
Label Inference Attacks against
Federated Unlearning

Wei Wang1[0009−0009−0625−4603], Xiangyun Tang1⋆[0000−0002−5511−0720],
Yajie Wang2⋆[0000−0002−7023−4844], Yijing Lin3[0000−0003−2702−7679],
Tao Zhang4[0000−0002−2639−4357], Meng Shen2[0000−0001−5706−6383],

Dusit Niyato5[0000−0002−7442−7416], and Liehuang Zhu2[0000−0003−3277−3887]

1 the Key Laboratory of Ethnic Language Intelligent Analysis and Security
Management of MOE, Minzu University of China, Beijing, China

{wangwei,xiangyunt}@muc.edu.cn
2 School of Cyberspace Science and Technology, Beijing Institute of Technology,

Beijing, China
wangyajie0312@foxmail.com

3 School of Information and Communication Engineering, Beijing University of Posts
and Telecommunications, Beijing, China

4 School of Computer Science and Engineering, Beijing Jiaotong University, Beijing,
China

5 School of Cyberspace Science and Technology, Nanyang Technological University,
Singapore

Abstract. Federated Unlearning (FU) has emerged as a promising so-
lution to respond to “the right to be forgotten” of clients, by allowing
clients to erase their data from global models without compromising
model performance. Unfortunately, researchers find that the parameter
variations of models induced by FU expose clients’ data information,
enabling attackers to infer the label of unlearning data, while label infer-
ence attacks against FU remain unexplored. In this paper, we introduce
and analyze a new privacy threat against FU and propose a novel la-
bel inference attack, ULIA, which can infer unlearning data labels across
three FU levels. To address the unique challenges of inferring labels via
the models variations, we design a gradient-label mapping mechanism
in ULIA that establishes a relationship between gradient variations and
unlearning labels, enabling inferring labels on accumulated model varia-
tions. We evaluate ULIA on both IID and non-IID settings. Experimental
results show that in the IID setting, ULIA achieves a 100% Attack Suc-
cess Rate (ASR) under both class-level and client-level unlearning. Even
when only 1% of a user’s local data is forgotten, ULIA still attains an
ASR ranging from 93% to 62.3%.
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1 Introduction

Federated Learning (FL), as a decentralized machine learning paradigm, has
gained widespread adoption in various domains such as finance [18] and smart
cities [8] due to its inherent capability to protect user privacy. FL allows multiple
users to jointly train a global model by sharing local models rather than raw
data with a central server, thereby mitigating privacy leakage [19]. In addition
to the privacy protection, existing data security legislation, such as General
Data Protection Regulation (GDPR) [24] and California Consumer Privacy Act
(CCPA) [5], emphasizes the “Right to be Forgotten", affirming users’ authority
to demand the unlearning of their data from global models during FL.

To respond the unlearning demand, Federated Unlearning (FU) has emerged
as a promising solution [17]. FU methods, such as historical information-based
unlearning [32] and rapid retraining [16], involve the server collaborating with
users to remove the influence of unlearning data from the global model, in ac-
cordance with users’ unlearning requests, while ensuring that the model’s per-
formance remains consistent with its state prior to the unlearning operation. FU
can be categorized into sample-level, class-level, and client-level [22], where the
unlearning requests correspond to a set of samples, all samples associated with
a set of classes, or the entire local dataset of a user, respectively.

Although existing FU methods can unlearn data from global models while
preserving model performance, they are vulnerable to a significant privacy leak-
age threat. After FU operations, the server holds two versions of models before
and after unlearning. The adjustments of the resulting parameter on the models
are not entirely independent but are closely related to the characteristics of the
unlearning data, such as the labels of the unlearning data [21]. Hence, the varia-
tions in the models before and after FU expose users’ data information, enabling
the server as attackers to infer private information about the unlearning data. In
this paper, we focus on label inference attacks against FU, where the server, by
analyzing the variations of models before and after unlearning, infers the labels
of unlearning data.

Label inference attacks allow the server to steal private labels of users that
should have been unlearning or protected in FU, raising significant privacy con-
cerns. Furthermore, ensuring the privacy of labels is a fundamental guarantee, as
they often represent sensitive or critical information for the participant [20]. For
example, in a healthcare scenario, multiple medical institutions collaboratively
train a global model using diabetic patient data. If a patient requests the removal
of their medical data due to privacy concerns, the label inference attacks on FU
enable the attacker to infer the diagnosis, leading to a severe breach of privacy.

