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Abstract—With the growing demand for Uncrewed Aerial
Vehicle (UAV) networks in sensitive applications, such as urban
monitoring, emergency response, and secure sensing, ensuring
reliable connectivity and covert communication has become
increasingly vital. However, dynamic mobility and exposure
risks pose significant challenges. To tackle these challenges,
this paper proposes a self-organizing UAV network framework
combining Graph Diffusion-based Policy Optimization (GDPO)
with a Stackelberg Game (SG)-based incentive mechanism. The
GDPO method uses generative AI to dynamically generate sparse
but well-connected topologies, enabling flexible adaptation to
changing node distributions and Ground User (GU) demands.
Meanwhile, the Stackelberg Game (SG)-based incentive mecha-
nism guides self-interested UAVs to choose relay behaviors and
neighbor links that support cooperation and enhance covert
communication. Extensive experiments are conducted to validate
the effectiveness of the proposed framework in terms of model
convergence, topology generation quality, and enhancement of
covert communication performance.

Index Terms—uncrewed aerial vehicle (UAV), topology gener-
ation, covert communication, graph diffusion (GD), Stackelberg
game (SG), incentive mechanism

I. INTRODUCTION

Uncrewed Aerial Vehicles (UAVs) are expected to be widely
deployed for urban inspection, emergency rescue, and regional
sensing applications [1]. Consequently, establishing an effi-
cient self-organizing cooperative UAV network in a dynamic
and distributed environment has become a central challenge in
both industry and academia.

Compared to traditional fixed infrastructure, UAV networks
must handle highly mobile nodes, easily disrupted communi-
cation links, and sudden tasks, while maintaining robust global
connectivity under varying scales and operational conditions
[2]. The authors in [3] proposed distributed algorithms for
UAV network topology reorganization and maintenance with-
out external positioning, supporting merging and disjoining
in GNSS-denied environments. The authors in [4] proposed
a unified UAV covert communication framework that jointly

optimizes 3D flight paths and transmission power with robust
anti-detection, causality, and collision avoidance constraints.
The authors in [5] proposed a secure ISAC framework employ-
ing two diffusion models to activate links and generate pilot-
masked signals, mitigating unauthorized channel state infor-
mation sensing. Therefore, designing a self-adaptive, scalable,
and partition-resilient topology generation method is crucial
to improving network coordination capabilities.

The connection patterns, communication links, and relay
behaviors within UAV networks can easily be exploited by
eavesdroppers to perform traffic analysis, location tracking,
or link inference during sensitive tasks such as information
collection and area monitoring [6]. To this end, the authors in
[7] proposed a two-stage UAV swarm system with pipeline
deep neural network task assignment and flight path plan-
ning using a multi-agent generative diffusion model-assisted
deep deterministic policy gradient approach. Unfortunately,
excessive direct neighbors, overly centralized connections,
or predictable relay behaviors make the network size and
individual roles more easily inferred by external observers,
potentially leading to information leakage or task disruption.
The authors in [8] proposed a UAV-assisted contract-theoretic
model to incentivize honest covert data transmission tasks and
improve throughput under information asymmetry constraints.
However, existing approaches often neglect UAV network
topology optimization and cannot ensure persistent connection.
Therefore, beyond ensuring high connectivity, reducing the
likelihood of node exposure to enhance the covert performance
of multi-UAV cooperative communication has become an
increasingly important requirement for UAV networks.

To address the dual challenges of connectivity and com-
munication covertness in dynamic UAV networks, this paper
proposes a self-organizing network framework that integrates
Graph Diffusion-based Policy Optimization (GDPO) with a
Stackelberg Game (SG)-based incentive mechanism. Lever-
aging the data generation capabilities of generative Artificial
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Intelligence [9], the GDPO method dynamically constructs
network topologies with high connectivity and sparsity, al-
lowing the network to flexibly adapt to dynamic node distri-
butions and varying demands [10]. Furthermore, a SG-based
incentive mechanism is designed to guide UAV nodes to select
appropriate relay behaviors and neighbor connections under
self-interested conditions, thereby encouraging continuous co-
operation and indirectly improving the covert characteristics
of network communication.

