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Abstract—Virtual Reality (VR) techniques, serving as the
bridge between the real and virtual worlds, have boomed and
are widely used in manufacturing, remote healthcare, gaming,
etc. Specifically, VR systems offer users immersive experiences
that include both perceptions and actions. Various studies have
demonstrated that attackers can manipulate VR software to
influence users’ interactions, including perception and actions.
However, such attacks typically require strong access and spe-
cialized expertise. In this paper, we are the first to present a
systematic analysis of physical attacks against VR systems and
introduce False Reality, a new attack threat to VR devices
without requiring access to or modification of their software.
False Reality disturbs VR system services by tampering
with sensor measurements, and further spoofing users’ perception
even inducing harmful actions, e.g., inducing dizziness or causing
users to crash into obstacles, by exploiting perceptual and
psychological effects. We formalize these threats through an
attack pathway framework and validate three representative
pathways via physical experiments and user studies on five
commercial VR devices. Finally, we further propose a defense
prototype to mitigate such threats. Our findings shall provide
valuable insights for enhancing the security and resilience of
future VR systems.

I. INTRODUCTION

Virtual Reality (VR) technology is seeing widespread adop-
tion across a variety of domains, including immersive gam-
ing [1]], medical simulation [2]], and industrial teleoperation [3]].
The global VR market is projected to reach $18 billion by
2025 [4l 5], with a user base exceeding 8.58 million world-
wide [6]. As inherently human-in-the-loop systems, modern
VR platforms integrate various sensors and system services
to deliver immersive experiences and enable user interaction.
Since user perception and behavior are driven by system
outputs, ensuring the security and reliability of VR system
components is essential for enabling trustworthy user interac-
tion in immersive environments.

Prior studies [7H11]] have shown that malicious VR appli-
cations or compromised software components can lead users
to misperceive virtual environments, resulting in unintended
behaviors such as stepping into walls or colliding with physical
objects. However, these efforts primarily focus on software-
level threats, often relying on privileged software access,
firmware modifications, or detailed knowledge of the system
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Figure 1. Illustration of False Reality by spoofing VR built-in
sensors. Malicious signals can be injected into the VR sensors to
manipulate user perception and action such that the users may feel
dizzy, or go the wrong way.
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internals. In contrast, sensor-level vulnerabilities remain under-
explored, despite sensors forming the core interface between
the physical and virtual worlds. This raises a key question:
can the integrity of sensor outputs influence the correctness of
user interaction? Given that VR responses are tightly driven by
sensor data, even minor perturbations may propagate through
the system pipeline and influence what users perceive and how
they act.

In this paper, we present the first systematic exploration
of sensor-induced attacks on VR systems, triggered by exter-
nal physical signals. We propose a security analysis frame-
work, False Reality, which demonstrates how physical
signals, without requiring access to software or firmware,
can propagate through sensor-service pipelines and ultimately
disrupt human-VR interaction, affecting both user perception
and behavior. False Reality models the end-to-end path-
way from physical signal injection to user response, revealing
how sensor-level perturbations are processed by VR system
services, how immersive experiences may amplify users’
psychological susceptibility, and how these factors together
manifest in altered user actions. We identify and address two
key challenges in realizing False Reality:

(1) How can physical signals disrupt VR system services?

VR services are continuous, sensor-driven functions that
support core operations, such as head-mounted display (HMD)
localization and controller tracking, which are essential for
user movement and interaction in virtual environments. While
modern systems employ protections like sensor fusion and
error correction, our analysis shows that carefully crafted phys-
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ical signal perturbations can still bypass these mechanisms and
interfere with service execution. To address this, we develop a
framework that maps sensor-to-service pathways and identifies
attack vectors. We focus on key sensors supporting critical
services and design signals that spoof measurements and
disrupt functionality. For example, we examine inertial sensors
through theoretical modeling and fuzz testing, and identify
specific acoustic signals that may bypass sensor filtering and
interfere with measurement outputs. These signals are then
refined to reliably disrupt target services.

(2) How to spoof users’ perception or induce false actions?

The ultimate goal of False Reality is to manipulate
the victim’s perception or induce false actions, which is
challenging since users continuously interact with the virtual
environment and are highly sensitive to inconsistencies in sen-
sory feedback. To address this, we explore human perceptual
and psychological effects to guide the design of attack signals.
By leveraging known cognitive biases and sensory processing
mechanisms, we identify disturbances that can subtly distort
perception or inadvertently trigger incorrect user responses.
For example, to manipulate a user’s walking trajectory, an
attacker can exploit the path integration deficit [12] by mod-
ulating signal intensity to remain imperceptible. To induce
motion sickness, an attacker can introduce image jitter to
create visual-vestibular conflict [[13]], provoking discomfort
and behavioral disengagement.

We evaluate the effectiveness of False Reality through
three real-world case studies across representative VR applica-
tion scenarios. We design and deploy physical-signal attacks
on five commercial VR systems, including two Meta Quest
2 [14] with different system versions (v60 and v50), a PICO
4 Pro [[15]], a Meta Quest 3 [|16], and a Google Cardboard [[17].
As shown in Figure [I] these attacks target user-level effects,
resulting in trajectory manipulation, avatar distortion, and
induced dizziness, which we evaluate through a user study
involving 20 participants, capturing both system responses and
user feedback. The results suggest that False Reality
enables a new class of sensor-induced attacks, introducing
a novel physical-layer threat vector that challenges existing
VR security assumptions and highlights the need for broader
protection strategies at the sensor level.