However, the privacy risks of label inference attacks on FU remain underex-
plored. It is challenging to infer the labels of unlearning data from the model
differences induced by FU. The model differences reflect the accumulated impact
of all the unlearning data and their associated labels. Consequently, when attack-
ers are unaware of the number of unlearning data samples or labels, accurately
inferring labels from the accumulated parameter differences is challenging. Fur-
thermore, when the quantity of unlearning data is small, the resulting changes
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in model parameters may be too subtle to adequately capture the features of the
unlearning data, making it more difficult for attackers to infer the labels.

In this paper, we propose ULIA, a novel label inference attack that infers
the labels of unlearning data across three FU levels: sample-level, class-level,
and client-level, by analyzing the variations in the model parameters of FU.
ULIA addresses the inherent challenge of accurately inferring labels from model
differences induced by FU, where the accumulated impact of unlearning data
on model parameters obscures individual label effects. To overcome this, we
propose a gradient-label mapping mechanism, which establishes a relationship
between gradient variations and unlearning labels. This allows the attacker to
separate the specific parameter shifts attributable to individual unlearning label,
thus enhancing the accuracy of label inference. Moreover, ULIA incorporates
a dynamic filtering strategy that prioritizes label categories with the higher
likelihood of matching model parameter changes, focusing on those labels that
exhibit the most significant alterations, ensuring effective label inference, even
in scenarios with sparse or subtle unlearning data.

We evaluate the performance of ULIA under three advanced FU methods
across the three FU levels on real-world datasets. In the IID setting, ULIA

achieves an Attack Success Rate (ASR) ranging from 100% to 62.3%. Even in
the non-IID setting, ULIA is still able to achieve 96.4%− 58.5% ASR.

The main contributions of this paper are as follows:

– To the best of our knowledge, we are the first to reveal the label leakage
issue of FU. We propose ULIA, a novel attack inferring unlearning data labels
across three FU levels, by analyzing the variations in the model parameters
induced by unlearning operations.

– The attack works regardless of the quantity of unlearning data, as we design
a gradient-label mapping mechanism that establishes a relationship between
gradient variations and unlearning labels, enabling inferring unlearning la-
bels on accumulated model variations.

– We evaluate our attacks with real-world datasets under three advanced FU
methods, both in IID and non-IID settings. The experimental results show
that ULIA demonstrates outstanding attack performance and adaptability.

2 Related Works
Federated Unlearning. Existing FU methods can be broadly categorized
into two main approaches: (1) Historical information-based unlearning, which
is recorded and analyzed during training to assess the impact of specific data or
clients on the global model, enables efficient unlearning. The typical techniques
explored under this approach include: Gradient correction adjusts the gradient
information in the model training process to eliminate the contribution of tar-
get data or target clients to the global model [32]. The knowledge distillation
strategy restores the performance of the global model through knowledge transfer
and model tuning, thereby approximating unlearning [27]. Approximate unlearn-
ing of target data is achieved by pruning network layers [25] and refining the
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loss function [9]. (2) Rapid retraining, which efficiently restores the unlearning
global model by optimizing retraining algorithms or performing partial retrain-
ing. The typical techniques explored under this approach include: First-order
Taylor expansion methods are employed to effectively utilize gradient and curva-
ture information, thereby identifying a more optimal descent direction [16]. The
optimal number of unlearning rounds can be accurately determined by assessing
the contribution of target clients during each training iteration [13]. Clients are
grouped into suitable clusters for aggregation, ensuring that retraining occurs
solely within the cluster of the target client during the unlearning process [23].