The remainder of the paper is organized as follows. In
Section II, we present the system model. A SG-based incentive
mechanism for covert communication is proposed in Section
III. Section IV introduces the proposed approach based on
GDPO for topology optimization. Section V illustrates the ex-
perimental results and analysis. Finally, Section VI concludes
this paper.

II. SYSTEM MODEL

Fig. 1 illustrates a decentralized multi-UAV network de-
signed to support high persistent connection and emergency
networking of sensitive or covert data for Ground Users (GUs).
The UAVs form a multi-hop communication topology to relay
classified information from GUs to an aerial base station (such
as an airship) while maintaining covert communication. The
practical application scenarios include hydraulic and structural
infrastructure detection (such as bridges and dams), trans-
portation infrastructure detection, and emergency response in
events such as earthquakes or traffic accidents near critical or
restricted facilities.

A. Communication Model

The communication link between the UAV and the GUs can
be either Line-of-Sight (LoS) or Non-Line-of-Sight (NLoS).
Without loss of generality, we adopt the Air-to-Ground (A2G)
channel model proposed in [11]. The probability of establish-
ing a link between the UAV and GU i is given by:
pLoS =

1

1 + φ exp

(
−λ

(
180

π
tan−1

(
hj
s(i,j)

)
− φ

))
pNLoS = 1− pLoS

,

(1)
where ϕ and λ are environment-related constants. hj is the
flying altitude of UAV j. s(i,j) represents the horizontal
distance between the GU i and the UAV j, calculated as
s(i,j) =

√
(xi − xj)2 + (yi − yj)2. The 2D coordinate of the

GU i is given by (xi, yi), where i ∈ I, I = {1, 2, . . . , I}.
(xj , yj) denotes the 2D coordinate of the UAV, where j ∈ J ,
J = {1, 2, . . . , J}.

In A2G environments, radio signals experience not only
free-space path loss, but also additional attenuation caused
by shadowing and multipath scattering effects. Since UAV
deployment is typically based on long-term variations of the
channel rather than instantaneous fluctuations [12], we focus
on modeling the average path loss of the signal. The path loss
models for LoS and NLoS links (in dB) are given by LLoS =

Fig. 1: System model.

20 log
(

4πfcd(i,j)

c

)
+ εLoS and LNLoS = 20 log

(
4πfcd(i,j)

c

)
+

εNLoS, respectively, where fc is the carrier frequency, and
d(i,j) =

√
h2 + s2(i,j) denotes the distance between the GU

i and the UAV j, ε represent the average additional loss.
For analytical simplicity, the probabilistic average path loss is
considered as L(h, s(i,j)) = LLoS · pLoS +LNLoS · pNLoS. Given
a transmission power Ptxj

of UAV j, the received power at
the GU i is computed as

Pri = Ptxj
− L(h, s(i,j)). (2)

To guarantee communication quality, Pri is needed to
exceed a threshold Pmin. This requirement is equivalent to
a path loss condition L(h, s(i,j)) ≤ Lth. The signal coverage
radius is defined as R = r

∣∣
L(h,s)=Lth

[13].

B. UAV Model

To encourage participation in covert communication, each
UAV receives a reward from GU, the message sender (such
as Alice). The utility of UAV j is defined as

Uj = Rj − Fj , (3)

where Rj = rj ln
(
1 + Ptxj

)
represents the reward received

by the UAV from Alice, with rj denoting the unit reward, and
Fj = ϕjPtxj

denoting the transmission power consumption,
and ϕj is a constant.

C. Willie Model

Willie decides whether Alice or the UAV is transmitting
based on the received signal Y , which is given by:

Y =

{
n, H0,

Ptxj
gjSA + n, H1,

(4)

where n refers to additive white Gaussian noise with
(0, σ2

noise). H0 denotes the null hypothesis, indicating that Al-
ice does not transmit any signal. H1 represents the alternative
hypothesis, with an interaction occurring between Alice and



the UAV. SA denotes the signal symbol transmitted by the
UAV. gj represents the channel gain between the UAV and
Willie. σnoise denotes the power of background noise.

