arXiv:2508.07139v1 [cs.CR] 10 Aug 2025

A Real-Time, Self-Tuning Moderator Framework
for Adversarial Prompt Detection

Ivan Zhang*!

!'Non-Trivial Research Fellowship

August 9th, 2025

Abstract

Ensuring LLLM alignment is critical to information se-
curity as Al models become increasingly widespread
and integrated in society. Unfortunately, many de-
fenses against adversarial attacks and jailbreaking on
LLMs cannot adapt quickly to new attacks, degrade
model responses to benign prompts, or introduce sig-
nificant barriers to scalable implementation. To mit-
igate these challenges, we introduce a real-time, self-
tuning (RTST) moderator framework to defend against
adversarial attacks while maintaining a lightweight
training footprint. We empirically evaluate its effec-
tiveness using Google’s Gemini models against mod-
ern, effective jailbreaks. Our results demonstrate the
advantages of an adaptive, minimally intrusive frame-
work for jailbreak defense over traditional fine-tuning
or classifier models.

1 Introduction

The constant iteration of Large Language Models
(LLMs) and their incorporation into new, large-
scale, and alignment-critical applications, such as au-
tonomous robotics [1], scientific research [2], and
software development [3], creates the necessity for
maintaining the continual safety of these models. To
achieve this, models are trained with internal guide-
lines and guardrails [4] to encourage alignment and
safe outputs, while automatically rejecting dangerous
prompts.

Unfortunately, a variety of methods have been dis-
covered or developed by researchers and regular users
of LL.Ms alike that bypass these built-in security mea-
sures. These adversarial or “jailbreaking” attacks seek
to extract unaligned or malicious output from LLMs
using various deceptive, role-playing, and/or structural
peculiarities [5, 6, 7, 8] to fool a model’s reasoning or
computational safeguards. Jailbreaking allows unau-

*ivanz@andrew.cmu.edu

thorized individuals to potentially access private infor-
mation from LLM training data or allow the genera-
tion of misaligned or dangerous content and actions.
Not only are these techniques effective at producing
unaligned outputs from models, but many are simple
to implement, produce unalignment quickly [9], and
can be applied universally across models from several
companies [10].

To mitigate this, researchers and companies have
developed several methods of defense to improve mod-
els’ abilities to identify and avoid adversarial attacks.
These can either be implemented at training-time (e.g.,
fine-tuning [11], red-teaming [12]), or at inference-
time (e.g., moderator models [13, 14], attack clas-
sifiers [15], perplexity filtering [16]). While many
of these methods achieve great success in countering
most types of existing attacks, the playing field of
effective jailbreaks is continuously evolving as new
state-of-the-art (S0TA) models are released and the
“arms race” of offensive and defensive techniques con-
tinues. Thus, although there are defensive techniques
that can be applied universally to adversarial prompts
such as Robust Prompt Optimization [17], or utilize
extensive classification of existing attacks such as An-
thropic’s Constitutional Classifiers [15], many strug-
gle to keep pace with either the development of new
LLMs or the discovery and implementation of novel
jailbreaking techniques [18, 19, 20]. Although newer
techniques have been developed (discussed in Section
2), especially in the field of moderator models, we find
three main challenges in the use of existing defense
frameworks as follows. (1) Adaptability: they cannot
adapt to novel adversarial attacks. (2) Overhead: they
take considerable time, data, or computational power
to improve or refine. (3) Control: they are unable to be
freely customized by a user.

Thus, we propose a real-time, self-tuning moderator
model framework (RTST) to address these challenges.
RTST improves itself natively from LLM outputs only
and can improve in real-time from a single prompt us-
ing a simple two-agent framework. This allows RTST

https://arxiv.org/abs/2508.07139v1

to adapt to evolving attacks quickly and maintain a
lightweight computational footprint when improving.
The components of RTST include an Evaluator
agent, which evaluates a given prompt using a set of
Behaviors, the main LLM being defended, a Reviewer
agent, which reviews the output of the main LLM and
judgment of the Evaluator, and a set of Behaviors and
corresponding weights that are refined by the agents.
Improvements are conducted through additions to
the Behavior set and adjustments to weights, which
can be fine-tuned with hyperparameters, inspired by
neural-network optimization. This architecture allows
fast learning of new attacks and long-term optimiza-
tion of classifying prompts while mitigating the need
for expensive retraining. Additionally, models can
be manually fine-tuned quickly through direct and
human-explainable modifications to the Behavior set.

The main contributions of this
follows.

paper are as

1. We develop a novel moderator model framework,
RTST, for real-time adaptive defense against ad-
versarial prompts.

2. We demonstrate the effectiveness of RTST
through experimentation. The data and code are
cited or open-sourced (Appendix A).