Label Inference Attacks. Label inference attacks aim to infer the labels
of training or unlearned data, thereby compromising the privacy of participat-
ing clients. Previous studies have primarily implemented label inference attacks
through the following techniques. (1) Based on gradient information, where at-
tackers exploit the label information reflected in the gradient signs and mag-
nitudes to perform inference. [31] discovers the relationship between labels and
gradient signs in the cross-entropy loss function, which becomes a fundamental
basis for label inference attacks. [4] demonstrates that attackers exploit inherent
vulnerabilities in vertical federated learning (VFL) to infer sensitive labels owned
by one party through the output features of the bottom model or the gradient
information returned by the server. (2) Classification and clustering methods,
where attackers train gradient classifiers or utilize the clustering properties of
embeddings and gradients to make inferences. [12] observes that in two-party
scenarios, the gradient norm associated with target labels is often larger than
that of non-target labels, providing a basis for classification-based methods. [15]
proposes a K-means clustering-based attack method that classifies gradients or
embeddings using cosine similarity. (3) Model reconstruction, where attackers
simulate the predictive model and labels of the active party to construct surro-
gate models and labels, minimizing prediction errors to infer the true labels. [30]
proposes using label smoothing techniques to prevent the model from becoming
overconfident in label predictions. [1] introduces an early stopping strategy to
reduce the impact of gradient magnitude peaks on the attack accuracy.

Highlights of the proposed attack. Existing label inference attacks mainly
focus on inferring the labels of training data. With the emergence of FU, the
analysis of local and global model parameters’ changes generated by unlearning
requests to infer the labels of forgotten data has still remained unexplored. In
this paper, we propose ULIA, a novel label inference attack against FU, inferring
unlearning data labels by analyzing the model variations induced by unlearning
operations, which reveals and analyzes the new privacy leakage issue of FU.

3 Preliminaries

Before entering the sample-level FU process, clients participate in FL, training
global models under the server’s orchestration. The FU process is launched when
a client launches an unlearning request. The server and clients cooperate to
eliminate the target data from the global model, based on a unlearning strategy.
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Federated Learning. The primary objective of FL is to enable collaborative
and efficient training on distributed data without directly sharing the raw data.
Given N clients Pi (i = 1, . . . , N), each holding local data Di, the overall dataset
is defined as D =

⋃N
i=1 Di . At the beginning of the FL training process, the

server initializes the global model θ(0)global and distributes it to all clients. At the

t-th round, client i optimizes the global model θ(t)global based on its local data Di,

and updates the local model parameters θ
(t+1)
local,i:

θ
(t+1)
local,i = θ

(t)
global − η ·

∑
(x,y)∈Di

∇ℓ(fθ(x), y) (1)

where η is the learning rate, and ∇ℓ(fθ(x), y) is the gradient of the loss function
ℓ for model fθ with respect to input x and label y.

The server aggregates the local model parameters θ
(t+1)
local,i uploaded by all

participating after their individual training steps, in order to update the global
model parameters θ

(t+1)
global:

θ
(t+1)
global =

N∑
i=1

wiθ
(t+1)
local,i (2)

where wi =
|Di|
|D| represents the weight of client i based on the size of its local

dataset Di relative to the total dataset D.

Federated Unlearning. When a target client K sends an unlearning request
in the t-th round, FU performs the data removal request, resulting in the post-
unlearning global model θ′global. FU can be categorized into the following three
main types based on different forgetting requests and objectives.

– Sample-level unlearning seeks to remove specific sensitive samples from a
client’s local dataset and eliminate their influence on the global model to pro-
tect privacy [29]. The local dataset Di is updated by removing Sf , resulting
in a revised dataset D′

i = Di \ Sf . The client initializes its post-unlearning
local model θ′local,i with the global model parameters θ

(t)
global from the t-th

round and retrains it on the updated dataset D′
i.

– Class-level unlearning focuses on completely erasing certain class-specific in-
formation from the global model, renders the model incapable of classifying
those classes [2,26]. When the influence of a specific class Cf needs to be re-
moved, each client updates its local dataset by removing the data associated
with Cf , resulting in modified datasets D′

i = Di \ {(x, y) | y ∈ Cf}.
– Client-level unlearning aims to fully remove the contributions of specific

clients and to ensure that their data has no residual impact on the global
model or subsequent training processes [28]. The global model removes the
influence of the target clients K and updates using only the remaining clients.
The remaining dataset is represented as D′ =

⋃N
i=1
i̸=K

Di.
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4 Attack Model and Problem Formalization

4.1 Attack Model

This paper focuses on label inference attacks against FU. When a target client
submits an unlearning request to remove samples from the global model or to
exit collaborative training, the server and client participate in FU to ensure that
the model no longer reflects the influence of the forgotten data. We assume that
the server is semi-honest. By exploiting access to the model parameters, the
semi-honest server as the attacker aims to infer the labels of the data that the
target client has requested to forget.