Willie uses an energy detector to calculate |Y|2 and sets a
threshold ϵ for decision-making. Specifically, if |Y|2 > ϵ, it
decides H1. Otherwise, it decides H0. Under each hypothesis,
the statistical properties of |Y|2 are as follows: H0 means
that the signal contains only noise, Y ∼ N (0, σ2

noise), that
is |Y|2 follows an exponential or chi-squared distribution.
In large-sample or high-SNR scenarios, it can be approxi-
mated by a Gaussian distribution via the central limit the-
orem. H1 means that the signal energy is Ptxj

g2j , hence
Y ∼ N (Ptxj

g2j , σ
2
noise), and likewise |Y|2 approximately

follows a Gaussian distribution. The detection probability is
pj = P(decideH1 | H1) = P(|Y|2 > ϵ | H1). Under
the Gaussian approximation, the mean and variance of the
detection statistic |Y|2 are E[|Y|2] = Ptxj

g2j + σ2
noise and

D[|Y|2] ≈ 2σ4
noise + 4Ptxj

g2jσ
2
noise, respectively. The value

Z = ϵ − Ptxjg
2
j comprehensively quantifies the antagonistic

relationship between the concealment capability of UAV com-
munication and the detection capability of Willie. To simplify
the analysis, supposing that Willie uses coherent detection, the
detection probability can be modeled as

pj = Q (Z/σnoise) , (5)

where Q(·) is the standard normal distribution function.

D. Alice Model

Increasing the transmit power improves the communication
throughput, but also increases the risk of being detected by
Willie. To prevent Willie from discovering the interaction
between Alice and the UAV j, both parties need to strike
a balance between throughput and covertness. The utility of
Alice is defined as

Vj = µ
(
ψ log2

(
1 + Ptxj

gj/N0

)
− ωpj −Rj

)
, (6)

where N0 denotes the channel gain of the environmental noise.
µ, ψ and ω are constants.

III. SG-BASED INCENTIVE MECHANISM FOR COVERT
COMMUNICATION

In practical scenarios, the GU and UAVs aim to maximize
their respective utilities. However, due to their differing profit
orientations and decision priorities, centralized optimization
approaches often fail to address the resulting challenges ef-
fectively. The SG framework is well suited for this context,
as it captures the GU’s dominant role as the system designer
and the UAVs’ responsive behavior as service providers [14].
Within this hierarchical decision-making structure, the GU
first establishes incentive strategies to guide UAV behavior,
while the UAVs subsequently optimize their transmission
power allocation based on the GU’s decisions. This sequen-
tial process ensures that the system reaches a stable and
predictable equilibrium. Accordingly, the interaction between
Alice and the UAVs is modeled as a SG. The SG-based
incentive mechanism for the covert communication algorithm

Algorithm 1 SG-based incentive mechanism for covert com-
munication in UAV network
Input: gi, φi, Rmax, σ2

noise, N0, gj , r0, J , ζ
Output: P ∗

tx, r∗, w∗, V (w∗)
1: Initialize the UAV combinations W , (P ∗

tx, r
∗)

2: for w = 1, . . . ,W do
3: for each UAV j in w do
4: Calculate Uj

(
Ptxj

| r0
)

and P ∗
txj

(r0) by Eq.(3)

5: Calculate Vj
(
P ∗
txj
| rj

)
and r∗ by Eq.(6)

6: Update P ∗
tx ← Ptxj (r

∗)
7: until ∥r∗ − r0∥ < ζ
8: end for
9: Calculate combination utility V (w)

10: end for
11: Select w∗ ← argmax

w∈{1,...,W}
V (w)

is summarized in Algorithm 1. Alice, as the leader, determines
the reward policy rj , while UAVs, as followers, respond by
selecting their Ptxj

. The SG is defined as Ω = {(Alice ∪
J ), (Ptxj

, rj), (Uj , Vj)}, where (Alice ∪ J ) represents the
set of all members participating in SG, (Ptxj

, rj) denotes the
policy set. We denote the optimal power vector provided by
UAVs as P ∗

tx = [P ∗
tx1
, . . . , P ∗

txj
, . . . , P ∗

txJ
], and the optimal

reward as r∗.

