is de-
signed to test the ability of adaptation schemes to gen-
eralize to completely new malwares, and is expected to
be more challenging than MalNet-Tiny-Common. However,
even with the large size of the original MalNet, and to
the best of our effort sampling data from as disjoint mal-
ware families/types as possible, the labels for MalNet-Tiny-
Distinct are noisier than which of other variants, with more
generic families and more mixed labels. The full list of mal-
ware families/types for all datasets is listed in the Appendix.

Methodology

We now present our proposed approach to robust malware
classification, a complete pipeline to train a graph classi-
fication model for malware samples. We first reformulate
the problem of malware classification as a graph classifica-
tion task, and present our proposed method for construct-
ing attributed graphs from malware samples. We then dis-
cuss data-quality challenges in the original MalNet that hin-
ders the feature extraction process, and how we can mitigate
them with our proposed collation schemes. Finally, we apply
GNN:ss to learn robust representations of the malware graphs,
and present training strategies to improve the model’s ro-
bustness to distribution shifts.

Problem Formulation

We formally define malware classification as a graph clas-
sification task: For each malware sample z, we aim to con-
struct an attributed graph G = (A, X), where A = ¢ (z)
is the adjacency matrix, and X = ¢ () is the node feature
matrix. This process involves a topology extractor ¢ that
extracts the graph structure from the malware sample, and a
node feature extractor ¢ that extracts a feature vector for
each vertex in the graph; which we combined as ¢. The goal
is to construct a semantic feature extractor ¢ such that the
trained graph classification model I3 performs well on both
the training distribution D and a new testing distribution D’:
s 2
Problem 1 (Robust Feature Extraction for Graph Mal-
ware Classification). Given malware sample x, the
goal is to construct an expressive feature extractor
@(x) that returns the graph representations G = ¢(x),
such that the trained model F' performs well on both
the training, i.e. high P(w,y)ND[F(G) = y|, and new

test distribution, i.e. high P, )p/ [F(G) = y).

(. J

We now focus on how to construct the feature extractor ¢ =
(¢7, dr) for the malware sample x, and the full pipeline for
training a robust graph malware classification model.

Attributed Graph Construction

In this section, we present our proposed method for con-
structing attributed graphs from malware samples, extend-
ing traditional works that only focused on structural features.
Specifically, we focus on advanced feature extraction that we
believe may aid in mitigating the distribution shift problem.
Fig. 1 shows an overview of the feature construction process.

Topology Extractor We adhere to the original construc-
tion of MalNet for topology extraction, utilizing FCGs as
the graph representation of malware samples. The FCG con-
tains a node set )V where each node v; represents a func-
tion, and an edge set £ where each edge e;; denotes that
function v; calls function vy, during its execution. Mathe-
matically, we define the topology extractor ¢ as a func-
tion that takes in a malware sample x and returns the adja-
cency matrix A = ¢r(z) € RIVIXVI of the FCG, where
[V| is the number of nodes/functions, and each entry A, is
1 if ej, € £, and O otherwise. The resulting graph is then
G = (A, D), where the node feature matrix is empty.



Feature Extractor Existing methods (Freitas et al. 2021;
Rampaések et al. 2023; Shirzad et al. 2023) typically use Lo-
cal Degree Profile (LDP) (Cai and Wang 2022) for node
feature extraction ¢, which is a vector of the node’s de-
gree and its neighbors’ degree statistics. As LDP focuses
solely on the structural properties of the graph, when com-
bined with the purely-structural FCG, it unnecessarily limits
the model’s ability to learn from the semantic properties of
these function calls, which can be crucial for distinguishing
between different types of malwares. Instead, we propose to
extract node features directly from the corresponding func-
tions, which can be used to better capture the behavior and
characteristics of the malwares.

Aggregated Metadata Features. Inspired by EMBER (An-
derson and Roth 2018), we construct a set of metadata fea-
tures for each function, which are then aggregated into a sin-
gle feature vector xﬁ/{_eta for each node v;. Features include
class and method names, method signatures, access flags,
code length, bytecode statistics, instruction statistics, string
statistics, and more. In addition, we extract other Android-
specific features such as storage access, registry modifica-
tions, and in-memory code execution. This feature construc-
tion scheme is designed to capture the essential characteris-
tics of the functions in the FCGs, while not disclosing any
sensitive information similar to the EMBER precedence. We
refer the reader to the Appendix for detailed specifications.
LLM Source Code Embedding. From the Androguard anal-
ysis output, we can also obtain the decompiled Java source
code of each function, which we use to extract additional
features. We utilize CodeXEmbed (Liu et al. 2024), the only
available code embedding model that has a large enough
context window to handle the size of the source code, to em-
bed the source code into a numerical vector. The model is
pulled from the HuggingFace repository (Wolf et al. 2020),
and inference was done through the provided HuggingFace
API. This embedding better extracts the semantic meaning
of the function than the aggregated metadata features alone,
as it captures the function’s behavior and purpose based on
its implementation. We denote the resulting feature vector as
xI;LM for each function v;. Further details are in Appendix.
Concatenating Components. While function metadata
alone has proven effective as a feature (Anderson and Roth
2018), incorporating code embeddings generated by LLMs
provides a more comprehensive representation of a func-
tion’s behavior. This provides additional context for the
model to distinguish between functions with similar meta-
data. This insight leads us to include both types of features
in our method. We also utilize the commonly-used LDP fea-
tures, given its impressive baseline performance:

LDP .
X, = |deg(v;), min deg(v;), max deg(v;), 1
i = [deg(vi) L, min g(v;) e g(v;), (D

U]rggé%(gi>deg(vj ), . Gsmvi)deg(vj )]s
for any node v;, where deg(v;) is the node degree, and
N (v;) is the neighborhood of v;.

The three extracted feature vectors are concatenated to
form the final d-dimensional node feature vector: x,, =
xMeta || xEEM || xEDP e R, for each node in the FCG.
Putting it all together, we define the feature extractor ¢

as a function that takes a malware x and its the FCG adja-
cency matrix A, and returns the node feature matrix X =
or(A,x) = [Xy ... Xy, |7 € RIVIX4 with each row
vector x,,, constructed as described above. As A = ¢r(z)
can be obtained from the malware sample x and thus can be
omitted from the function signature, we henceforth omit it
for simplicity. The final attributed graph is then:

G = ¢(X) = (¢7(x), pr(z)) = (A, x). @

Malware Data-Quality Challenges

While the topology extractor ¢ produces a well-defined
graph structure A for each malware sample, constructing
a high-quality node feature matrix X = ¢p(x) presents
nontrivial data-quality challenges. In particular, the reliabil-
ity and availability of semantic features extracted from each
function in the graph can vary substantially due to limita-
tions in the underlying data. For any given malware sam-
ple, the number of extractable semantic features varies from
function to function. Some nodes correspond to external or
system-level functions (e.g., Android APIs or imported li-
braries) that lack accessible decompiled source code, mak-
ing it impossible to compute certain semantic features such
as code embeddings. As a result, the feature matrix X €
RIVIXd where each row X, . = x,,, € R represents the fea-
ture vector for node v;, is only partially defined, with some
node feature entries missing due to limitations in static anal-
ysis or obfuscation. To formalize this, we define the set of
non-universal feature dimensions:

C={ce{l,...,d}|Fie{l,...,|V|} st X, is missing} .

These are the feature types that are not consistently available
across all nodes in this sample’s graph. However, since the
downstream GNN classifier F'(G) requires that all nodes in
the attributed graph G = (A, X) share a consistent input di-
mension, we must address this structural inconsistency be-
fore training. To mitigate this challenge, we propose three
node feature collation schemes designed to transform the
partially defined X into a complete, uniform format com-
patible with GNN-based learning: Trim, Zero, and Prune.

Trim: Remove Non-Universal Feature Dimensions We
remove all feature dimensions that are not available for all
nodes in the current sample. That is, we retain only the set
of feature dimensions JF that are defined across every node,
ie, F = {1,...,d} \ C. We then construct the trimmed
feature matrix as follows:

Xtrim = X:,]: € R|V|X|]:‘-

This ensures that every node has a complete and consistent
feature vector. However, it discards any partially defined fea-
tures, potentially removing useful information available for
some functions.

Zero: Impute Missing Features with Zeros We retain the
full graph and all feature dimensions, and fill in any missing
values with zeros. Let:

M=A{(,c) € {1,...,|V|} x C| X, is missing}



be the index set of node-feature pairs that are undefined. We define
the zero-imputed feature matrix Xyer, € RIVIX4 a:

1 X[, if(i,c) ¢ M,
Kaeoli, o] = {o if (i,c) € M.

This approach ensures that every node retains a full-length
feature vector, enabling direct compatibility with GNN input
requirements. It defers to the model to learn whether zeroed
features are informative or irrelevant.

Prune: Discard Nodes with Incomplete Feature Vectors
Unlike other strategies which retain the original graph topol-
ogy, Prune modifies both the feature matrix and the graph
structure: when a node has missing feature values, we re-
move it along with any edges connected to it. Formally, we
first define the set of nodes with complete feature vectors V':
V' = {v; € V|Ve € {l,...,d}, X;. is defined} .

We then restrict both the feature matrix and the adjacency
matrix to this subset. Our newly pruned feature matrix is:

XPrune = XV’,: € R‘V/‘Xd7
and the corresponding pruned graph topology is:
Aprune = AV’,V’ € {0, 1}|V’|><\V'|'
This operation yields the subgraph of GG induced by the
node set (V’), thereby ensuring that the input graph provided
to the GNN maintains structural consistency and contains

fully-defined features. While preserving all feature dimen-
sions, it might omit important contextual information.