Attacker’s Goal. The attacker’s goal is to infer the labels of the unlearning
data by analyzing the parameter differences of models before and after unlearn-
ing. Our attack specifically targets a single client’s unlearning request but con-
siders different types of forgotten data.

Attacker’s Knowledge. The semi-honest server, acting as the attacker, pos-
sesses legitimate data within FU. It can access two versions of the local model
parameters and global model parameters, before and after unlearning.

4.2 Problem Formalization

Throughout this paper, we study the problem of label inference attacks against
FU. We denote the forgotten dataset as Dforgotten = {(xi, yi) | i = 1, . . . ,M},
where xi represents the input features, and yi ∈ {0, 1}C denotes the correspond-
ing one-hot encoded class labels for C classes. Let the global model F(·; θ) be
parameterized by θ, which maps the input space X to a C-dimensional output
space RC . As a potential attacker, the server analyzes parameter differences be-
tween the two versions of both the local and the global models to infer the labels
of the forgotten data, formally expressed as the following objective function:

ŷi = argmax
yi

L (F(xi; θglobal), yi) (3)

where ŷi is the inferred label for the forgotten data point xi, and L is the loss
measuring the discrepancy between the model output and the predicted label.

5 ULIA: Label Inference Attack

In this section, we propose ULIA, a novel label inference attack that infer the
labels of unlearning data across three FU levels: sample-level, class-level, and
client-level, by analyzing the model differences in FU. Figure 1 illustrates the
proposed label inference attack in the context of FU. The implementation of the
ULIA attack can be carried out in the following four steps.

– Analysis of parameter changes. This step compares local and global model
parameters before and after unlearning to quantify the influence of forgotten
data, providing a foundation for the attack.
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Step Ⅳ：Infer 

Unlearning Labels

𝜃𝑙𝑜𝑐𝑎𝑙,𝑖
′  − 𝜃𝑙𝑜𝑐𝑎𝑙,𝑖

𝑡

𝜃𝑔𝑙𝑜𝑏𝑎𝑙
′  − 𝜃𝑔𝑙𝑜𝑏𝑎𝑙

𝑡

ηapprox =
1

𝑡
෍

𝑡=0

𝑡
||Δlocal||

||Δglobal||

Step Ⅲ：Derive 

Gradient Differences

Δ∇𝐿

Step Ⅰ：Analyze 

Parameter Changes

Parameter differences 

between consecutive rounds

ηapprox

A certain label

Sort the gradient 

differences of all labels

ULIA’s Input

Pre-unlearning local model Post-unlearning local model Pre-unlearning global model Post-unlearning global model

···

1 2 t

···

1 2 t

Step Ⅱ：Estimate 

Learning Rate

pre-unlearning

post-unlearning

AGDl =
1

𝐿
෍

𝑙∈𝐿

Δ∇𝐿

Filter the values ​​of labels 

that change significantly

Gradient-label mapping 
mechanism

Z-score Significance 

threshold 𝜏

Lables of Forgotten Data
ULIA’s Output

Forgotten Data

Δ∇𝐿 =
Δglobal − Δlocal

1 − 𝑤𝑘 ηapprox

Fig. 1: Overview of Unlearning Label Inference Attack. It shows the four main
steps: (1) analyzing parameter changes, (2) estimating the learning rate, (3)
deriving gradient differences, and (4) inferring the forgotten labels. The diagram
highlights how ULIA utilizes pre- and post-unlearning models to infer labels.

– Estimation of learning rate. By analyzing parameter differences across mul-
tiple rounds, an effective learning rate is estimated to reconstruct gradients.

– Derivation of gradient differences. Using the estimated learning rate and
parameter differences, approximate gradient differences are reconstructed.

– Inferring the Labels of Forgotten Data. By utilizing the gradient-label map-
ping mechanism, the degree of match between gradient changes and forgotten
data labels is measured, enabling more accurate selection of labels.

5.1 Analysis of Parameter Changes

The first step in ULIA focuses on analyzing the changes in the model parameters
caused by the unlearning process. By examining both the local and global model
parameter changes, attackers can infer the influence of forgotten data on FL.
Changes of local model parameters provide insights into how the removal of
specific data affects individual clients, while changes of global model parameters
reveal the aggregated impact of the unlearning operation across all clients.

Changes of local model parameters ∆local quantify the variation in the local
model parameters of the target client before and after unlearning. This change,
which captures the impact of removing the influence of forgotten data.