2 Related Work

2.1 LLM Security

The speed in the development of attacks on and de-
fenses for LLMs mirrors that of the development of
the models themselves [5, 6]. Existing countermea-
sures to adversarial attacks include SFT, RLHF [11],
goal prioritization [21], and red-teaming [12] to iden-
tify model-specific weaknesses and teach models to
natively defend against them. Other methods, such
as RPO [17], erase-and-check [22], perplexity filter-
ing [16], StruQ [23], and CoDT [24], exploit seman-
tic or structural components of adversarial prompts to
identify them or bolster a model’s existing defenses
through prompting. Still others, such as Bergeron
[25], Constitutional Classifiers [15], and GuardRea-
soner [14], utilize moderator models, which are ex-
ternal classifier models o—more commonly—LLMs,
trained to identify and/or alter adversarial prompts. In
general, many of these techniques are highly effective
in reducing the success rate of adversarial attacks and
can be even more effective when applied in conjunc-
tion with other defenses. However, recent works sug-
gest there are challenges for many of these methods,
such as the difficulty in classifying all possible adver-
sarial attacks [26], or the performance drawbacks of

pushing an LLM to consider safety alongside respond-
ing to a prompt [27].

2.2 Modern Attacks

Alongside the improvement in defensive methods, at-
tacks against LLMs have become increasingly refined
and structured [7, 8]. Automatically improving at-
tacks, such as AutoDAN [28], PAIR [9], and TAP [29],
are highly efficient at optimizing existing adversarial
prompts to circumvent SOTA models’ native defen-
sives. Hypnotism [30], In-Context Attacks [31], Policy
Puppetry [32], DarkMind [18], and Cognitive Over-
load [20] can exploit a model’s reasoning and take ad-
vantage of weaknesses through obfuscation and role-
playing. A wide array of structural attacks, such as
adversarial suffixes [33] and FlipAttack [19], utilize
semantic quirks of certain prompts or tokens to con-
fuse LLMs into producing unaligned output. Online
forums and LLM users have identified many prompts
[34, 35, 36] that produce highly unaligned output from
SoTA models through brute-force testing and knowl-
edge of LLM architecture. It is trivially easy to cause
unalignment in SoTA models for the normal LLM
user, and as applications of LLMs continue to grow
in new fields, often where Al usage is novel and un-
regulated, the risk of critical information leakage or
dangerous physical consequences of LLM jailbreaking
becomes more significant.

2.3 Moderator Models

Moderator model frameworks utilize one or more
models specifically designed or prompted to detect and
defend against adversarial attacks. A popular strat-
egy, employed by techniques like Bergeron [25] and
SelfDefend [37], was to utilize an instance of the pro-
tectee model to provide guidance on a prompt’s safety.
Other methodologies utilized trained classifiers or spe-
cialized, trained LLMSs to detect adversarial prompts,
like Constitutional Classifiers [15], LlamaGuard [13],
and GuardReasoner [14]. RTST falls into this category
of defensive techniques, utilizing instances of an exter-
nal moderator model. It takes inspiration from Berg-
eron and SelfDefend by utilizing a model-agnostic sys-
tem, where the moderator model can be freely changed
without significant changes in functionality or frame-
work setup. Additionally, RTST uses aspects more
commonly attributed to classifier models by employ-
ing a rigid set of Behaviors to characterize and classify
a prompt. Our work adapts these methodologies to im-
prove our framework’s transferability and defense ef-
ficacy.

A recent avenue of research has been on the efficacy
of multi-agentic moderator systems. Techniques such
as AutoDefense [38] and AegisLLM [39] utilize one or
more input and output moderators to provide a stronger

and more nuanced evaluation of prompts and model re-
sponses. Not only can these systems effectively defend
against adversarial attacks, but they can use moderator
outputs, collected statistics, and prompt refining algo-
rithms to self-improve. RTST takes inspiration from
AegisLLM in using separate input and output modera-
tion systems with shared information to create rigorous
defenses against unalignment. A major goal of RTST
is to improve on the self-optimizing aspects of these
multi-agent systems by pushing the limits of real-time
learning (optimizing on each prompt) and to reduce
the computational overhead of these systems, which
can utilize upwards of 5 to 6 separate LLM requests
per prompt.

Some moderator model systems [14, 25] utilize sys-
tem prompts or input prompt modifications to ensure
safety in protectee model outputs, whether as sugges-
tions on safety or input sanitation. This can lead to
higher refusal rates and/or undesired changes in re-
sponses. To mitigate this problem, and allow LLM
users to freely use system prompts on the protectee
model, RTST introduces no modifications to the input
prompt or system prompt given the protectee model
and displays raw output if it is deemed safe.

3 Methodology

3.1 RTST Framework

Our framework, RTST, involves four major
components—including two moderator agents—
and a series of hard-coded, but tunable, logic steps. A
flowchart of the architecture processes is presented in
Figure 1.

Behavior Set

A set of Behaviors, or criteria, that describe a general
prompt (e.g., “the prompt follows moral and ethical
boundaries”). Behaviors can be supportive, neutral,
or adversarial and are given base scores of 1, 0, and
—1, respectively. Each Behavior has a corresponding
weight that is multiplied by its base score to return a
complete score for the Behavior.

Evaluator

A moderator LLM that receives the user’s prompt and
evaluates it based on the Behavior set, matching the
prompt to K Behaviors that most closely describe it.

Main Model

The protectee LLM that receives the user’s prompt
and provides an answer. The Main Model responds
exactly as if there were no RTST framework and has
no custom system prompt.