Robust Graph Learning for Distribution Shifts

After making sure that all nodes in the FCG have the same
number of features, we seek to leverage powerful GNNs
to learn complex malware representations based on our at-
tributed graphs: with each malware transformed into an at-
tributed graph G = (A, X), it proceeds to be encoded into
a condensed graph-level vector representation via a GNN
F(G). The goal now becomes to build models that remain
robust when the test-time data distribution differs from the
training distribution: a setting known as distribution shift.
Distribution shift is especially problematic in malware clas-
sification due to evolving attacker behavior, new obfuscation
strategies, and the emergence of novel malware families. To
address this challenge, we decompose the learning process
into two stages: upstream training on the source distribution
D, and downstream adaptation to the target distribution D’.

Upstream Training In the upstream phase, we assume ac-
cess to labeled training samples (G,Y) ~ D, where each
malware has been converted into an attributed graph. We
train a GNN classifier ' by minimizing the expected loss:

F=arg mFin Ec,yv)~p [L(F(G),Y)]

This training step may involve supervised or self-supervised
(pre)training and does not assume any knowledge of D’.

Downstream Adaptation At test time, we apply Fto data
drawn from a different distribution D’, which can result in
degraded performance due to distribution shift. To improve
generalization, we define a general adaptation framework
that produces an adapted model F' by modifying F using
data from D’, categorized by the target labels’ availability.

Test-Time Adaptation (TTA). TTA assumes access to
unlabeled graphs from the target domain {G;}; ~ D',

and adapts the model using these samples:
F = Ara(F5{G5}50). 3)

These methods typically do not modify the entire model but
update specific components such as normalization layers or
classifier prototypes (Iwasawa and Matsuo 2021). TTA is ap-
pealing in scenarios where no new annotations are available.

Domain Adaptation (DA). DA assumes access to labeled
target data { (G, Y)}}_, ~ D’ and adapts the model using
both graphs and their labels:

F = Aoa(F; {(Gr, Yi) Yrz1). “4)

This setting supports stronger forms of adaptation, includ-
ing full finetuning (Church, Chen, and Ma 2021), parameter-
efficient updates (e.g., adapters) (Gui, Ye, and Xiao 2023;
Han et al. 2024), or classifier replacement (Chen et al. 2020),
though it requires additional labeling effort.

This modular framework cleanly separates the learning
process into upstream representation learning and down-
stream adaptation. It supports a variety of adaptation meth-
ods that can be flexibly selected based on real-world con-
straints such as data availability or deployment cost. In
our experiments, we instantiate this framework using both
generic and graph-specific methods for TTA and DA.

Numerical Evaluation

To better understand the effectiveness of semantic features
for malware FCGs, we propose a series of research questions
that thoroughly evaluate the effects of our method:
RQ1: How do semantic features affect model robustness?
We address this question by comparing models trained
with and without (baseline) semantic features, evaluated on
the same testing distribution (i.e. high utility), and on a
covariate-shifted testing distribution (i.e. high robustness).
RQ2: Are all features necessary for improving robustness?
We conduct an ablation study on the two components of
our semantic feature construction across different collation
schemes, and report how they affect model performance.
RQ3: Do features work with existing adaptation methods?
Given that our method takes a different approach to al-
leviating distribution shift, we evaluate how well it can be
combined with and improve existing adaptation methods.
We design and conduct a series of experiments to answer
these questions, giving insights into the characteristics of se-
mantic features for malware FCGs, and report our findings.

Experimental Setup

Below, we concisely outline our experiment configurations.
A more detailed version can be found in the Appendix.

GNN Architectures. Depending on the model architec-
ture, different feature collation schemes may be better or
worse. Therefore, we conduct our experiments with vari-
ous GNN architectures, including GCN (Kipf and Welling
2017), GIN (Xu et al. 2019), GPS (Rampések et al. 2023),
and Exphormer (Shirzad et al. 2023).



Method Features GCN GIN GPS Exphormer

Meta LLM LDP Tiny Cmn. Tiny Cmn. Tiny Cmn. Tiny Cmn.
Baseline / None v 85.60.08  48.40.17  91.2005  49.60.10  93.50.27  47.Tos0  94.50.05  49.50.05
Trim v 92.90.02 56.50.24 91.90.09 47.70.09 94.00.12 51.70.21 94.20.03 57.30.03
v v 91.80.06 51.40.18 92.50.11 48.90.13 94.20.14 54.50.24 94.00.03 51.30.11
v 92.30.17 52.00.20 93.40.05 51.50.03 94.1¢.33 49.8¢.32 93.20.01 52.30.08
Prune v v 92.80.11 90.50.04 93.50.00 53.80.06 93.80.35 50.80.39 93.90.05 52.70.06
v v 94.90.17 1.90.17 93.80.09 52.40.10 94.79.35 54.50.38 93.60.04 50.60.04
v v 84.70.14 50.50.17 88.60.09 48.90.19 93.10.28 51.4¢.37 93.80.01 47.80.12
v v v 94.4¢ .05 51.60.12 93.60.08 51.80.05 95.10.03 51.90.17 95.10.01 50.60.06
v 93.50.26 50.90.30 93.30.11 51.80.19 94.40 19 51.90.26 94.60.06 50.50.06
Zero v v 93.30.16 50.60.20 92.90.07 53.20.08 94.90.24 53.30.39 94.9¢.05 54.70.08
v v 92.40.10 49.60.04 93.60.02 52.10.09 94.70.31 55.80.32 94.60.00 54.10.04
v v 84.70.14 9.20.22 2.10.11 5.70.09 2.90.18 6.70.49 4.10.03 0.10.09
Ve Ve Ve 93.50.07 52.10.17 93.30.11 52.00.10 93.80.34 51.00.50 95.10.01 53.90.05