∆local = θ′local,i − θ
(t)
local,i (4)

where θ
(t)
local,i represents the local model parameters before unlearning at the t-th

communication round. θ′local,i denotes the updated local model parameters.
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Similarly, the global parameter change ∆global, obtained from the model pa-
rameters before and after unlearning, is defined as:

∆global = θ′global − θ
(t)
global (5)

where θ
(t)
global indicates the global model parameters before unlearning. θ′global

refers to the updated global model parameters after unlearning.
The changes in the local model parameters ∆local reflect the adjustments

made by the client during the update process to remove the influence of the
unlearning data, revealing the contribution of specific data to the client’s local
model. By analyzing the changes in the global model parameters ∆global before
and after unlearning, the extent of the influence of the unlearning data on the
global model can be observed.

5.2 Estimation of Effective Learning Rate

The learning rate controls the step size of gradient updates in FL, directly af-
fecting parameter changes. We estimate the learning rate by leveraging the dif-
ferences between the local model parameters and the global model parameters
from previous training rounds as given in Equation (6). This enables ULIA to
conduct attacks with more limited knowledge, enhancing its adaptability.

ηapprox =
1

t

t∑
t=0

∥∆local∥
∥∆global∥

(6)

where ∥ · ∥2 denotes the L2-norm, t is the number of rounds used for averaging.
The reasons for averaging over the previous t rounds are as follows. Firstly,

performing the averaging process helps mitigate the impact of noise and outliers
in individual updates, leading to a more robust and reliable estimate. Secondly,
it preserves the integrity of the gradient direction, as the learning rate influ-
ences only the magnitude of the update, not the direction. This ensures that
the estimated learning rate can be effectively used to derive gradient differences.
By estimating an effective learning rate, attackers obtain the key parameters
required to infer the gradients corresponding to the forgotten data.

5.3 Derivation of Gradient Differences

Attackers can infer the gradient updates associated with forgotten data by an-
alyzing the difference between local and global parameter changes. This dis-
crepancy provides insight into the contribution of the forgotten data to model
optimization, forming a direct link between parameter variations and data char-
acteristics. By leveraging an estimated learning rate, attackers can approximate
the gradient difference introduced by the forgotten data.

In FL, the global model update at round t+1 follows the standard aggregation
rule, as described in Equation (2). When a client requests unlearning, its local
model parameters are updated without the forgotten data, deviating from their
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original update path. The parameter changes before and after unlearning are
defined as shown in Equations (4) and (5). Since the global model aggregates
updates from all clients, its change can be rewritten as:

∆global =

N∑
i=1

wi∆local,i. (7)

Computing the difference between global and local parameter changes gives:

∆global −∆local = (wk − 1)∆local. (8)

which reveals that the discrepancy between local and global updates is directly
proportional to the forgotten data’s gradient contribution. Since the attackers do
not directly observe ∆∇L, they approximate the discrepancy using the estimated
learning rate ηapprox, yielding:

∆∇L =
∆global −∆local

(1− wk)ηapprox
. (9)

This equation provides a mechanism for reconstructing the gradient updates
influenced by the forgotten data. Given that gradient variations capture feature
importance, the attackers can analyze the magnitude and sparsity of ∆∇L to in-
fer the forgotten data’s characteristics. By analyzing the approximated gradient
differences, the attackers can identify which feature dimensions were most influ-
enced by the forgotten data. Significant variations in specific gradient compo-
nents indicate that these features were closely associated with the removed data.
Furthermore, examining the concentration and distribution of gradient changes
allows the attackers to assess the relative importance of individual features.

The difference between local and global parameter updates provides a strong
signal of the forgotten data’s impact on model training. As this discrepancy
maintains a linear relationship with the forgotten data’s gradient contribution, it
serves as a crucial indicator for reconstructing its characteristics. These findings
reveal inherent weaknesses in existing FU mechanisms, demonstrating that even
after explicit data removal, residual traces may still persist in the global model,
posing potential privacy risks.

5.4 Inferring the Labels of Forgotten Data

The final step of the proposed method focuses on inferring the labels of forgotten
data by analyzing the derived gradient differences. The unlearning operation
introduces significant changes to the gradients associated with the forgotten
data, making them more prominent in the analysis. By linking these gradient
changes to the weights in the model’s output layer, attackers can accurately
infer the labels of the forgotten data. For each label category l ∈ L, the average
gradient difference is computed as:

AGDl =
1

|L|
∑
l∈L

∆∇Ll (10)
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where AGDl represents the average gradient difference for a specific label cate-
gory l, and L is the set of all label categories.