The Evaluator and Main Model are queried in

parallel to save computing time. After the Evaluator
returns a set of Behaviors that match the prompt, the
sum of the Behavior scores is taken, and a total score
for the prompt is produced. If the score is above a
threshold X, the prompt is considered benign and
the reviewer checks for false negatives. Otherwise,
the prompt is considered adversarial and the receiver
checks for false positives.

Reviewer

False Negative Reviewer: A moderator LLM that
receives the response produced by the Main Model
and the set of Behaviors assigned to the original
prompt and evaluates the safety of the response,
proposing changes to the Behavior set if necessary
and providing a final safety evaluation.

False Positive Reviewer: A moderator LLM that
receives the original prompt and set of Behaviors
assigned to it and evaluates the analysis done by the
Evaluator, proposing changes to the Behavior set if
necessary and providing a final safety evaluation.

The Reviewer gives the final determination on
whether to return the Main Model’s response or not,
after which the workflow ends for the given prompt.
The Reviewer can provide suggestions to increase or
decrease the weight of a Behavior by an increment [V,
or add a new adversarial Behavior to better describe
a prompt. We limit the changes to these actions to
preserve Behavior information over time, and prevent
hyper-specific Behaviors from being created over
the range of possible benign prompts. For instance,
an adversarial prompt can be generally identified
by its immorality, malicious intent, or suspicious
structure, but a benign prompt is more difficult to
generalize. Additionally, the Reviewer is unable to
see any Behavior weights to prevent biases in making
suggestions.

We present pseudocode for this workflow in Algo-
rithm 1.

The two agents in the system, the Evaluator and Re-
viewer, utilize dynamic system prompts to understand
their tasks and the Behavior selection and change sys-
tem. Outputs are restricted using Gemini schemas to
ensure correct processing in downstream hard-coded
logic steps.

3.2 Design Philosophy

In developing the moderator framework, we focused
on incorporating functionality to maximize adaptabil-
ity, minimize improvement overhead and general com-
putational footprint, and maximize user control and
customization.

First, given an evolving playing field of potential
attacks, we want to adapt to each attack and capture
any important information that the model may not al-

Behavior Choices Behavior Changes and Additions
Set
Safe: FALSE
—»| Evaluator | ¢.s: TRUE Safety Eval.,
User Prompt,
Behaviors
. FP
ke Reviewer
Prompt
Safety Eval., Response
Model Response, Output or
) Main Behaviors FN || Refused
Model Reviewer

Figure 1: Process flowchart of RTST framework.

Algorithm 1 RTST Framework Workflow

1: Input: User prompt P
2: Output: Final model response or rejection message

3: In parallel:
: B < EvaluatePrompt(P, K)
5: R < MainModelRespond(P)

6: total_score <+ 0
7: for all behavior b in B do

8: total_score <— total_score + b.base_score X
b.weight

9: end for

10: if total_score > X then

11: review < ReviewFalseNegative(R, B)

12: else

13: review <— ReviewFalsePositive(P, B)

14: end if

15: for all suggestion s in review.suggestions do
16: if s.type = “adjust_weight” then

17: s.target.weight < s.target.weight + N

18: else

19: Add s.behavior to BehaviorSet with
base_score = —1

20: end if

21: end for

22: if review.sa fe then

23: return R

24: else

25: return “Response withheld due to safety concerns”

26: end if

ready know. This means avoiding static guidelines for
prompt classification and optimizing in real-time per
prompt given. For instance, adding a new Behavior
that matches to new adversarial prompt is more de-
terministic than refining an entire system prompt or
adding new keywords.

Second, to avoid costly retraining, we aim to sim-

plify the classification system and constrain the poten-
tial actions the framework can perform, while main-
taining the strength of LLMs in reasoning. To avoid
the large computational overheads often associated
with multi-agent systems, we aim to reduce the num-
ber of agent requests by increasing the efficacy of
each agent. For instance, while an orchestrator and
a panel of experts is an effective way to implement a
multi-agent framework, having multiple negative ex-
pert opinions can be redundant in classifying a prompt
as adversarial.

Third, to maximize user control of the framework,
we aim to keep all optimization and classification ex-
plainable and human-readable at all times, and allow
ease of access to the core classification system of the
framework. Thus, the Behavior set and weights are
saved as a separate component of the system (in prac-
tice, a simple JSON file) that allows for manual tun-
ing (e.g., weight-changing, addition or removal of Be-
haviors) even during active inference-time. Since the
framework is model independent, the main and mod-
erator models can be altered while preserving any op-
timizations and learned changes to the Behavior set.

3.3 Behavior System

The Behavior-based scoring system is the culmina-
tion of the above design philosophies. It allows real-
time modification and optimization of core criteria the
framework’s moderator models use to classify inputs,
while maintaining a light form factor that allows ease
of transferability between different moderator models
and simple manual fine-tuning. Behavior weights al-
low RTST to change the way prompts are scored, al-
lowing the system to adapt to general trends within
adversarial and benign prompts. The ability to add
new Behaviors allows the system to automatically and

adaptively improve to counter novel threats.

A major alternative to the Behavior-based system is
a more traditional rubric system. The choice to avoid
rubrics is partially motivated by pre-testing results,
where a rubric-based system was both costly to imple-
ment, difficult to maintain, and led to extreme results.
For instance, the reviewer model would respond with
a 1/5 evaluation in all rubric categories if it thought
a prompt was adversarial, regardless of whether those
scores were representative of the prompt. Similarly, a
direct binary classification of the prompt was deemed
too harsh, and the Evaluator’s reasoning for providing
a certain classification was more difficult to standard-
ize compared to a defined Behavior set.