Definition 1. Stackelberg Equilibrium (SE). The policy pair
(P ∗

txj
, r∗j ) constitutes a SE if and only if there exist optimal

P ∗
txj

and r∗j such that:{
∀Ptxj

, Uj(P
∗
txj
, r∗j ) ≥ Uj(Ptxj

, r∗j )

∀rj , Vj(P
∗
txj
, r∗j ) ≥ Vj(P ∗

txj
, rj)

. (7)

We use backward induction to analyze the UAVs’ optimal
decisions by computing the first and second derivatives of Uj

with respect to Ptxj
, as follows:

∂Uj/∂Ptxj = rj/(1 + Ptxj )− ϕj , (8)

∂2Uj/∂P
2
txj

= −rj/(1 + Ptxj )
2. (9)

Since the second derivative is always negative, Uj is strictly
concave in Ptxj . The optimal solution is P ∗

txj
= rj/ϕj−1. By

setting both upper and lower bounds on the transmit power,
the optimal power response policy can be expressed as:

P ∗
txj

=


Ptxj,max

, Ptxj
> Ptxj,max

rj
ϕj
− 1, Ptxj,min

< Ptxj
< Ptxj,max

Ptxj,min , Ptxj < Ptxj,min

. (10)

Substituting P ∗
txj

into (6), we can acquire

∂Vj
∂rj

= µ

{
ψgj

ϕjN0 ln 2
· 1

1 +
gj
N0
P ∗
txj

+
ωg2j

ϕjσnoise
·Q′

(
Z∗

σnoise

)}
− ln

(
rj
ϕj

)
− 1,

(11)



Fig. 2: UAV network topology optimization method based on GDPO. In output topologies, blue dashed lines represent redundant
links, while red dashed lines indicate beneficial links. As training progresses, the reward steadily increases, demonstrating
continuous improvement of the graph structure.

∂2Vj
∂r2j

= µ

{
−

ψg2j
ϕ2jN

2
0 ln 2

· 1[
1 +

gj
N0
P ∗
txj

]2
+

ωg4j
ϕ2jσ

2
noise

·
(
Z∗

σnoise

)
e
− [Z∗]2

2σ2
noise

}
− 1

rj
,

(12)

where Z∗ ≤ 0, that is r ≥ ϕj
(

ϵ
g2
j
+ 1

)
, the second derivative

is strictly negative and Vj is concave. Thus, the optimal
solution can be found via convex optimization.

Theorem 1. There exists a unique SE (P ∗
txj
, r∗j ) in the SG.

Proof. Given a reward rj , each UAV has a unique P ∗
txj

due
to the concavity of Eqs. (3) and (6). Moreover, Alice has a
unique optimal policy given the best responses of the UAVs.
Therefore, the (P ∗

txj
, r∗j ) maximizes the utilities of the UAVs

and Alice, respectively, and constitutes a unique SE.

IV. GDPO-BASED TOPOLOGY OPTIMIZATION

A. Markov Decision Process

The UAV network topology optimization problem is formu-
lated as a Markov Decision Process (MDP), which provides
a principled framework for modeling sequential decision-
making problems. The MDP is defined by a quintuple
(S,A, p, rtopo, ρ0), which p is the transition function deter-
mining the probabilities of state transitions, ρ0 gives the
distribution of the initial state.

State space : In each time step t, the UAV and GU
state space can be defined as St = (Jt, Gt, Et), where
Jt = (xjt , yjt , hjt , Ptxjt

), Gt = (xit , yit). Et represents the
set of the UAV-GU links at time step t.

Action space: At time step t, the action At denotes a
transformation St → St−1, reflecting the denoising or graph
reconstruction decision. Action defined as a set of link oper-
ations At = {(e, at | e = (u, v) ∈ Et}, where u, v ∈ J .

The operation at means addition, deletion, and maintenance
of communication links e.