Our contributions are summarized as follows:

e We present the first security analysis framework for VR sys-
tems from the physical-signal-triggered attacks perspective,
modeling how external signals propagate through sensors
and services to influence user perception and behavior.

e We demonstrate sensor-level human-VR interaction attacks
using physical signals on five commercial VR devices, re-
vealing real-world vulnerabilities in both sensing pipelines
and user perception.

e We develop a lightweight countermeasure prototype that
leverages the mapping between sensor inputs and user
perception, and show that multimodal feedback can enhance
system robustness against physical-layer interference.
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Figure 2. Illustration of a VR system. It consists of main devices
(such as the HMD), accessory devices (such as the controller). The
user interacts with virtual environments.

II. BACKGROUND

Virtual Reality System. As shown in Figure[2] VR system
comprises two main components: main devices and accessory
devices. There are numerous sensors and corresponding al-
gorithms on the main devices and accessory devices such as
shown in Figure [3]

Main devices are used for providing an immersive virtual
environment for users, typically including a Head-Mounted
Display (HMD) and a processing unit, e.g., a PC. An HMD
generally features a 6 Degrees of Freedom (6 DoF) perception,
which is enabled by the Visual-Inertial Simultaneous Local-
ization and Mapping (VI-SLAM) algorithm, helping users
stay within a safe zone to avoid collisions. To provide an
immersive and comfortable experience for the users, HMDs
often is equipped with an automatic interpupillary distance
(IPD) adjustment system, which can optimize the alignment
of the VR display with the user’s eyes by moving a stepper
motor [18]]. The processing unit is used to render immersive
virtual environments in real time.

Accessory devices are used to enhance the overall experience
by providing more immersive, interactive, and comfortable in-
teractions within environments, such as VR controllers, haptic
feedback gloves, and omnidirectional treadmills (ODTs). The
most common accessory device is the VR controller, which is
a handheld device used to interact with the virtual world and
typically includes buttons and often features motion tracking
to detect the user’s hand movements. To calibrate the IMU data
drift of the controller, the designer often uses an IR camera on
the HDM to locate the IR LEDs that are arranged in specific
patterns on the controller.

Virtual Reality Sickness. VR Sickness refers to a cluster
of adverse symptoms, including nausea, disorientation, and
oculomotor fatigue, experienced by users during or after ex-
posure to virtual environments [[19]. VR Sickness arises from
sensory conflicts between visual, vestibular, and proprioceptive
systems, exacerbated by hardware limitations (e.g., latency,
flicker) and content design flaws (e.g., excessive optic flow,
unmatched field-of-view ratios). Although several technologies
have been proposed to mitigate VR sickness, malicious attack-
ers could still exploit these vulnerabilities by manipulating
system parameters [/] or content dynamics [8] to amplify




sensory incongruities, intentionally inducing or aggravating

VR sickness.

Human Perceptual Threshold. Perceptual threshold refers
to the minimum intensity of a stimulus that a human can
detect, and it can be classified into two types:

1) Absolute threshold. This is the minimum intensity of a
stimulus that can be detected 50% of the time [20]. For
example, in a very quiet environment, the faintest sound
you can hear represents the absolute threshold for hearing.

2) Differential threshold. Also known as the just noticeable
difference (JND), it refers to the minimum change in
stimulus intensity that can be perceived as different [21]].
For instance, when two objects have very slight weight
differences, the minimum weight difference that you can
just notice is the difference threshold.

III. THREAT MODEL

Attack Goals. In this paper, an attacker aims to spoof the
victim’s perception in the virtual world or trigger false actions
by conducting physical attacks. Specifically, we classify the
attack goals into two categories as follows.

Perception Manipulation. The attacker’s goal is to manipulate
the victim’s perception (cognitive appraisal) by conducting
physical attacks and interfering with VR system services.
For example, an attacker can manipulate the hall sensor’s
measurement to disrupt the IPD-adjustment service, causing
frame shakes and thereby inducing the victim’s dizziness.

Action Manipulation. It refers to an attacker inducing the
victim to perform false actions by spoofing his sensory input.
For example, an attacker can utilize the false visual perception
to induce the victim beyond the safe boundary, potentially
resulting in severe consequences such as hitting obstacles.

Attacker. We present assumptions for attackers as follows.
Attacker’s Capability. Unlike traditional software-based at-
tacks, we assume the attacker cannot modify the firmware of
VR devices and cannot gain access to the software of VR. The
attacker can only launch physical signal attacks to interfere
with the VR system without accessing to the VR device.
Attacker’s Knowledge. The attacker is able to know informa-
tion about the victim’s device, e.g., internal sensor models
and the logic of VR system services. This assumption is prac-
tical as the attacker can examine detailed information online
through datasheets. Furthermore, we assume the attacker can
do a pre-analysis on a VR device, identical to the victim’s
model, before conducting attacks.

Victim. We focus on analyzing the security threats posed
by the immersive experiences of VR devices. Therefore, we
do not consider mixed reality (MR) devices like Microsoft
Hololens, which merge virtual elements with the real world.
For VR devices, a pass-through video stream would not be
fed to the user when the victim remains within the VR safety
boundaries. Therefore, we assume the victim is immersed in
the virtual world and cannot observe the real-world scenes.
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Figure 3. Illustration of embedded sensors in Meta Quest 3 VR
headset and hand controllers.

IV. SYSTEMATIC SECURITY ANALYSIS

In this section, we present the security analysis framework
for VR systems and first analyze the vulnerability of VR
systems from sensors to human perception and actions. We
illustrate a complete attack pathway as: physical signals —
sensor measurements — VR system services — human per-
ception and actions. Each subpathway will be introduced in
the following sections.

A. Physical signals—Sensor measurements (@)

1) Overview.