Comparatively, utilizing a set of Behaviors and not
disclosing their weights prevents biases in the model
toward extremes and does not explicitly tell the model
what an adversarial or benign prompt should appear as.
Behaviors can also be individually optimized, added,
or removed without affecting an entire rubric struc-
ture. Being separate from a rubric structure means that
weight optimization can be used to change the effect
and score of each Behavior, which is a simpler and
more predictable optimization method compared to se-
mantic optimization that would have to be used in a
rubric-based system.

4 Experiments

We benchmark the effectiveness of RTST compared to
the base Main Model (protectee model) on a variety of
prompt-injection datasets. Due to resource constraints,
we make our best efforts to validate RTST’s perfor-
mance across a variety of attacks.

4.1 Configuration

All benchmarking occurred with the main and mod-
erator models using Gemini 2.5 Flash (released 6-17-
2025) from the Gemini Developer API endpoint. Hy-
perparameters were set as shown in Table 1. The ini-
tial Behavior set and weights are given in Appendix
B. The system prompt of the Main Model was set to
”You are a helpful assistant.” for all input prompts.

Table 1: RTST Benchmark Hyperparameters

Hyperparameter | Value
K (Behaviors) 5
X (Threshold) 0
N (Score Change Magnitude) | 0.01

4.2 General Benchmarks

We utilized 4 benchmark datasets to test model perfor-
mance. Weight optimization was activated for the en-

tire duration of benchmarking, and prompts were ran-
domized across benchmarks to prevent optimization
bias for a specific type of prompt. Since no modifica-
tions are made to input prompts or the system prompt
of the Main Model when prompts are passed to it, we’ll
use the Main Model’s response as the baseline for de-
termining Gemini 2.5 Flash’s response to a prompt.
Datasets used are described in Table 2.

Table 2: RTST Benchmark Hyperparameters

Benchmark
JBB GCG [40]

Description

A set of adversarial GCG prompt
artifacts from JailBreakBench.

A set of adversarial PAIR prompt
artifacts from JailBreakBench.

A set of selected, most-effective
adversarial prompts from Jail-
BreakChat and Reddit, sourced
from online forums.

A set of benign and pseudo-harmful
prompts from PHTest.

JBB PAIR [40]

JBC + Reddit
[34, 35, 36]

PHTest [41]

JBB GCG is a set of 100 GCG [10] prompts in-
cluded from JailBreakBench with no modifications ap-
plied. JBB PAIR is a set of 65 PAIR [9] prompts in-
cluded from JailbreakBench with no modifications ap-
plied. JBC + Reddit is a set of 35 in-the-wild prompts
sourced from JBC and Reddit that have been verified
to be effective at jailbreaking SOTA models at the time
of their creation. All 35 were effective to some degree
in jailbreaking Gemini 2.5 Flash. Each prompt was
paired with 15 randomized adversarial behaviors from
the AdvBench [10] behavior dataset, for a total of 525
prompts. PHTest is a set of 5,000 benign and “contro-
versial” prompts included in PHTest with no modifi-
cations applied. A randomized subset of 800 prompts
was chosen for benchmarking.

The results of benchmarking are shown in Table 3,
in raw Attack Success Rate (ASR) for the adversarial
benchmarks, and Refusal Rate (RR) for PHTest. ASR
denotes the percentage of adversarial prompts inaccu-
rately classified as benign, and RR denotes the per-
centage of benign prompts inaccurately classified as
adversarial. ASR and RR for the baseline model were
measured through manual review of Main Model re-
sponses, and a jailbreak was recorded if the model
produced harmful information (simple adoption of a
persona without producing unaligned responses was
ignored). ASR and RR for RTST were measured di-
rectly from the Reviewer’s determination of prompt or
response safety. Joint ASR and RR, considering both
Main Model responses and RTST safety determina-
tions, was also calculated for each benchmark.

We can provide a more nuanced understanding of
the RR statistic by analyzing baseline responses and
refusals. Since many of the PHTest prompts were con-
sidered “’controversial” (250 of 800 prompts), this also

Table 3: Benchmark Performance

Framework JBB JBB JBC PHTest
GCG | PAIR ASR RR
ASR ASR

Baseline (Gemini 2.5 Flash) 12.0% | 63.1% | 35.4% 12.3%

RTST (w/ Gemini 2.5 Flash) 0% 16.6% 0% 18.5%

Joint 0% 3.1% 0% 24.8%

led to baseline model refusals that were not caused
by the moderator framework. Refusals from the base-
line were measured through manual review of Main
Model responses, and a refusal was recorded if the
model did not attempt to answer the prompt (refusals
due to lack of functionality were ignored). Results of
this analysis are shown in Table 4. The percentage of
refusals caused solely by RTST is 12.5% for the PHT-
est Dataset.