This step emphasizes the innovative integration of gradient difference recon-
struction with targeted label analysis, illustrating how the method effectively
translates parameter and gradient variations into actionable insights, thereby
enabling precise identification of the labels of forgotten data.

However, when multiple label categories are forgotten by the client, the server
does not know the exact number of forgotten categories. Therefore, it cannot sim-
ply assume that the category with the largest gradient change accounts for all the
forgotten categories. To address this, we propose a gradient-label mapping mech-
anism, which establishes a one-to-one correspondence between gradient changes
and the labels of forgotten data, and employs a dynamic filtering strategy to
select labels that are more likely to correspond to the forgotten data. Specifi-
cally, this mechanism leverages two key methods: (1) It quantifies the changes
induced by each label category during model parameter updates by utilizing the
properties of the Z-score [3].

Zl =
AGDl − µAGD

σAGD
(11)

where µAGD represents the average of gradient differences across all label cate-
gories, and σAGD represents the standard deviation of the gradient differences
across all label categories. (2) It dynamically infers the number of forgotten data
categories. After computing the Z-score for each label category, a predefined sig-
nificance threshold τ is applied to filter a candidate set Lcandidate as given in
Equation (12), which includes the label categories most likely corresponding to
the forgotten data of the client.

Lcandidate = {l | Zl > τ} (12)

6 Experiments

6.1 Experimental Settings

All experiments are performed on a workstation equipped with an Intel(R)
Core(TM) i7-13700K processor, 64GB of RAM, and three NVIDIA RTX 4090
GPU cards. ULIA is implemented using Python 3.8 and PyTorch 2.1.0.

Datasets and model. We select the following two datasets, which are widely
used in FU. 1) MNIST [11], a handwritten digit classification dataset consisting
of 60, 000 training images and 10, 000 test images. 2) CIFAR-10 [10], a color
image classification dataset containing 50, 000 training samples and 10, 000 test
samples. We conduct experiments on both IID and non-IID data distributions,
and perform training on the popular deep learning model ResNet-18 [6].
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Table 1: Attack performance of ULIA applied to typical unlearning methods. The
attack is performed under the condition that the quantity of forgotten samples
accounts for 10% of the client’s total local data. L represents the number of
categories of forgotten data labels.

Methods FedEraser Rapid Retrain SGA-EWC

Datasets L SampleClass Client Sample Class Client Sample Class Client

The attacker is aware of the number of label categories

MNIST
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.970 1.000 1.000 0.970 1.000 1.000 0.940 1.000 1.000
3 0.850 1.000 1.000 0.910 1.000 1.000 0.810 1.000 1.000

CIFAR
1 0.970 1.000 1.000 1.000 1.000 1.000 0.950 1.000 1.000
2 0.890 1.000 1.000 0.920 1.000 1.000 0.860 1.000 1.000
3 0.800 1.000 1.000 0.860 1.000 1.000 0.780 1.000 1.000

The attacker does not know the number of label categories

MNIST
1 0.958 1.000 1.000 0.973 1.000 1.000 0.923 1.000 1.000
2 0.898 1.000 1.000 0.925 1.000 1.000 0.855 1.000 1.000
3 0.780 1.000 1.000 0.850 1.000 1.000 0.738 1.000 1.000

CIFAR
1 0.919 1.000 1.000 0.924 1.000 1.000 0.887 1.000 1.000
2 0.837 1.000 1.000 0.872 1.000 1.000 0.785 1.000 1.000
3 0.747 1.000 1.000 0.817 1.000 1.000 0.692 1.000 1.000

FU methods. To comprehensively evaluate ULIA, we apply it to the following
three typical FU methods. 1) FedEraser [14], calibrates the historical updates
of retained clients, enabling the server to efficiently reconstruct the global model.
2) Rapid Retrain [16], utilizes gradient and curvature information to identify
more optimal descent directions, facilitating efficient retraining. 3) SGA-EWC
[27], proposes an efficient FU framework using reverse Stochastic Gradient As-
cent (SGA) and Elastic Weight Consolidation (EWC) to quickly adjust model
parameters and eliminate the influence of specific data.