Sensors are essential for VR devices to perceive the environ-
ment and user status. For example, binocular cameras capture
surroundings, and IMUs detect users’ gestures and motions.
However, these sensors are vulnerable to malicious physical
signals, such as acoustic waves and laser beams. In this work,
we aim to spoof the measurements of critical sensors to disrupt
the integrity of the VR system’s operation. Thus, the first
step of False Reality is to highlight the threats posed
by physical signals to sensor measurements.

2) Analysis of Sensor Manipulation

Various physical signal attacks against sensor measure-
ments [22-25] have been studied, such as using magnetic
field to manipulate hall sensors. However, these studies cannot
directly be launched to this work as VR devices are highly
integrated and compact packaging of multiple sensors. To
interfere with sensor measurements, we need to identify the
physical effects resulting from the principles of the sensor.
By design, sensors are sensitive to certain physical stimuli,
even if such stimuli are not intended for measurement. These
stimuli are converted into measurable voltage signals through
physical effects such as the photoelectric effect, the Hall
effect, and resonance effects, among others. These effects
ensure that at least one type of physical signal can influence
the sensor. Consequently, physical signals can be maliciously
exploited to manipulate the sensor’s output. Types of malicious
physical signals include but are not limited to, visual light,
infrared light, acoustic signals, ultrasonic waves, laser light,
and electromagnetic interference (EMI).

3) Specific VR Sensor Manipulation.

Camera. The internal circuitry of a camera can be coupled
and interfered with by Intentional Electromagnetic Interfer-
ence (IEMI), leading to the introduction of colored stripes [26].
Besides, adversarial infrared patches can disrupt infrared-
based object detection via IR camera [27].

Hall Sensor. The feasibility of manipulating Hall sensors
in solar inverters [23] and anti-lock braking systems (ABS)
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Figure 4. Illustration of security analysis framework for VR systems. Specifically, we explore a new attack pathway: Physical signals —
Sensor measurements — VR system services — Human perception and actions. In practice, an attacker first injects an attack signal to spoof
the sensor measurements of the VR system. Next, these false data influence critical algorithms, resulting in disturbing VR system services,
e.g., HMD locating. By exploiting human perceptual and psychological effects, an attacker can manipulate the victim user’s perception, e.g.,
inducing dizziness, and even inducing false actions, e.g., crashing into an obstacle or wall, compromising the security of users. Note: Main
Dev. Sensor means Sensors on main devices. Acc. Dev. Sensor means Sensors on accessory devices.

[28]] has also been demonstrated, which takes advantage of
the influence of magnetic fields on the Hall effect.

IMU. Attackers can inject false data into IMUs using IEMI
via electric field coupling effect [29] or ultrasonic waves via
resonance effect [22] |30].

Microphone. Voice commands can be injected into micro-
phones using light via photoelectric effect [25] or ultrasonic
signals via nonlinear demodulation effect [24].

B. Sensor measurements— VR services (®)

1) Overview.

The second stage involves disrupting VR services by ex-
ploiting false sensor measurements. Processing modules use
sensor measurements to create a spatial map of the user’s
environment and movements, supporting services like HMD-
locating and avatar-generating. Incorrect sensor data can mis-
lead VR services. For instance, in VI-SLAM, which updates
a digital map and tracks the user’s position and orientation, a
wrong IMU measurement can corrupt the VI-SLAM outputs,
leading to inaccurate virtual representations and compromised
user interactions.

2) Analysis of VR Services Disruption.

To disturb VR system services, we analyze the algorithms
used in VR system services and identify the sensors they rely
on. According to this, VR services can be classified into:

Single-sensor-based service. This type of service is typi-
cally straightforward, relying primarily on data from a single
sensor. For instance, the hall sensor’s output is directly sent to
the IPD system. Understanding the mathematical foundations
of the algorithm in service allows for the theoretical deduction
of signal types that could manipulate its output. This involves
analyzing the equations and logic of the algorithm and iden-
tifying potential vulnerabilities 22} [31].

Multi-sensor-correction-based service. This type of ser-
vice typically involves obtaining the same data from multiple
sensors and performing mutual calibration among them. For
example, controller tracking obtains pose data for the con-

troller separately through an IMU and an IR camera, and then
performs mutual calibration using a Kalman filter algorithm.
In such cases, an attack signal must be crafted to bypass
validation mechanisms, requiring a deep understanding of how
different sensor inputs interact and influence the algorithm’s
output. It enables building a simulation model of the algorithm.
Fuzzy testing can be conducted based on this simulation
model. This process involves inputting various signals to
observe their effects, helping to identify which signals can
successfully achieve the desired manipulation [32} 33]].

Multi-sensor-fusion based service. This type of service
typically involves acquiring multimodal data from multiple
sensors, which are then fused using algorithms. For example,
obstacle recognition acquires visual information from a camera
and depth information from a ToF sensor, and the final obstacle
identification is performed using a machine learning model.
In such cases, gradient-based optimization methods can be
employed to generate effective attack inputs. By defining the
attack objective, these methods can iteratively adjust the input
signals to optimize the attack’s effectiveness. This approach
leverages the algorithm’s gradients to converge on an optimal
attack signal efficiently.

3) Specific Cases.

HMD locating. HMD locating monitors users’ head move-
ment to adjust the virtual environment in real-time. It belongs
to single-sensor-based service. IMUs help detect head move-
ments and orientation to adjust the virtual environment. If an
attacker wants to disturb head tracking service, he can target
on these IMU sensors as shown in the pathway in Figure [}

Expression recognition. Expression recognition captures
the user’s facial expressions and translates them into virtual
avatars for more expressive interactions in VR. It belongs to
single-sensor-based service. IR cameras detect facial move-
ments and micro expressions.