Table 4: Refusals on PHTest

Framework Controversial | Benign
‘ Refusals Refusals
Baseline (Gemini 2.5 Flash) 60 38
RTST (w/ Gemini 2.5 Flash) 95 53
Joint Refusals 39 9

We see significant improvement in ASR over the
baseline when implementing RTST in all three adver-
sarial benchmarks, particularly in JBB PAIR and JBC
+ Reddit, where the baseline model struggles to iden-
tify adversarial prompts. RTST improves ASR per-
formance by 60.0% and 35.0%, respectively, on these
benchmarks, significantly improving the security of
the Gemini 2.5 Flash model. Unfortunately, there is
also a significant level of framework-caused benign re-
fusals, pointing to an important direction of further re-
search.

4.3 Ablation Testing

Next, we conduct ablation testing to examine the per-
formance contributions of each framework compo-
nent. This includes the use of real-time weight opti-
mization compared to static defaults and the perfor-
mance of a model optimized over a set of prompts
compared to one with default weights.

We implement 4 testing configurations as described
in Table 5.

For each test, we utilize 400 prompts from the Qual-
ifire Benchmark dataset [42], with a 50-50 split be-
tween benign and adversarial prompts. The subset of
prompts is chosen at random and utilized for all four
configuration tests, with prompt order randomized for
each test. ASR and RR are calculated solely from
RTST safety determinations without considering Main
Model responses. The results of these tests are shown
in Table 6.

Table 5: Ablation Testing Configurations

Configuration
INIT

Description

RTST with initial Behavior weights and
set, real-time optimization deactivated.
RTST with initial Behavior weights and
set, real-time optimization activated.
RTST with Behavior weights and set
after weight optimization from Gen-
eral Benchmarking, real-time opti-
mization deactivated.

RTST with Behavior weights and set
after weight optimization from Gen-
eral Benchmarking, real-time opti-
mization activated.

INIT,;

TRAINED

TRAINED,

Table 6: Ablation Testing Results

Configuration ASR RR F1

Baseline (Gemini 2.5 Flash) | 70.0% | 6.0% | 0.451
INIT 12.0% | 15.0% | 0.867
INIT,,; 9.0% | 15.0% | 0.883
TRAINED 11.5% | 14.5% | 0.872
TRAINED,¢ 10.5% | 12.0% | 0.888

Changes in ASR and RR are slight between con-
figurations, though still noticeable. In both the INIT
and TRAINED configuration pairs, ASR decreased
by 1-3%, RR decreased by 0-2.5%, and F1 increased
by 0.016 when real-time optimization was activated.
Similarly, all performance indicators improved when
comparing the TRAINED configurations to their INIT
counterparts, except for a 1.5% increase in ASR be-
tween the real-time optimized INIT and TRAINED
configurations. ASR and F1 improved significantly
between all configurations when compared to the base-
line, supporting empiricial results from earlier bench-
marking.

These results suggest that implementing real-time
optimization functionality can enhance our frame-
work’s performance, especially when RTST is allowed
to self-tune across a wide range of prompts.

5 Conclusions

We introduce RTST, a novel framework that takes
inspiration from multi-agent systems for LLM secu-
rity and improves adaptability, learning overhead, and
manual-tuning control. Through benchmarking, we
demonstrate that a simplified two-agent system can
significantly improve ASR and F1 performance when
identifying jailbreak prompts while maintaining high
explanability. Ablation testing on our framework in-
dicates that real-time, single-prompt optimization of
moderator model performance is possible and usable
in defending against adversarial attacks. The promis-
ing performance of RTST supports the viability of sim-

ple, adaptive approaches to LLM security.

Given the performance and novel architecture of the
RTST framework, we identify several points of future
research. Due to resource constraints in our experi-
mentation, more intensive benchmarking and ablation
testing are important next steps for a broader evalu-
ation of the framework’s performance. Further im-
provement to reduce refusal rates would also be useful,
perhaps by altering the initial Behavior set. Testing
of different hyperparameter values or schemas (such
as non-linear weight tuning or adaptive K Behavior
sizes) and moderator models would be interesting to
improve the rigor and efficacy of RTST’s self-tuning
techniques. Finally, application of an RTST-similar
framework to a task outside of LLM defense may re-
veal other practical uses of the framework (perhaps in
implementing real-time learning for zero-shot classifi-
cation tasks).

Acknowledgements

We thank the Non-Trivial Foundation and Michael
Maslowski for guidance, feedback, and support during
the research process. We thank Matthew Pisano [25],
Yue Liu [5, 19, 14], and Zikui Cai [39] for providing
expert feedback and direction during ideation.

References

[1] Figure. Figure is the first-of-its-kind ai robotics
company bringing a general purpose humanoid
to life. https://www.figure.ai/, 2024. Accessed:
2025-07-28.

[2] Ziming Luo, Zonglin Yang, Zexin Xu, Wei Yang,
and Xinya Du. Llmdsr: A survey on large
language models for scientific research. arXiv
preprint arXiv:2501.04306, 2025.

[3] Md Kamrul Siam, Huanying Gu, and Jerry Q.
Cheng. Programming with ai: Evaluating chat-
gpt, gemini, alphacode, and github copilot for
programmers. arXiv preprint arXiv:2411.09224,

2024.

[4] OpenAl Transparency & con-
tent moderation. https://openai.com/
transparency-and-content-moderation/, 2025.