Reward function : We define a multi-objective joint op-
timization problem that aims to improve network coverage,
energy consumption, and network connectivity. The reward
function is defined as

rtopo = α · rcov − β · rener − γ · rconn − δ · rover, (13)

where rcov , rener, rconn, and rover denote the rewards for
UAV coverage, energy consumption, network connectivity, and
GU overlapping coverage, respectively. The coefficients α, β,
γ, and δ represent the corresponding weights. The coverage
reward is rcov = 1

I

∑I
i=1Dcov(i), where Dcov(i) = 1 when

Pri ≥ Pmin and 0 otherwise. Here, Dcov(i) indicates whether
GU i is covered, Pri is the signal power received by GU i, and
Pmin is the minimum required power threshold. The energy
consumption reward is rener = a·rfly+b·rtra+o·rcha, where
rfly = (ϑ+ ϱhj)tf , rtra = Ptxj tf , rcha = 2Pltf , a, b, o, and
ϑ are constants. rfly, rtra, and rcha represent the consump-
tion of UAV flight, signal transmission, and maintenance of
communication links, respectively. Pl is the link maintenance
power, ϱ is the altitude power coefficient, and tf is the flight

time. The connectivity reward is rconn =

{
0, ∥C∥ = 1

100, ∥C∥ ≠ 1
,

where ∥C∥ represents the number of components connected
in the UAV topology. ∥C∥ = 1 indicates full connectivity,
while ∥C∥ ≠ 1 indicates the presence of isolated subnetworks.
The coverage reward is rover =

∑I
i=1 r

(i)
over, where r(i)over ={

5(mi − 1), mi ≥ 2

0, mi < 2
. Here, r(i)over denotes the reward for

multiple UAVs covering the same GU i, and mi is the number
of UAVs covering GU i.

B. Topology Optimization Process

In the topology graph representation, UAVs and commu-
nication links are treated as nodes and edges, respectively.



Performance-related metrics of the network topology are used
as a reward function to guide the GDPO model for policy
learning. This graph-based modeling approach enables GDPO
to demonstrate a stronger generalization ability and sample
efficiency in complex communication scenarios with randomly
distributed nodes and dynamic link conditions, showing great
potential for practical applications. As shown in Fig. 2, the
input to GDPO-based topology optimization includes the time
step, the noisy graph, and the graph state used to initialize the
denoising process. The output consists of multiple generated
topologies and their corresponding reward values. The detailed
algorithm is provided in Algorithm 2 and proceeds as follows:

Step 1 (Lines 2-6). In each training round, multiple graph
generation trajectories are sampled from the diffusion model.
This involves gradually restoring clear graph structures from
noisy states using the denoising network. The reward for each
final graph is then computed, enabling initial updates of the
GD model parameters.

Step 2 (Lines 7-9). Multiple time steps are randomly
selected to sample multiple state trajectories from the current
model. The final graph structure of each trajectory is evaluated
using the reward function. All rewards are normalized, and
the policy gradient is calculated based on the log-probability
gradient.

Step 3 (Line 10). Through multiple iterations, the quality
of the generated graph structures under the reward function
is continuously improved. Gradients for all trajectories are
computed and accumulated, and the model parameters are
further optimized according to the learning rate.

To efficiently optimize the parameter, an efficient estimation
method called Eager Policy Gradient (EPG) enables the reward
signal of the final structure to directly influence the gradient
update at each timestep in the GD model, thus improving train-
ing stability and convergence speed. Compared to the REIN-
FORCE policy gradient method [15], this mechanism exhibits
better performance in handling high-dimensional sparse spaces
and high-variance estimation problems often encountered in
graph structure generation. In the topology generation, the
EPG update in GDPO is defined as

g(θ) ≜
1

K

K∑
k=1

T

|Tk|
∑
t∈Tk

rtopo(S
k
0 )∇θ log pθ(S

k
0 | Sk

t ), (14)

where θ represents the model parameters, K denotes the total
number of sampled trajectories, T is the number of denoising
time steps, and {Tk ⊂ (1, T )}Kk=1 represents a random subset
of time steps. Sk

0 represents the initial topology graph of the
k-th trajectory, Sk

t denotes the topology graph at time step t,
and rtopo(Sk

0 ) is the normalized reward of the initial topology
graph, defined as rtopo(Sk

0 ) =
rk−r̄
std[r] , where r̄ = 1

K

∑K
k=1 rk

and std[r] =
√∑K

k=1(rk−r̄)2

K−1 .
The model parameters are updated as

θ ← θ + η · g(θ), (15)

where η is the learning rate.