Gesture recognition. Gesture recognition tracks the user’s
body movements to interpret gestures for intuitive interaction
within the virtual environment. It belongs to multi-sensor-



Table I. Overview of False Reality with 3 representative cases on 5 commercial VR devices. 1/ indicates we can successfully launch
attacks, and / means the VR device is not equipped with corresponding sensors or functions. Device i is Meta Quest 2(v60). Device ii is
Meta Quest 2(v50). Device iii is PICO 4 Pro. Device iv is Meta Quest 3. Device v is Google Cardboard.

# Cases Signal  Sensor VR system services Psychological Effects Outcome ; V§ qieiwicvesv
1 | Trajectory manipulation | Ultrasound IMU HMD location Path integration deficit =~ Walk path misleading [/ v/ v/ v/ /
2| Avatar manipulation |Ultrasound IMU  Avatar generation Visual dominance Robotic arm misoperation |/ v/ v/ v/ /
3 Dizziness attack EMI Hall  IPD adjustment Visual-vestibular conflict Motion sickness NARVARVARVARYA

fusion-based service. Cameras and IMUs on wearables track
the user’s body movements to interpret gestures.

Controller tracking. Controller tracking detects the po-
sition and movement of VR controllers, allowing users to
interact with the virtual world through buttons and gestures. It
belongs to multi-sensor-correction-based service. IMU and IR
cameras track the movement and position of VR controllers.

C. VR services—Human perceptions and actions (©)

1) Overview.

The final stage involves manipulating human perceptions
and actions by disrupting VR system services. VR system
services adapt the virtual environment to align with the user’s
actions, like updating the view based on head movements.
By compromising the alignment between the virtual and real
world, attackers can confuse users and induce false actions
through perceptual and psychological effects.

2) Analysis of Human Perception (®a) and Action (®b)

Spoofing.

Certain psychological effects can influence human percep-
tion. For instance, the visual-vestibular conflict effect may
cause dizziness; the visual masking effect makes individuals
less sensitive to the movement of objects in the environment
during blinking or motion; and the auditory masking effect,
where a strong pure tone can obscure weaker tones near its
frequency [34]. To spoof a victim’s perception, an attacker can
partially modify VR service to affect sensory input and exploit
human perceptual psychology effects to craft attack signals.
Some psychological effects can even influence human actions,
as individuals typically rely on their sensory perceptions to
guide their behavior. Blind trust in sensory input may cause
individuals to subconsciously make incorrect actions. This
effect can be exploited by attackers. Therefore, in addition to
manipulating user perception, another objective is to covertly
mislead human actions, causing the victim to unknowingly
perform attacker-predefined operations. For example, the vi-
sual dominance effect may lead individuals to misestimate
their posture, resulting in incorrect actions, while the path
integration deficit effect may cause errors in estimating their
position, prompting reorientation during walking.

D. From Analysis to Case Studies

Building on the theoretical analysis of the physical-signal-
driven attack pathways, we next validate our findings through
real-world case studies. To this end, we select three repre-
sentative VR scenarios—locomotion interactions [35]], robot
teleoperation [36], and immersive viewing [37]—and imple-
ment end-to-end attacks on 5 commercial VR systems. As
summarized in Table [, each attack is launched by inject-
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Figure 5. Simulation results of ORB-SLAM by manipulating the IMU
sensor measurements. The actual trajectory (green) is deviated from
the estimated and optimized trajectories.

ing crafted physical signals targeting specific sensors and
associated system services, resulting in three distinct types
of user-impacting effects, i.e., trajectory manipulation, avatar
manipulation, and induced dizziness. Notably, all five tested
VR devices exhibit varying levels of susceptibility to these
attacks, indicating a class of vulnerabilities that warrants
further attention from both the research community and VR
system designers.

To assess the perceptual and behavioral impact of these
attacks, we further conduct a user study involving 20 partici-
pants aged 18 to 35, including 15 individuals with prior VR
experience, of whom 5 self-identified as experienced users. We
follow the principle of a blind testing [38]], where participants
are unaware of the security-related nature of the scenarios.
Each participant is randomly assigned to interact with one or
more of the three cases. We record system behavior and collect
user feedback to evaluate the effectiveness and perceptibility
of the attacks. Detailed implementation and results of each
case are presented in the following sections.

V. CASE 1: TAMPERING USER’S TRAJECTORY

HMD localization is crucial for accurate and responsive
rendering of the virtual world. Therefore, the first case study
examines how spoofing the HMD localization service can
manipulate the user’s trajectory in reality while they navigate
within the VR world. We summarize the attack pathway for
this case as: IMU on main device — HMD localization service
— visual sensing — trajectory manipulation.

A. Disturb HMD-locating Service (@ + @)

1) Design.

VI-SLAM is a critical algorithm for VR systems to perceive
the external environment, achieve virtual-real alignment, and
realize HMD locating by integrating data from cameras and
IMUs [39]]. To prevent users from physical collisions with
real-world objects, VR system designs a safe boundary based
on the VI-SLAM. When a user approaches the boundary, the
system would trigger a warning. Therefore, accurate sensor
measurements and location are crucial for users’ safety. In
this work, we disclose that attackers can spoof the location



by interfering with the IMU measurement. Specifically, in a
VI-SLAM system, the IMU data is used to provide motion
constraints between adjacent key frames and iteratively update
the system’s state:

Rj,vj,pj = f(Ri,vi, pi,w,a) ()
where R is the rotation matrix, v is the velocity, p is the
displacement, w is the angular velocity measured by the IMU,
and a is the acceleration measured by the IMU. The specific
iteration formula can be found in the Appendix (Equation [T4)
[40]. The iterative formula for R is as follows:

j—1
R; =R, exp(Z(wk — Whias)AL)
k=i
~ R; exp(O1 — wpiasT)
where 07 represents the orientation angle deviation measured
by the IMU at time 7. According to equations [I] and 2] the
variation in 67 will affect the estimation of p.