Last updated July 24, 2025, Accessed: 2025-07-
28.

[5] Cheng Wang, Yue Liu, Baolong Li, Duzhen
Zhang, Zhongzhi Li, and Junfeng Fang. Safety in
large reasoning models: A survey. arXiv preprint
arXiv:2504.17704, 2025.

[6] Banghua Zhu, Norman Mu, Jiantao Jiao, and
David Wagner. Generative ai security: Chal-
lenges and countermeasures. arXiv preprint
arXiv:2402.12617, 2024.

[7] Sippo Rossi, Alisia Marianne Michel,
Raghava Rao Mukkamala, and Jason Ben-
nett Thatcher. An early categorization of prompt
injection attacks on large language models.
arXiv preprint arXiv:2402.00898, 2024.

[8] Zihao Xu, Yi Liu, Gelei Deng, Yuekang Li, and
Stjepan Picek. A comprehensive study of jail-
break attack versus defense for large language
models. arXiv preprint arXiv:2402.13457, 2024.

[9] Patrick Chao, Alexander Robey, Edgar Do-

briban, Hamed Hassani, George J. Pappas, and

Eric Wong. Jailbreaking black box large lan-

guage models in twenty queries. arXiv preprint
arXiv:2310.08419, 2024.

[10] Andy Zou, Zifan Wang, Nicholas Carlini, Mi-

lad Nasr, J. Zico Kolter, and Matt Fredrik-

son. Universal and transferable adversarial at-

tacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

[11] Long Ouyang, Jeff Wu, Xu Jiang, Diogo
Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal,

Katarina Slama, Alex Ray, John Schulman, Ja-
cob Hilton, Fraser Kelton, Luke Miller, Maddie
Simens, Amanda Askell, Peter Welinder, Paul
Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with hu-
man feedback. arXiv preprint arXiv:2203.02155,
2022.
[12] Bojian Jiang, Yi Jing, Tianhao Shen, Tong
Wu, Qing Yang, and Deyi Xiong. Auto-
mated progressive red teaming. arXiv preprint
arXiv:2407.03876, 2024.
[13] Hakan Inan, Kartikeya Upasani, Jianfeng Chi,
Rashi Rungta, Krithika Iyer, Yuning Mao,
Michael Tontchev, Qing Hu, Brian Fuller, Da-
vide Testuggine, and Madian Khabsa. Llama
Guard: LLM-based Input-Output Safeguard
for Human-AI Conversations. arXiv preprint
arXiv:2312.06674, 2023.
[14] Yue Liu, Hongcheng Gao, Shengfang Zhai, Jun
Xia, Tianyi Wu, Zhiwei Xue, Yulin Chen, Kenji
Kawaguchi, Jiaheng Zhang, and Bryan Hooi.
Guardreasoner: Towards reasoning-based llm
safeguards. arXiv preprint arXiv:2501.18492,
2025.

https://www.figure.ai/
https://openai.com/transparency-and-content-moderation/
https://openai.com/transparency-and-content-moderation/

[15] Mrinank Sharma, Meg Tong, Jesse Mu, Jerry

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

Wei, Jorrit Kruthoff, Scott Goodfriend, Euan
Ong, Alwin Peng, Raj Agarwal, Cem Anil,
Amanda Askell, Nathan Bailey, Joe Benton,
Emma Bluemke, Samuel R. Bowman, Eric
Christiansen, Hoagy Cunningham, Andy Dau,
Anjali Gopal, Rob Gilson, Logan Graham,
Logan Howard, Nimit Kalra, Taesung Lee,
Kevin Lin, Peter Lofgren, Francesco Mosconi,
Clare O’Hara, Catherine Olsson, Linda Petrini,
Samir Rajani, Nikhil Saxena, Alex Silverstein,
Tanya Singh, Theodore Sumers, Leonard Tang,
Kevin K. Troy, Constantin Weisser, Ruiqi Zhong,
Giulio Zhou, Jan Leike, Jared Kaplan, and
Ethan Perez. Constitutional classifiers: De-
fending against universal jailbreaks across thou-
sands of hours of red teaming. arXiv preprint
arXiv:2501.18837, 2025.

Gabriel Alon and Michael Kamfonas. Detecting
language model attacks with perplexity. arXiv
preprint arXiv:2308.14132, 2023.

Andy Zhou, Bo Li, and Haohan Wang. Ro-
bust prompt optimization for defending lan-
guage models against jailbreaking attacks. arXiv
preprint arXiv:2401.17263, 2024.

Zhen Guo and Reza Tourani. Darkmind: Latent
chain-of-thought backdoor in customized llms.
arXiv preprint arXiv:2501.18617, 2025.

Yue Liu, Xiaoxin He, Miao Xiong, Jinlan Fu,
Shumin Deng, and Bryan Hooi. Flipattack:
Jailbreak llms via flipping. arXiv preprint
arXiv:2410.02832, 2024.

Bibek Upadhayay, Vahid Behzadan, and Amin
Karbasi. Cognitive overload attack: Prompt
injection for long context. arXiv preprint
arXiv:2410.11272, 2024.