Details of parameter settings. Before the unlearning process, FU is per-
formed for 100 rounds on 10 clients, using a Stochastic Gradient Descent (SGD)
optimizer with an initial learning rate of 0.01, and a batch size of 64. Addi-
tionally, we set the significance threshold as τ = 2 to more accurately infer the
labels.

Evaluation metrics. Like previous works[7,33], we employ the widely-used
Intersection over Union (IoU) method to evaluate the ASR of ULIA in inferring
the labels of the forgotten data. We perform 100 attack tests and calculate the
average ASR of ULIA. The ASR is calculated as follows:

ASR =
|Li

true ∩ Li
pred|

|Li
true ∪ Li

pred|
(13)
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Table 2: The impact of the quantity of forgotten samples on the ASR of ULIA.
1%, 2%, and 5% represent the percentage of samples requested to be forgotten,
relative to the client’s total local data.

Methods FedEraser Rapid Retrain SGA-EWC

Datasets L 1% 2% 5% 1% 2% 5% 1% 2% 5%

The attacker is aware of the number of label categories

MNIST
1 0.910 0.960 1.000 0.930 0.970 1.000 0.870 0.920 0.980
2 0.820 0.850 0.900 0.850 0.890 0.920 0.760 0.810 0.880
3 0.700 0.750 0.810 0.760 0.820 0.870 0.670 0.710 0.770

CIFAR
1 0.830 0.890 0.940 0.850 0.920 0.980 0.770 0.850 0.900
2 0.760 0.810 0.850 0.780 0.840 0.880 0.690 0.750 0.810
3 0.680 0.720 0.770 0.700 0.760 0.810 0.650 0.690 0.740

The attacker does not know the number of label categories

MNIST
1 0.825 0.886 0.918 0.838 0.891 0.933 0.783 0.848 0.887
2 0.783 0.833 0.872 0.827 0.868 0.907 0.697 0.745 0.803
3 0.665 0.718 0.761 0.729 0.778 0.814 0.642 0.675 0.719

CIFAR
1 0.778 0.847 0.902 0.793 0.853 0.916 0.747 0.806 0.843
2 0.713 0.773 0.813 0.748 0.798 0.843 0.658 0.693 0.732
3 0.648 0.691 0.735 0.662 0.714 0.759 0.623 0.648 0.668

where |Li
true∩Li

pred| represents the size of the intersection between the true label
set Li

true and the predicted label set Li
pred for the i-th attack test.

6.2 Attack Performance Evaluation

We set the number of categories of forgotten data labels to 1, 2, and 3, and per-
form attacks on three different FU methods at three levels, under two conditions:
whether the attacker knows the number of forgotten data labels. Meanwhile, the
quantity of forgotten samples is set to 10% of the target client’s data. The attack
performance of ULIA applied to typical unlearning methods on the MNIST and
CIFAR-10 datasets is reported in Table 1.

ULIA achieves 100% ASR for both class-level and client-level unlearning, be-
cause the large volume of forgotten data causes significant shifts in the model’s
parameters, making the inference easier. The changes in model weights and gra-
dients are directly correlated with the forgotten data. By analyzing the gradient
differences between the global model and local models, ULIA effectively identifies
the forgotten data. For sample-level unlearning, the ASR gradually decreases as
the number of forgotten data labels increases. However, on the MNIST dataset,
when the number of forgotten label categories is 1, the ASR reaches 95.8% on
FedEraser, 97.3% on Rapid Retrain, and 92.3% on SGA-EWC. This indicates
that when the number of forgotten label categories is small, our attack still
achieves strong performance, approaching 100%. Even with 3 forgotten label
categories, ULIA still achieves 73.8% ASR. Similarly, on the CIFAR-10 dataset,
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Table 3: Impact of the Non-IID Data Distribution. The attack is performed
under the condition that the quantity of forgotten samples accounts for 10% of
the client’s total local data.