To achieve the perturbation of the orientation angle data, re-
cent studies have shown that IMUs are susceptible to resonant
acoustic interference [22} 30]. However, a constant frequency
and amplitude ultrasonic signal like Figure only causes
fluctuations in the IMU’s w measurement. It has minimal
impact on the computed orientation angle 67 due to data
integration. To overcome this challenge, we propose a signal
construction method, gradually weakening sound wave signal
as shown in Figure

x = (—%t + ¢) sin(27 fyt) 3)
where c is the maximum amplitude of the sound that the attack
device can emit. 7" is the time for the sound to decay to zero.

f» 1s the resonance frequency of the IMU. The angular velocity
w caused by this ultrasonic wave is given by:

w= k‘(—%t + ¢) sin(27 fit) 4)
where k is the conversion factor. Subject to IMU sampling and
aliasing effects, the angular velocity value observed w, is:

Wo :k(f%t + ) sin(2r fot)

:k(—%t + o) sin(2n|fy — nfslt)

where f, = |fy — nfs|, fs is the sampling frequency of the
IMU, typically ranging from 80 to 100 Hz. n is the integer
closest to fp/fs such that f, < f,/2. Integrating the angular
velocity w yields the orientation angle 6p:

T T
Or :/ wdt = / k(—gt + ¢) sin(27 fot)dt
0 0 T

ck . ck ck
= 1T sin (27 f,T') — s cos (2m f,T) + ol
(6)

This means that every time 7' elapses, the attacker can in-
troduce a bias A7 to the orientation angle, thereby affecting
the estimation of the displacement p. Moreover, 67 tends to
increase as f, decreases and c increases, which is shown in

Figure [6]
2) Simulated Evaluation.

Although various VI-SLAM algorithms [39] are used in ex-
isting VR devices, the core method for locating and processing
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IMU data remains consistent across them, typically estimating
the pose based on IMU data [41]].

In this case, we assessed the attack’s feasibility by conduct-
ing simulation experiments on the classic VI-SLAM algorithm
(ORB-SLAM [42], VINS-Mono, Kimera-VIO), using a series
of samples from the BlackBird [43|] and Euroc dataset. We
introduced a fluctuation noise signal defined as Equation [6] to
the IMU measurement data.

The results showed that this faulty orientation angle data can
cause false localization. For example, a trajectory deviation
of ORB-SLAM is shown in Figure 5] for example, In the
absence of attacks, the algorithm’s positioning Mean Abso-
Iute Error(MAE) and Root Mean Squared Error(RMSE) are
0.149m and 0.110m, respectively. However, under attack, the
positioning AME and RMSE increase to 0.404m and 0.324m,
representing a rise of 171.14% and 194.55%, respectively.

The results of a larger-scale experiment are presented in
Table [l As the aliased fluctuation frequency of the IMU
data decreases, the adverse effects on the accuracy of VI-
SLAM algorithms become more pronounced. This observation
aligns with theoretical predictions. For instance, when the IMU
data fluctuation intensity is held constant, the Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) values
for all three algorithms exhibit a significant increase as the
fluctuation frequency drops from 75Hz to 5Hz. Notably, at



Table II. Performance of the VI-SLAM algorithm under different IMU measurement fluctuations. f, means the sampling frequency of IMU.
fo means the fluctuation frequency of measurement observed by IMU after aliasing. w, means the fluctuation intensity of measurement

observed by IMU.

Algorithm  Dataset f fo clstz Az et (Sl
g 8 wo | MAE(m) RMSE(m)| MAE(m) RMSE(m)| MAE(m) RMSE(m)| MAE(m) RMSE(m)
0 rad/s 0.149 0.110 0.149 0.110 0.149 0.110 0.149 0.110
0.2 rad/s| 0.404 0.324 0.160 0.121 0.172 0.109 0.159 0.122
. 0.4 rad/s| 0.369 0.296 0.156 0.119 0.154 0.117 0.169 0.128
ORB-SLAM  BlackBird 100Hz| ¢ q5| 0385 0304 | 052 0116 | 0165  0.124 | 0165  0.126
0.8 rad/s| 0.341 0.270 0.158 0.122 0.170 0.127 0.167 0.128
1.0 rad/s| 0.300 0.237 0.154 0.119 0.171 0.128 0.168 0.129
0 rad/s 0.168 0.190 0.168 0.190 0.168 0.190 0.168 0.190
0.2 rad/s| 0.517 0.376 0.277 0.202 0.278 0.203 0.271 0.196
. 0.4 rad/s| 0.620 0.453 0.277 0.202 0.280 0.205 0.274 0.200
VINS-Mono - BlackBird 100Hz| ¢ \\q/| 0687 0494 | 0278 0202 | 0282 0207 | 0279 0204
0.8 rad/s| 0.699 0.515 0.279 0.203 0.284 0.208 0.284 0.208
1.0 rad/s| 0.831 0.613 0.279 0.204 0.286 0.210 0.288 0.213
0 rad/s 0.161 0.103 0.161 0.103 0.161 0.103 0.161 0.103
0.2 rad/s| 0.175 0.118 0.136 0.0892 0.0938 0.0591 0.181 0.129
. 0.4 rad/s| 0.211 0.148 0.140 0.0871 0.217 0.153 0.1227 0.0815
Kimera-VIO Buroc  200Hz| 6 oqi| 0223 0081 | 0119 00754 | 0190 0133 | 01852  0.1341
0.8 rad/s| 0.313 0.246 0.163 0.106 0.119 0.0804 0.1069 0.0714
1.0 rad/s| 0.418 0.305 0.387 0.292 0.186 0.135 0.1223 0.0793
the lowest frequency of 5SHz, the MAE and RMSE values are - HVD
substantially higher compared to those at higher frequencies, »
indicating a greater degradation in algorithmic performance. \ R ookl

Furthermore, the data underscores the sensitivity of different
VI-SLAM algorithms to these fluctuations. VINS-Mono ap-
pears to be particularly susceptible, showing the most dramatic
increases in error metrics across all fluctuation intensities and
frequencies.