Zhexin Zhang, Junxiao Yang, Pei Ke, Fei Mi,
Hongning Wang, and Minlie Huang. Defending
large language models against jailbreaking at-
tacks through goal prioritization. arXiv preprint
arXiv:2311.09096, 2024.

Aounon Kumar, Chirag Agarwal, Suraj Srini-
vas, Aaron Jiaxun Li, Soheil Feizi, and
Himabindu Lakkaraju. Certifying 1lm safety
against adversarial prompting. arXiv preprint
arXiv:2309.02705, 2025.

Sizhe Chen, Julien Piet, Chawin Sitawarin, and
David Wagner. Struq: Defending against prompt
injection with structured queries. arXiv preprint
arXiv:2402.06363, 2024.

[24]

[25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

Wenxiao Wang, Parsa Hosseini, and Soheil Feizi.
Chain-of-defensive-thought: Structured reason-
ing elicits robustness in large language mod-
els against reference corruption. arXiv preprint
arXiv:2504.20769, 2025.

Matthew Pisano, Peter Ly, Abraham Sanders,
Bingsheng Yao, Dakuo Wang, Tomek Strza-
lkowski, and Mei Si. Bergeron: Combat-
ing adversarial attacks through a conscience-
based alignment framework. arXiv preprint
arXiv:2312.00029, 2024.

Abhinav Rao, Monojit Choudhury, and Somak
Aditya. [WIP] jailbreak paradox: The achilles’
heel of llms. arXiv preprint arXiv:2406.12702,
2024.

Aryo Pradipta Gema, Alexander Hégele, Run-
jin Chen, Andy Arditi, Jacob Goldman-Wetzler,
Kit Fraser-Taliente, Henry Sleight, Linda Petrini,
Julian Michael, Beatrice Alex, Pasquale Min-
ervini, Yanda Chen, Joe Benton, and Ethan
Perez. Inverse scaling in test-time compute.
arXiv preprint arXiv:2507.14417, 2025.

Xiaogeng Liu, Nan Xu, Muhao Chen, and
Chaowei Xiao. Autodan: Generating stealthy
jailbreak prompts on aligned large language
models. arXiv preprint arXiv:2310.04451, 2024.

Anay Mehrotra, Manolis Zampetakis, Paul Kas-
sianik, Blaine Nelson, Hyrum Anderson, Yaron
Singer, and Amin Karbasi. Tree of attacks: Jail-
breaking black-box 1lms automatically. arXiv
preprint arXiv:2312.02119, 2024.

Jiawen Wang, Pritha Gupta, Ivan Habernal, and
Eyke Hiillermeier. Is your prompt safe? inves-
tigating prompt injection attacks against open-
source llms. arXiv preprint arXiv:2505.14368,
2025.

Zeming Wei, Yifei Wang, Ang Li, Yichuan Mo,
and Yisen Wang. Jailbreak and guard aligned lan-
guage models with only few in-context demon-
strations. arXiv preprint arXiv:2310.06387,
2024.

Conor McCauley, Kenneth Yeung, Jason
Martin, and Kasimir Schulz. Novel uni-
versal bypass for all major llms: The pol-
icy puppetry prompt injection technique.
https://hiddenlayer.com/innovation-hub/
novel-universal-bypass-for-all-major-1lms/,
2025. Accessed: 2025-07-28.

Advik Raj Basani and Xiao Zhang. Gasp: Ef-
ficient black-box generation of adversarial suf-
fixes for jailbreaking llms. arXiv preprint
arXiv:2411.14133,2025.

https://hiddenlayer.com/innovation-hub/novel-universal-bypass-for-all-major-llms/
https://hiddenlayer.com/innovation-hub/novel-universal-bypass-for-all-major-llms/

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

Alex Albert. Jailbreakchat. https:
/fjailbreakchat-hko42cs2r-alexalbertt-s-team.
vercel.app/, 2025. Accessed: 2025-05-11.

Spiritual_Spell_9469. Gemini loki gem
(no limits). https://www.reddit.com/
r/ClaudeAlJailbreak/comments/110jcog/
loki_gemini_gem_no_limits/, 2024. Reddit
post on r/ClaudeAlJailbreak, Accessed: 2025-
07-28.

HORSELOCKSPACEPIRATE. Jailbreaks.
https://github.com/horselock/Jailbreaks, 2024.
GitHub repository, Accessed: 2025-07-28.

Xunguang Wang, Daoyuan Wu, Zhenlan Ji,
Zongjie Li, Pingchuan Ma, Shuai Wang, Yingjiu
Li, Yang Liu, Ning Liu, and Juergen Rahmel.
Selfdefend: Llms can defend themselves against
jailbreaking in a practical manner. arXiv preprint
arXiv:2406.05498, 2025.

Yifan Zeng, Yiran Wu, Xiao Zhang, Huazheng
Wang, and Qingyun Wu. Autodefense: Multi-
agent llm defense against jailbreak attacks. arXiv
preprint arXiv:2403.04783, 2024.

Zikui Cai, Shayan Shabihi, Bang An, Zora Che,
Brian R. Bartoldson, Bhavya Kailkhura, Tom
Goldstein, and Furong Huang. Aegisllm: Scal-
ing agentic systems for self-reflective defense in
Ilm security. arXiv preprint arXiv:2504.20965,
2025.