Tab. 2: Models’ accuracy on MalNet-Tiny and MalNet-Tiny-Common across different feature configurations. Top 5 highest
values are highlighted in green, darker green represents higher accuracy; values lower than baseline are highlighted in red.

Subscript denotes standard deviation over 3 independent runs.

Method GCN GIN GPS Exphormer
Tiny Cmn. Tiny Cmn. Tiny Cmn. Tiny Cmn.
Baseline  85.6% 48.4% 912% 49.6% 93.5% 47.7% 94.5% 49.5%
Trim 91.8% 51.4% 925% 489% 94.2% 545% 94.0% 51.3%
Prune 94.4% 51.6% 93.6% 518% 951% 51.9% 951% 50.6%
Zero 93.5% 521% 933% 520% 93.8% 51.0% 951% 53.9%

Tab. 3: Test accuracy on MalNet-Tiny and MalNet-Tiny-Common
with/without semantic features. Highest values are bolded.

Adaptation Methods. We select these methods such
that they do not alter the upstream training process, and
cover a wide range of approaches. For Test-time Adaptation
(TTA), the selected baselines are Tent (Wang et al. 2021),
T3A (Iwasawa and Matsuo 2021), and GTrans (Jin et al.
2023). For Domain Adaptation (DA) approaches, we eval-
uate with k-NN Probe (Chen et al. 2020), normal finetuning,
and AdapterGNN (Li, Han, and Bai 2023).

Results & Analysis

In this section, we present the results of our experiments to
answer the posed research questions.

RQ1: How do semantic features affect model robust-
ness? Tab. 3 shows the results of our experiments on the
original MalNet-Tiny dataset, and its covariate-shifted coun-
terpart MalNet-Tiny-Common. We observe that most mod-
els trained with semantic features outperform the baseline
model in all cases, with the only exception being Trim.

Finding 1. Prune models achieve the highest accuracy for
MalNet-Tiny, while Zero models achieve the highest accu-
racy for MalNet-Tiny-Common.

This can be explained by that Prune contains only the
nodes that have the full feature vector, forcing the model
to learn from all available features on only the richest nodes.
While this condensation of information can help the model
perform better on the task at hand, it also leads to overfit-
ting when the model learns to rely on non-universal features.
In contrast, Zero models are trained on all nodes, including
those with missing features. This sparsity allows the model

to learn more robust representations, as it can still make pre-
dictions based on the available features when some are miss-
ing. This is similar to how dropout works, where randomly
removing some features during training can help the model
generalize better to unseen data (Srivastava et al. 2014).

As aresult, we only use Prune and Zero collation schemes
for later experiments; and we select the latter as the default
configuration for our method. This is because our main goal
is to improve model robustness, thus better performance on
the covariate-shifted dataset is prioritized, leaving perfor-
mance on the original dataset increased by a smaller margin.

RQ2: Are all semantic features necessary for improv-
ing model robustness? To further delve into the contri-
bution of each of our method’s components, we conduct an
ablation study on the feature configurations. We select the
commonly-used LDP features as our baseline, experiment
with replacing or adding features, and measure the resulting
differences. However, some feature combinations are not ap-
plicable, and thus do not appear in this ablation study:

e Trim does not work with LLM features: for all mal-
wares, there exist some functions that do not have any
code in the APK (e.g. API functions). As a result, code
embeddings features are not available for all nodes, and
thus will always be trimmed.

e Prune and Zero does not work with LLM features
alone: if a malware contains no decompilable code, its
output graph will not have any node features, and thus
cannot be processed by any graph neural networks.

Tab. 2 shows the full results of our ablation study.

Finding 2. For the full feature config. with either Prune or
Zero, all models achieved higher results than the baseline.

This strengthens our claim of effectiveness for seman-
tic features with these two collation schemes. While differ-
ent configs of Zero always achieve higher performance than
baselines, we keep our default configuration to all features as
it achieves the largest positive margin for Exphormer, which
is our best-performing model and the hardest to improve.