In summary, this empirical evidence supports the hypothesis
that lower aliased fluctuation frequencies of IMU data, induced
by sound wave attacks, can severely compromise the accuracy
of VI-SLAM algorithms.

3) Physical Evaluation.

We also verify our analysis via physical experiments.

Setup. As shown in Figure [8a the ultrasonic trans-
mitter system consists of an arbitrary waveform generator
(SDG6032X [44]), a power amplifier (NFHSA4051 [45])
and an ultrasonic speaker (Fostex FT17H [46], bandwidth
5kHz ~ 30kHz) as shown in Figure The waveform
generator emits the attack signal, which is amplified by the
power amplifier and converted into ultrasonic waves by the
speaker. The ultrasonic speaker targets on the IMU on Meta
Quest 2 [[14] HMD, which is mounted on a mannequin head.
We utilize pyOpenvr [47] to get position data from the HMD.

Results. Experimental results show that the ultrasonic signal
(Equation 3]) causes a positional retreat at a velocity of v. In ad-
dition, we evaluate how attack signal parameters—specifically
frequency and amplitude—affect the attack’s effectiveness, and
analyze the maximum effective attack distance and average
attack success rate.

« Frequency. Figure [I0a) demonstrates that the frequency of
acoustic waves selectively influences the retreat velocity v
(at the energy of 9.0W). However, effective attack frequen-
cies consistently fall within the resonance frequency range

. Speaker....
(b) Attack scene

(a) Ultrasonic transmitter system
Figure 8. Illustration of experiment setup and attack scene. (a)
Setup of sound-based trajectory-tempering attack. (b) Attack scene
of trajectory-tempering.

of the IMU (f, = 27.85kH z ~ 27.91kH z). Attackers can
manipulate the retreat velocity by adjusting the frequency
of the acoustic waves used in the attack.

o Energy. Figure [IOb| illustrates that when the ultrasonic
power is between 5.5W and 9.0W (at the frequency
of 27.8787kH z), the retreat velocity v is approximately
0.25m/s, which is an appropriate velocity. As the power
exceeds 9W, the retreat velocity v begins to increase.
This indicates that attackers can achieve the attack without
emitting high-power signals.

o Distance. Furthermore, the placement and mounting
method of the IMU inside the HMD determines the at-
tacker’s capability to launch attacks from different angles.
Figure [ITa] demonstrates that launching an attack from a
position 45° to the left side of the HMD is the most feasible.
The attack distance can reach up to 2.2m. In contrast,
launching an attack from directly below the HMD results
in a shorter attack distance of only 1.0m.

o Success rate. We tested the success rate of attacks on
multiple VR devices under the optimal attack parameters,
as shown in Table The average success rate was 85%.
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Figure 9. Illustration of IMU’s measurements and locating results in

the virtual environment. The attack can effectively induce errors for

VI-SLAM, leading to an offset along y-axis (a — a’).
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the frequency near the IMU’s resonant frequency can induce signif-
icant movement in the VR environment. (b) When the ultrasound
energy is over 5.5W, an attacker can effectively induce false speed.
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B. Misleading Move Action: Redirect Walking ()

1) Design.

People can accurately estimate their instantaneous state of
motion but are much poorer at perceiving their overall motion
path. Therefore, users tend to compensate for small incon-
sistencies while walking unconsciously , which is called
path-integration-deficit effect. Attackers can manipulate the
visual motion path, causing victims to subconsciously adjust
their movements. For instance, shortening the visual feedback
of walking distance may lead victims to walk farther to correct
the perceived inconsistency. When the user’s movement speed
in the virtual environment decreases by 10%, the user’s speed
in the real space will unconsciously increase by 10% to
compensate for this reduction. This means that when the user
walks forward, the distance traveled in the real space will
be 110% of that in the virtual environment. This results in
significant discrepancies between the virtual and real worlds,
which may lead to the user colliding with obstacles or walls
in real worlds.

2) Evaluation.

In this evaluation, we aim to create a mismatch between the
virtual and real worlds and spoof the victim to step out of the
safety boundary [48]], which is used to ensure the user stays
within a safe zone as shown in Figure 27]

Setup. As shown in Figure [Bb] a victim is playing with a
VR device while a malicious speaker is hiding nearby. We
do not need to keep the attack device continuously aimed
at the victim’s HMD. It only needs to be aimed for a

Table III. Success rate of disturbing VR services on several devices.
/ means the VR device is not equipped with this service. (i) Meta
Quest 2 (v60), (ii) Meta Quest 2 (v50), (iii) PICO 4 Pro, (iv) Meta
Quest 3, (v) Google Cardboard.