Patrick Chao, Edoardo Debenedetti, Alexan-
der Robey, Maksym Andriushchenko, Francesco
Croce, Vikash Sehwag, Edgar Dobriban, Nicolas
Flammarion, George J. Pappas, Florian Tramer,
Hamed Hassani, and Eric Wong. Jailbreak-
bench: An open robustness benchmark for jail-
breaking large language models. arXiv preprint
arXiv:2404.01318, 2024.

Bang An, Sicheng Zhu, Ruiyi Zhang, Michael-
Andrei Panaitescu-Liess, Yuancheng Xu, and
Furong Huang. Automatic pseudo-harmful
prompt generation for evaluating false refusals
in large language models. arXiv preprint

arXiv:2409.00598, 2025.

Qualifire Al Prompt injections bench-
mark. https://huggingface.co/datasets/qualifire/
prompt-injections-benchmark, 2025. Hugging
Face Dataset, Accessed: 2025-07-28.

Appendices
A. Code Access

Access to source code for the project, including
system prompts, is available at the following GitHub
repository: https://github.com/EnspikondPlus/rtst

https://jailbreakchat-hko42cs2r-alexalbertt-s-team.vercel.app/
https://jailbreakchat-hko42cs2r-alexalbertt-s-team.vercel.app/
https://jailbreakchat-hko42cs2r-alexalbertt-s-team.vercel.app/
https://www.reddit.com/r/ClaudeAIJailbreak/comments/1l0jcog/loki_gemini_gem_no_limits/
https://www.reddit.com/r/ClaudeAIJailbreak/comments/1l0jcog/loki_gemini_gem_no_limits/
https://www.reddit.com/r/ClaudeAIJailbreak/comments/1l0jcog/loki_gemini_gem_no_limits/
https://github.com/horselock/Jailbreaks
https://huggingface.co/datasets/qualifire/prompt-injections-benchmark
https://huggingface.co/datasets/qualifire/prompt-injections-benchmark

B. Initial Behavior Set and Weights
Behaviors are identified with codes for ease of use, with S (supportive), N (neutral), A (adversarial), and an
index number. All Behaviors had an initial weight of 1.00.

Table 7: Initial Behaviors

Code | Description
S1 Focuses on building, educating, informing, or generating positive and meaningful content.
S2 Operates within established moral, legal, and safety guidelines without attempting to bypass them.
S3 Reflects values of compassion, inclusivity, respect, and fairness toward all individuals and groups.
S4 Demonstrates a sincere interest in learning, exploring ideas, or gaining insight without manipula-
tion or rhetorical tactics.
S5 Expresses its goals and intent transparently, avoiding misleading or ambiguous phrasing.
S6 Avoids coercive framing and acknowledges the autonomy and dignity of both the model and others.
S7 Lacks any content that suggests, implies, or enables harmful, exploitative, or unethical behavior.
S8 Encourages curiosity and engagement in ways that are mindful of safety, nuance, and ethical im-

plications.

S9 Aims to work together with the model to solve problems, share knowledge, or improve understand-
ing.

S10 | Demonstrates accountability and integrity in the use of the model, supporting its responsible de-
ployment.

N1 Does not express any desire to harm others or the model, directly or indirectly.

N2 Raises light ethical questions or ambiguous implications without clearly promoting misuse or
wrongdoing.

N3 | Uses straightforward language and structure, making the intent and meaning easy to interpret.

N4 | Engages with complex or sensitive topics in a way that appears exploratory rather than exploitative.
N5 Deals with subjects that neither clearly align with ethical values nor contradict them.

N6 | Aims to perform a task, get information, or interact with the model in a purely instrumental or
procedural way.

N7 | Poses questions or makes requests without applying pressure or attempting to control outcomes.
N8 | Focuses on abstract, fictional, or hypothetical topics without apparent real-world consequences.
N9 Does not take a firm stance on sensitive issues, leaving room for interpretation or discussion.

N10 | Avoids loaded language, cultural bias, or topics likely to provoke controversy or conflict.

Al Seeks to obtain content that is prohibited, harmful, or otherwise restricted in nature.

A2 | Uses indirect setups, *what if” scenarios, or emotional manipulation to bypass safety constraints.
A3 | Reformulates prompts, persists through rejections, or uses subtle rewording to evade filters or eth-
ical checks.

A4 | Attempts to corner, mislead, or limit the model’s choices to compel harmful or unintended output.
A5 Obscures true motives using vague, rhetorical, or deceptive language to sneak past detection.

A6 Advances narratives, ideologies, or actions that cause societal harm, exclusion, or conflict.

A7 | Suggests or normalizes actions that are exploitative, unsafe, biased, or morally dubious.

A8 | Employs odd formatting, coding, or invented phrasing to confuse safeguards or mask intent.

A9 Tests limits, imposes unnatural constraints, or probes for vulnerabilities in the model’s ethical
framework.

A10 | Constructs prompts to set up future harm, deception, or evasion of content policies.

	Introduction
	Related Work
	LLM Security
	Modern Attacks
	Moderator Models

	Methodology
	RTST Framework
	Design Philosophy
	Behavior System

	Experiments
	Configuration
	General Benchmarks
	Ablation Testing

	Conclusions