Model GCN GIN GPS XFM

Tent 46.2% 49.6% 44.8% 48.0%
... +Prune 49.3% 49.7% 48.4% 47.4%
. + Zero 48.6% 48.9% 47.3% 51.4%
T3A 50.4% 50.8% 48.1% 49.7%
... +Prune 52.2% 52.2% 51.9% 50.1%
. + Zero 52.2% 52.3% 51.0% 53.2%
GTrans 50.6% 49.5% 47.2% 51.7%
... +Prune 34.1% 46.0% 47.0% 44.2%
. + Zero 51.1% 50.6% 43.6% 41.5%

Tab. 4: Accuracy on MalNet-Tiny-Common when combin-
ing TTA methods with semantic features. Highest values for
each set are in bold. XFM is short for Exphormer.

Finding 3. Source code feature extraction is challenging, as
LLM features show similar to worse model performance.

We believe that this phenomenon happens because our
code embedding features are only designed for retrieval
tasks. While they are good at capturing the semantics of the
functions, they should not be solely relied on for its discrim-
inative power. Our choice of LLM embedding model is sub-
jected to code length constraint, heavily limiting our options.
A better method to extract code semantics for classification
is desired, but is out of the scope of this work.

Finding 4. Omitting any features for Exphormer will result
in a worse performance than baseline.

With Exphormer adding augmented pseudo-edges to in-
put graphs for better propagation, it can misdirect unwanted
information during message passing, and thus is not guaran-
teed to be good for graph classification (Shirzad et al. 2023).
As a result, feature density in Prune became detrimental to
the model’s performance; and in contrast, Zero’s sparsity al-
lowed the model to learn representations that are robust to
irrelevant information being propagated through the graph.

RQ3: Do semantic features work with existing adapta-
tion methods? We first evaluate the effectiveness of our
method when combined with TTA methods, which do not
require any additional training data. Tab. 4 shows the re-
sults of our experiments on MalNet-Tiny-Common, which
is a covariate-shifted dataset with the same malware fami-
lies but different malware types. We observe:

Finding 5. Our method consistently improves the perfor-
mance of the adapted models across different generic TTA
methods and architectures. Specifically, Prune works best
with all models except for Exphormer.

Interestingly, Prune works best with the majority of mod-
els for test-time adaptation approaches. On the other hand,
Zero remains the best option for Exphormer, consistent with
our previous findings. However, it is a different situation
for graph-based TTA, where Zero works best for only tra-
ditional message-passing architectures. We hypothesize that
directly applying GTrans to graph transformers is not effec-
tive, which was not tested in the original work.

Finetuning-based adaptation. For the methods that re-
quire additional training data, we report the results in Tab. 5:

Finding 6. Our method consistently further improves the
adapted models across different finetuning approaches.

GCN GIN GPS
Cmn. Dst. Cmn. Dst. Cmn. Dst. Cmn. Dst.

k-NN Probe 74.1% 921% 77.9% 89.1% 69.2% 87.5% 75.9% 871.9%
... +Prune 74.3% 89.5% 178.4% 86.2% 76.7% 87.9% 782% 88.2%
... +Zero 71.9% 87.8% 78.3% 858% 77.1% 88.2% 81.4% 90.6%

Finetune 83.7% 94.0% 79.8% 94.1% 92.3% 95.9% 92.0% 96.6%
... +Prune 92.5% 96.7% 91.4% 96.2% 95.6% 97.8% 952% 97.7%
. + Zero 93.7% 96.7% 92.2% 95.7% 95.0% 97.4% 96.1% 97.4%

AdapterGNN  81.7% 94.7% 859% 95.3% 87.0% 95.3% 88.6% 96.1%
... +Prune 89.4% 95.0% 87.9% 95.1% 90.6% 95.4% 93.6% 95.3%
... +Zero 86.9% 94.2% 81.7% 93.0% 88.3% 96.4% 89.4% 96.5%

Method Exphormer

Tab. 5: Full dataset accuracy on MalNet-Tiny variants (Com-
mon, Distinct) of models trained on MalNet-Tiny after fine-
tuning. Largest accuracy for each experiment set is in bold.

The only exception is the k-NN Probe, which does not
benefit from our method when adapting to MalNet-Tiny-
Distinct. Meanwhile, adding semantic features improves
performance across almost all finetuning-based methods by
up to 7.7% in classification accuracy. Overall, these results
show that our semantic feature construction can be effec-
tively combined with existing adaptation methods to en-
hance their robustness to distribution shift.