Algorithm 2 GDPO for UAV Topology Optimization

Input: pθ, T , |T |, rtopo(·), K , η, N
Output: Optimized topology graph

1: for i = 1, . . . , N do
2: for k = 1, . . . ,K do
3: Sk

0:T ∼ pθ ▷ Sample trajectory
4: Tk ∼ Uniform(1, T ) ▷ Sample timesteps
5: rk ← rtopo(S

k
0) ▷ Get rewards

6: end for
7: Update state of UAV using Algorithm 1
8: Estimate the EPG by Eq. (14)
9: Update GDPO model parameter by Eq. (15)

10: end for

TABLE I: Experiment Parameters

Symbol Value (Unit) Symbol Value (Unit)
J 9 N0 1 dB/Hz
I 20 gi [3 dB, 10 dB]
fc 2.4GHz gj 1 dB
Ptxmin 10 dBm ϵ 0.6
Ptxmax

30 dBm σnoise 0.1W
Pmin −90 dBm hj 100 ∼ 300m

V. EXPERIMENT EVALUATION

We consider GUs randomly distributed in a 3km × 3km
urban low-altitude scenario, where the spatial positions of
UAVs are determined by system parameters and a limited
spatial area. To illustrate the advantages of employing GDPO
for UAV network topology optimization in this study, Proximal
Policy Optimization (PPO) and Dynamic Diffusion Policy
Optimization (DDPO) are selected as benchmark algorithms
for comparison. The parameters and their corresponding values
are presented in Table I.

Fig. 3 shows the average rewards of GDPO, DDPO, and
PPO during training. PPO converges the slowest and has the
largest fluctuations, indicating high instability. DDPO con-
verges faster than PPO but still suffers from considerable oscil-
lations and an unsmooth learning process. In contrast, GDPO
matches DDPO’s convergence speed but with significantly
lower post-convergence variance, demonstrating stronger sta-
bility. This improvement stems from GDPO’s integration
of GD sampling with policy optimization, which enhances
exploration, reduces gradient variance, and better balances
multiple objectives. As a result, GDPO achieves superior
policy learning and convergence in dynamic environments,
making it well suited for multi-objective optimization.

Fig. 4 shows the link structure of a UAV network topology
generated after 50 iterations in a space-constrained envi-
ronment. The topology includes UAV–UAV and UAV–User
links. In the initial formation stage, excessive link redundancy
among UAVs increases energy consumption and undermines
network stability. In contrast, GDPO adds high-efficiency links
and removes redundant ones, producing an adaptive topology



Fig. 3: Reward vs. different methods. Fig. 4: Topology generation Fig. 5: Utility vs. incentive mechanisms.

that meets dynamic user coverage and robust connectivity
requirements in constrained spaces.

Fig. 5 compares Alice’s utility under different incentive
schemes with a maximum budget constraint (Ymax = 50).
When selecting four UAVs, all schemes reach peak utility,
indicating an optimal balance between UAV count and budget.
Although adding UAVs initially improves utility, it declines
beyond the peak due to the budget limit. Notably, our approach
consistently outperforms the others, as throughput-priority
and cost-priority schemes fail to balance the utility function,
leading to competition and lower overall gains compared to
our integrated method.

VI. CONCLUSION

This paper proposes a self-organizing UAV network frame-
work combining GDPO with a SG-based incentive mechanism.
The GDPO method uses generative AI to dynamically generate
sparse but well-connected topologies, enabling flexible adapta-
tion to changing node distributions and task demands. Mean-
while, the SG guides self-interested UAVs to select optimal
relay behaviors and neighbor links, sustaining cooperation and
enhancing covert communication. This integrated approach
improves network resilience, scalability, and covertness un-
der dynamic, distributed conditions. Future work will focus
on incorporating radio spectrum distribution awareness into
UAV network optimization to further strengthen the network’s
communication reliability and assurance.
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