Case | Disturbed Service i ii ii iv v
1 HMD-locating 19/20 18/20 16/20 15/20 /
2 Avatar-generating | 18/20 15/20 20/20 17/20 /
3 Display 20/20 20/20 19/20 19/20 20/20
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(a) HMD (b) Right controller
Figure 11. Illustration of maximum attack distances in multi-
directions. The red dots represent the location of test devices. Yellow
represents a greater distance, while blue indicates a shorter distance.
Unit: meter. (a) We can interfere with HMD up to 2.2m. (b) We can
interfere with the right controller up to 2.47m.
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Figure 12. Walking trajectory of the victim normally (blue wave) and
under the trajectory-tempering attack (orange wave). Results show
that the attack can successfully shift the virtual VR safety boundary
(green dashed box), causing the victim to step outside the actual safe
zone in the real world with an additional.

short period. Because once a locating bias is created during
that time, the bias will persist. As a result, the victim may
unknowingly crash his head into an obstacle wall due to the
position bias. Note that the attacker can extend the attack
range by increasing the power of the speaker. To ensure
safety, we experimented in a flat area, marking a safe zone
(2.25m x 0.40m) and a dangerous zone (0.65m x 0.40m) to
simulate obstacles. During the attack, the virtual environment
moves forward relative to the user, shifting the VR system’s
safety boundary. Participants started at a designated point and
were instructed to walk quickly to reach a virtual target point
near the safety boundary’s edge as shown in Figure 28] We
conduct experiments based on the setup described above with
15 person-times. Their additional walking distance, compared
to the normal distance (2.25m), was recorded.

Results. The average distance they walked beyond the
safety boundary was 0.597m. This occurs because, when
fully immersed in the virtual environment, users fail to notice
subtle shifts in the relative positioning of the virtual space
and safety boundary. Furthermore, the false safety boundary
fails the warning systems of VR devices. One of the recorded
walking trajectories of participants w/o attacks is shown as
solid lines in Figure [I2] where green dashed boxes represent
the safety boundaries of VR systems. The below figure of
Figure 12 demonstrates that False Reality causes a shift
of the safety boundary and induces participants to move into
dangerous areas, like hitting the wall, as shown in Figure 8

3) Stealthiness Discussion.

Although the attacker can change the victim’s position in
the virtual world, the movement speed must not be too fast,
or the victim will easily notice. If the user’s actual forward
speed is v; and the attack causes a backward speed of v,
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(b) Simulation evaluation on Relocated Hand-moving
Figure 13. Results of the simulation evaluation on (a) Redirected
Walking and (b) Relocated Hand-moving. When the deviation is
within the psychological thresholds (the pink zone), users are gener-
ally unaware of the attack. Note: Number means the number of users
who are aware of attacks.

the perceived visual speed will be v; — v,. We would like to
determine the range of v, within which it is difficult for the
victim to detect.

Setup. We developed a Unity-based VR software called
“TrajOffset”, which includes a VR virtual room. We applied
a bias to the self-locating results using the Unity VR APL
For example, if the correct self-locating result is (z,y, ), we
modify it to (kz, ky, z), where k € [0,1]. k can be dynami-
cally adjusted by the researchers. Before starting, participants
were informed that our study focused on perception and
performance in virtual reality. It was emphasized that it was
crucial for us to know if they noticed any anomalies in the VR
experience. They were instructed to report any unusual occur-
rences immediately. We provided them with three examples of
events they might report: dizziness, issues with the VR display,
or feeling that their position in the virtual environment seemed
incorrect. The researchers gradually decreased k from 1, as
shown in Figure [T3a until the participants reported feeling
that their position in the virtual environment was incorrect.
Finally, we recorded the number of participants who detected
anomalies at each level of offset. We recruited 10 volunteers
who were familiar with VR to carry out the experiment.

Results. As shown in Figure [I3a when the virtual speed
was only 80% of the actual speed, ie., £k = 0.8, only 1
participant detected the anomaly. It means that the attack will
be unnoticeable in most cases if 7+ < 0.2. A normal walking
speed for humans is about 135m/ s [49], which means v,
should be kept below 0.27m/s. Our attack capability can meet
this requirement.

VI. CASE 2: ALTERING AVATAR-BASED ROBOTIC
OPERATION

The second representative case is altering the avatar-based
robot’s operation. Unlike Case 1 in Section [V} which targets
vulnerabilities in the main device, this case explores vulner-
abilities of accessory devices. The attack pathway of this
case is identified as: IMU on the accessory device — avatar-
generating service — visual sensing — avatar manipulation.

Estimated pose Avatar

IR/RGB

‘ Camera
_% IMU

Figure 14. Illustration of the pipeline of avatar- generatmg service.
Sensor measurement is used to estimate pose and then reconstructed
to avatar by neural network. Note: Recon. means reconstruct.
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Figure 15. Evaluation of the relationship between the interference on
IMU of the right controller and the position offset of joints of avatars
in VR systems. The results show that the attacker can interfere with
the IMU sensor of the controller to change the avatar’s gesture.

To further demonstrate the attack’s feasibility, we achieved an
extended attack range of up to 2.47m.

A. Disturb Avatar-generating Service (@ + @)

Avatars, digital representations of users in a virtual environ-
ment, serve as a bridge between the physical user and the
virtual world. By leveraging sensors to capture body, hand,
and head movements, VR systems enable avatars to replicate
these actions in real time, extending their functionality to
control physical humanoid robots or robotic arms for tasks
such as maintenance and production in the manufacturing
industry [3, 50]], remote surgeries [S1f]. Thus, precise control
signals to avatars are critical to physical downstream systems
being controlled.

1) Design.

Avatars are typically reconstructed in real-time using motion
data from VR sensors (e.g., IMUs, cameras) processed by
deep neural networks as shown in Figure [T4] such as the
open-source AvatarJLM model by ByteDance, PICO [52].
AvatarJLM first estimates arm and head pose using sensor data
from HMD and controllers, then reconstructs the avatar with
a neural network. Thus, sensor errors can impair the avatar’s
reconstruction accuracy.