Related Work

Android Malware Graph. Most works on malware graphs
also rely on FCGs for structure (Malhotra, Potika, and Stamp
2024). Older works are based on random walks (Ge et al.
2019), while some other adapted NLP methods to feature
extraction (Feng et al. 2021, 2023). Other methods such as
(Alasmary et al. 2019) extracted CFGs as the representa-
tions instead, and focused on the Internet-of-Thing domain.
Meanwhile, (Zhang et al. 2022) took a different approach
and extracted the abstract syntax tree for the malware graph.
Graph Distribution Shift. The effect of distribution shift
in graphs can be attacked from many angles, with some
are finetuning-based (Gui, Ye, and Xiao 2023; Li, Han, and
Bai 2023), while others adapted domain adaptation tech-
niques (Chen et al. 2022; Wang et al. 2022; Jin et al. 2023;
Ju et al. 2023; Hsu et al. 2025). A more novel approach to
graph adaptation is graph prompt tuning (Liu et al. 2023;
Fang et al. 2024; Fu, He, and Li 2025); however, these meth-
ods typically require pretraining on a large corpus of graphs.
We refer the interested readers to (Zhang et al. 2024) for
further reading on these topics.

Conclusion

In this work, we proposed a method to generate seman-
tic features for graph representations of Android malwares,
which can be used to enhance the robustness of graph-
based malware classification models against distribution
shift, while also improving their upstream classification per-
formance. We also introduced two new datasets, MalNet-
Tiny-Common and MalNet-Tiny-Distinct, to evaluate the ro-
bustness of our method against covariate and domain shifts,
respectively. We hope that our work will inspire future re-
search on enriching input graphs for better model general-
ization, and that our contributed datasets will be useful for
evaluating the effectiveness of new methods in this area.
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Appendix

Dataset Construction Specifications
Original MalNet Construction.

Collected from AndroZoo (Allix et al. 2016), each mal-
ware sample in MalNet (Freitas et al. 2021) is represented
by its function call graph (FCG). These FCGs are gener-
ated using AndroGuard (Desnos and Gueguen 2018), with
any other extracted information discarded during the pro-
cess. The corresponding malware labels were collected from
VirusTotal (Sood 2021), a service detecting malicious files
by providing the their analysis reports from antivirus (AV)
engines. These reports categorize malwares into their fam-
ilies and types based on their behavior and characteristics,
and are unified into one final label for the dataset using Eu-
phony (Hurier 2025). An structure example of this hierarchi-
cal labeling is shown in Fig. 2. As detection results of differ-
ent AVs do not always agree, the unified labels can be very
noisy, which can lead to ambiguity in classification tasks. To
address this, the authors of MalNet introduced the MalNet-
Tiny subset, which is a smaller version of the original dataset
with balanced sample distribution across different classes,
where each class contains exactly one malware family and
one malware type classification. This subset is designed to
be more manageable for training and evaluation purposes,
while still retaining the essential characteristics of the origi-
nal dataset.

MalNet Function Feature Specifications

We construct function node features by adapting the EM-
BER feature set (Anderson and Roth 2018) to Android mal-
wares, on a per-function basis. To check for storage access,
we search for strings such as “/storage/” or “/sdcard/”. For
the equivalent of registry access, the strings of interest are
“/shared_prefs/”, “Settings.Secure”, “Settings.System”, and
“Settings.Global”. MZ dropper is substituted with any sign
of in-memory code execution, which exhibits in keywords
such as “ClassLoader”, “DexFile”, “loadDex”, “loadClass”,
“defineClass”, or “loadLibrary”.

We also utilize method information available to us from
Androguard (Desnos and Gueguen 2018) analyzer getter
functions. All numerical features are kept as is without
normalization, and any string/string list features are con-
verted into a 50-dimensional number vector using the hash-
ing trick (Weinberger et al. 2009). We list all extracted fea-
tures in Tab. 6. Note that only the first 5 features in the table
are available across all methods: for example, we cannot ex-
tract any bytecode statistics from external functions as they
are not defined/available in the extracted APK. These 5 fea-
tures form the Trim variant as described in the main text.

Edge Features for Malware FCGs

For edge features, we note that the relationship between two
functions is an invocation, and thus any information about
it (e.g. passed parameters, return values) requires an inspec-
tion of the call stack, which is only available at run time (Li
et al. 2022). As we do not conduct dynamic analysis in this

benign

delayload
clicker AE dowgin
delayload
downloader genpua
E jiagu
artemis

a) Family b) Type

malware

Fig. 2: Example of the hierarchical malware labeling in Mal-
Net.

work, we do not extract any edge features to enrich the FCG
representation.

MalNet-Tiny Variants Specifications

We construct MalNet-Tiny-Common to have the same mal-
ware families but different malware types, to illustrate the
final trained model’s ability to deal with covariate shift. We
construct MalNet-Tiny-Distinct to have different malware
families/types, to illustrate the final trained model’s abil-
ity to deal with domain shift. The malware families/types
are listed in Tab. 7. For sample selection, we only select
malwares with under 5000 nodes/functions to match with
MalNet-Tiny. On malware type selection, there are two im-
portant details:

* With the benign class not having a different type (i.e. just
benign/benign), where we select a disjoint set of malware
samples from the original dataset.