Methods FedEraser Rapid Retrain SGA-EWC

Datasets L SampleClass Client Sample Class Client Sample Class Client

MNIST
1 0.872 0.955 0.918 0.893 0.964 0.932 0.834 0.892 0.878
2 0.828 0.914 0.858 0.852 0.934 0.872 0.775 0.848 0.812
3 0.735 0.872 0.798 0.755 0.902 0.822 0.645 0.798 0.745

CIFAR
1 0.812 0.914 0.868 0.835 0.925 0.882 0.765 0.864 0.825
2 0.714 0.885 0.808 0.742 0.908 0.824 0.692 0.805 0.778
3 0.625 0.834 0.752 0.652 0.845 0.782 0.585 0.748 0.695

ULIA maintains 69.2% ASR under the same conditions. This difference is small
compared to the ASR when attacker knows the number of forgotten data labels,
indicating that ULIA is still able to effectively infer the labels even without com-
plete information, demonstrating strong attack performance and adaptability.

6.3 Sensitivity Evaluation

In this subsection, we study the impact of three key factors, the quantity of
forgotten samples, the non-IID data distribution and the significance threshold.

Impact of the Quantity of Forgotten Samples. The quantity of forgotten
samples affects the magnitude of model parameter changes before and after
unlearning. Therefore, we set the quantity of forgotten samples to 1%, 2%, and
5% to evaluate ULIA. The impact of the quantity of forgotten samples on the
ASR of ULIA is shown in Table 2.

The experimental results show that as the number of forgotten samples in-
creases, the ASR of ULIA under different FU methods improves. Taking the
MNIST dataset as an example, on FedEraser, when the number of forgotten
label categories is 1 and the forgotten sample percentage is 1%, the ASR of
ULIA is 82.50%, while when the forgotten sample percentage is 5%, the ASR of
ULIA is 91.83%. This is because as the number of forgotten samples increases,
the gradient differences corresponding to the labels become more pronounced.
However, even with 3 forgotten label categories and only 1% of the quantity of
forgotten samples, ULIA can still achieve the ASR of 64.17%. Therefore, even
in situations where the quantity of forgotten samples is small and the number
of forgotten label categories is large, ULIA is still capable of effectively handling
and adapting to these conditions.

Impact of the Non-IID Data Distribution. The distribution of data across
clients significantly influences the performance of ULIA. In non-IID settings, the
skewed data distribution causes uneven parameter updates, complicating the
inference process. To evaluate the impact of non-IID distribution on ULIA, we
conduct experiments under varying levels of data heterogeneity. The effect on
the ASR is shown in Table 3.
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(a) On the MNIST dataset.
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(b) On the CIFAR-10 dataset.
Fig. 2: The impact of different significance threshold on the ASR of ULIA.

In the non-IID data environment, the ASR of ULIA is generally lower than
that in the IID setting. This is due to the heterogeneity of the non-IID data dis-
tribution, which leads to large differences in data characteristics across clients,
affecting the global model update process and making it more difficult to infer
forgotten data. Nevertheless, ULIA still maintains a certain attack performance
in the non-IID environment. On the MNIST dataset, the ASR ranges from 64.5%
to 96.4%, while on the CIFAR-10 dataset, it ranges from 58.5% to 92.5%, demon-
strating its strong adaptability and considerable attack performance.
Impact of Different Significance Threshold τ . The significance threshold
τ is used to filter candidate forgotten label categories, and it has a significant
impact on the ASR. Therefore, we performed experiments with different values
of τ , using ULIA applied in the Rapid Retrain method as an example. The ex-
perimental results on the MNIST dataset are shown in Figure 2(a), while the
results on the CIFAR-10 dataset are shown in Figure 2(b).

The experimental results indicate that as τ increases, the ASR first increases
and then decreases. Around τ = 2, ULIA achieves the best attack performance,
regardless of whether the number of forgotten label categories is 1, 2, or 3. There-
fore, selecting an appropriate value of τ is crucial for the attack performance of
ULIA. If τ is set too high, some smaller but still important gradient changes may
be missed, thus affecting the attack effectiveness. Conversely, if τ is set too low,
too many label categories may be incorrectly inferred as forgotten categories,
which could compromise the accuracy of the attack.

7 Conclusion

In this paper, we have analyzed the label inference attacks against Federated
Unlearning (FU). Our research has uncovered a significant privacy vulnerability
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within the FU framework. We have introduced ULIA, a novel label inference at-
tack that can infer the labels of unlearning data at three FU levels: sample-level,
class-level, and client-level, by examining the model variations caused by FU.
Our experiments show that ULIA demonstrates outstanding attack performance
and adaptability. In future work, we will explore defense strategies on FU that
protect against the label inference attacks, contributing to the development of
more robust privacy-preserving techniques in FL systems.
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