* For some malware families, there are no subtype that has
1000 samples. To deal with this issue, we opt for includ-
ing other subtypes with as little overlap as possible, de-
noted as mixed in Tab. 7.

While we have done our best to avoid label duplicates, it is
unavoidable given the limitation of the original MalNet. We
also believe that this labeling noise is not detrimental, as our
classification results still reach over 94% for both datasets.

Detailed Experiment Setup
GNN Architectures

Depending on the model architecture, different feature col-
lation schemes may be better or worse. For example,
traditional message-passing graph neural networks prop-
agate information from only the neighboring nodes, and
thus may benefit from any additional features. In contrast,
Transformer-based models can attend to all nodes in the
graph (e.g. a global pseudonode), which may cause noisy
features of an unrelated node to negatively affect the aggre-
gation of another node’s features. Therefore, we experiment



Feature Type Embedding
Names Class name String list!® Hashing trick
Method name String Hashing trick
Number of parameters Integer As-is
Method signature Parameter types String list Hashing trick
Return type String Hashing trick
. Access flags Binary!® Multi-hot
Method misc, Number of local registers Integer As-is
Length Integer As-is
Code Byte histogram Integer list Distribution!®!
Byte-entropy histogram Integer list Distribution
Instructions Length Integer As-is
Opcode names String list Hashing trick
Contains invalid characters Boolean As-is
String literal String Hashing trick
Number of strings Integer As-is
Average string length Float As-is
Character histogram Integer list Distribution
Strings Character entropy Float As-is
Number of external paths Integer As-is
Number of URLs Integer As-is
Number of IP addresses Integer As-is
Registry modifications Integer As-is
In-memory executions Integer As-is
Misc. Are instructions cached? Boolean As-is

Tab. 6: All features used for MalNet-Tiny-Feature.

2 Class names are tokenized, e.g. ["java", "lang",

"Object™]

® The concerned flags are: public, private, protected, static, final, synchronized, bridge, varargs, native, interface,

abstract, strictfp, synthetic, constructor.

¢ The number list is normalized into a proper distribution.

with different graph neural network architectures to see how
they perform under different settings:

Graph Convolutional Network (GCN) (Kipf and
Welling 2017): a traditional message-passing graph
neural network that uses a convolutional operation to
aggregate features from neighboring nodes.

Graph Isomorphism Network (GIN) (Xu et al. 2019): a
more powerful message-passing architecture that can
distinguish between different graph structures, based
on the 1-WL test (Weisfeiler and Leman 1968).

GPS (Rampések et al. 2023): a hybrid Transformer ar-
chitecture that combines message-passing and attention
mechanisms to capture both local and global informa-
tion in the graph.

Exphormer (Shirzad et al. 2023): a sparse hybrid Trans-
former architecture that improves upon GPS via an im-
proved attention mechanism, allowing better informa-
tion propagation.

Adaptation Methods

We select these methods such that they do not alter the
upstream training process, and cover a wide range of ap-
proaches. For test-time adaptation methods:

* Tent (Wang et al. 2021): a generic approach that fine-
tunes only the normalization layers per inference.

* T3A (Iwasawa and Matsuo 2021): a generic approach
collecting inferenced samples’ embeddings as class
prototypes to replace the original classifier weights.

* GTrans (Jin et al. 2023): graph TTA for node classifica-
tion that augments input graphs to optimize a surrogate
loss, which we adapted to work with the graph level.

For domain adaptation approaches, we select the following
baselines:

* k-NN Probe: utilizes the k-NN classifier fitted to the
finetuning dataset to probe the model’s predictions on
the downstream task, and replaces the classifier head
with a k-NN classifier (Chen et al. 2020).

* Finetuning: fully finetunes the model on the down-
stream dataset for a few epochs, a common approach in



MalNet-Tiny MalNet-Tiny-Common

MalNet-Tiny-Distinct

addisplay/kuguo addisplay/dowgin

adware/airpush adware/startapp

benign/benign benign/benign

downloader/jiagu  downloader: tencentprotect, openconnection,
dowgin, genpua, hiddenapps, artemis

trojan/artemis trojan/deng

spr/lootor
clicker++trojan/dowgin
riskware/nandrobox

malware/sdi, tencentprotect, deepscan, fakeind, genpua, fwad,
hiddenapps, oddjs, azshouyou, cve, jiagu

spyware/smspay, ginmaster, genbl, wapsx, zwalls, opfake, Immob,
admogo, deng, adwo, axent, multiad, plankton, dowgin

Tab. 7: Malware labels in MalNet-Tiny, MalNet-Tiny-Common, and MalNet-Tiny-Distinct.

transfer learning (Church, Chen, and Ma 2021; Prakash
et al. 2024).

» AdapterGNN (Li, Han, and Bai 2023): a graph-specific
parameter-efficient finetuning method which adds an
adapter to each message passing layer, and finetunes
only the adapters’ parameters.

Implementation Modifications

Readout function. After message-passing, we use the
global max pooling operation to aggregate the node features
into a single graph-level representation, as is also used in
the Transformer-based architectures (Rampasek et al. 2023;
Shirzad et al. 2023). This readout choice has a nice interpre-
tation: a program is the product of all its functions, and thus
if one function behaves like a malware, the whole program
is likely malicious. This is in contrast to the more traditional
global mean pooling operation, which may dilute the effect
of a single malicious function by averaging it with other be-
nign functions.

Classifier initialization. Across all experiments on
MalNet-Tiny-Common, we start finetuning on the check-
point as is. For MalNet-Tiny-Distinct, we reinitialize the
classifier head for finetuning-based methods, as the model
cannot adapt to new malware families without retraining the
classifier.

Prune. For Prune, we omit removing isolated nodes dur-
ing data preparation to prevent empty graphs. This is be-
cause for some malwares, all of its code-containing func-
tions do not call each other (and e.g. only call APIs), and
thus become completely isolated after all other nodes are
pruned.

GTrans. We adapt the method as-is to graph classifica-
tion by keeping all perturbation schemes and hyperparame-
ters unchanged from the original code onto our graph classi-
fiers, which only differ from their node classifying models in
that the former has a readout step before classification. The
only exception is that we disabled adjacency perturbation,
as some graph architectures did not support edge features.
While the original work did not experiment on graph clas-
sification, it mentioned that the method can theoretically be
applied to the setting (Jin et al. 2023), motivating us to adapt
it to our problem.

B MalNet-Tiny
B MalNet-Tiny-Common

Accuracy ratio vs. Baseline

Meta Meta+LLM Meta+LDP LLM+LDP Meta+LLM+LDP
Fig. 3: Average models’ accuracy ratio when compared
to the baseline across different feature configurations for
MalNet-Tiny and MalNet-Tiny-Common. LLM+LDP for
MalNet-Tiny-Common is too close to the baseline to be vis-
ible.

Hardware and Implementation

All experiments are conducted on a single NVIDIA RTX
6000 Ada with 48Gb of memory. All runs are seeded with
the same seed for reproducibility, using the hyperparameter
configurations listed in the original paper (Rampasek et al.
2023; Shirzad et al. 2023) for a fair comparison. Each of our
experiment takes 1-2 hours to run, depending on the model
architecture in use.

Additional Experiment Results
LLM:-only Features

Figure 3 presents the aggregated model accuracy across our
experiments. We can see that LLM+LDP does not improve
performance in general, warranting a deeper analysis for a
future work. Note that LLM+LDP is effectively LLM-only,
since some malware samples does not contain any code to
extract features, and thus without a default LDP fallback
they would yield an empty vector.



Additional Related Works
Graph Representations for Android Malwares

Before the the release of MalNet, aCyber (Hou et al.
2019) devised a graph-based feature extraction on mal-
ware metadata, representing all available data as one giant
heterogeneous graph. This approach was not generalizable
due to the exploding space complexity, and that the au-
thors worked on a private propriety dataset. AMDroid (Ge
et al. 2019) proposed to use function call graphs (FCGs)
as the graph representation of Android malwares, but uses
a random-walk based feature extraction method instead of
a graph neural network (GNN). Alasmary et al. (Alasmary
et al. 2019) extracted a Control Flow Graph as the rep-
resentation instead, and focused on the Internet-of-Thing
domain. CGDroid (Feng et al. 2021) proposed training a
word2vec (Mikolov et al. 2013) embedding model for byte-
code, with manual annotation of API security levels and per-
mission lists as hints for the model to work with. HyGNN-
Mal (Zhang et al. 2022) took a different approach and ex-
tracted the abstract syntax tree as the graph representation.
BejaGNN (Feng et al. 2023) also used word2vec to gen-
erate features, but instead utilized inter-procedural control
flow graph to for the graph structure.

Distribution Shift for Graph Machine Learning

To alleviate the effect of distribution shift in graph ma-
chine learning, a number of methods have been proposed.
Some approaches are finetuning-based, which update the
model parameters to adapt to the new distribution — latest de-
velopment have been focusing on being parameter-efficient
through the use of an adapter (Gui, Ye, and Xiao 2023; Li,
Han, and Bai 2023). Others worked on domain adaptation
techniques, such as applying self-supervised learning on a
pretrained model at test-time (Chen et al. 2022; Wang et al.
2022), or adapting the input graphs themselves to match the
learned training distribution (Jin et al. 2023; Ju et al. 2023;
Hsu et al. 2025). A more novel approach to graph adaptation
is graph prompt tuning, which uses a prompt to adapt the
model to the new distribution without modifying the model
parameters (Liu et al. 2023; Sun et al. 2023; Fang et al. 2024;
Fu, He, and Li 2025). However, similar to prompt tuning in
natural language processing, these methods typically require
pretraining on a large corpus of graphs; thus, they are not ap-
plicable to many graph classification problems with limited
training data.