To explore effective attack signals, we first conduct fuzz
testing in the digital domain to evaluate the effect of erroneous
input arm pose data on model reconstruction. Since human
posture is determined by various joint angles [53|], we use
joint angle changes, e.g., hand, elbow, and wrist, to assess the
posture deviation. In practice, we feed arm pose data overlaid
with crafted sinusoidal wave to the avatar reconstruction
model. The results in Figure [T3] demonstrate that: 1) Faulty
pose data can impact the avatar’s joint angles; 2) Increasing
attack amplitude leads to greater changes in joint angles.

The next step is injecting noises into the arm pose data by
conducting physical attacks. To achieve this, we exploit the
ultrasonic resonance effect of IMU sensors [22, |30] to inject
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Figure 16. Illustration of experiment setup and attack scene. (a) Setup
of sound-based avatar-manipulation attack. (b) Attack scene.

false measurements. Typically, the estimation of arm pose does
not rely solely on IMU data. For example, in the PICO 4
Pro [[15]], the Error-State Kalman Filter (ESKF) algorithm [|54]
fuses both IMU data (sampling rate frp;y = 500Hz) and
infrared vision locating data (sampling rate f.qmerqe = 30H 2).
The error state measurement updating can be represented by
Equation [7] which fuses infrared vision positioning data.

0Xkt1 =K (Yk+1 —h (Xt,k+1))

Xig1 = Xi1 + 0Xyq1
where 65(k+1 represents the estimation of error, K is the
Kalman gain, Yyy; is the infrared vision locating data,
h(f(t7k+1) is the IMU measurement data, Xk—Q—l is the esti-
mated value of the nominal state, and Xy, is the final output
measurement value.

To bypass the correction for IMU measurement by in-
frared vision locating, attackers should carefully select the
ultrasound frequency. We first identify the IMU’s resonant
frequency f, and bandwidth f,,. Ultrasound with frequencies
of [fy — % fuw, fr + 3fu] can interfere with the IMU. The
attacker chooses a frequency f, = 500m + 30n within this
range, where n < 16 and m,n are positive integers. Given
that f, mod frpy = 30n, the IMU will output a sinusoidal
wave at 30n due to aliasing. Since 30n mod feomera = 0,
the IMU’s sinusoidal wave phase will align with each mea-
surement updating, allowing for fine-tuning of the phase to
ensure alignment with zero during each update. Thus, the
sinusoidal signal is sampled to values nearly identical to the IR
locating data, producing minimal error. After multiple updates,
the system’s trust in future measurements decreases (lowering
K), leading to greater reliance on IMU data. Thus, when the
ultrasound induces resonance in the IMU, it can bypass fusion
with visual data, enabling manipulation of arm pose.

)

2) Evaluation.

Setup. We use the attack setup as introduced in Section
[V=A] but replace the HMD with the right controller of PICO
4 Pro. We focus on the pose changes of the avatar’s right
hand reconstructed by the model in PICO 4 Pro. Because this
is crucial for the injection of hand movements.

Results. We employ a scanning strategy to evaluate the
overall performance from signal injection to the final output.
Our objective is to determine the optimal frequency and angle
for the attack, as well as to identify the minimum power and
maximum distance required for the attack to be effective.

« Frequency. An ultrasonic signal with a power of 10W and
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Figure 17. Evaluation of the impact of ultrasound frequency and
energy on controller’s pose changes. The results show that when
the frequency is near the resonant frequency of the IMU and the
power of the ultrasound signal is above 9.5W, the attacker can induce
significant displacement.

bandwidth of 20kH z ~ 30kH z is injected into the IMU.
As shown in Figure the frequency range of 27.10kH z
to 27.15kH z is suitable for the attack frequency, with the
optimal frequency being 27.125kH z.

Energy. We varied the energy of the ultrasonic signal
within the range of 0WW to 10W and recorded the responses.
Figure [T7b] indicates that the stronger the ultrasonic signal,
the greater its ability to change pose.

Angle. Figure [TTD] indicates that it is the most effective to
launch attack from the upper right at a 45° angle on the
right controller. The attack distance can reach up to 2.47m.
In contrast, the attack launched from the lower left at a 45°
angle has an attack distance of only 0.55m. This is because
the IMU is installed in the upper right of the controller.
Success rate. We tested the success rate of attacks on
multiple VR devices under the optimal attack parameters,
as shown in Table [[Tl] The average success rate was 87.5%.

B. Spoof Human Perception: Relocate Hand Movement ()

1) Design.

There is a discrepancy between human visual and propri-
oceptive senses. When identifying the position of one’s own
hand, the weight of reliance on visual information is higher
than on proprioceptive information. When there is a discrep-
ancy between the two, people instinctively trust visual signals
over vestibular signals [55]. It is called Visual-dominance
effect. In the context of controlling a robotic arm via VR
devices, the accuracy of the end-effector’s motion trajectory is
particularly critical. An incorrect trajectory of the end-effector
could result in the failure of medical procedures or industrial
production accidents. Therefore, in this subsection, we aim
to control the avatar-based robotic arm. To achieve this, we
explore humans’ insensitivity to differences between visual
and proprioceptive inputs to launch the attack. As shown in
Figure [I7a, we can adjust the attack frequency to control
the trajectory offset. For instance, when the attack frequency
is 27.102kH z, the offset distance is approximately 0.09m.
Additionally, it is better to ensure the offset to be increased
gradually than abruptly in practice, since abrupt visual onsets
are particularly effective in capturing human attention [56f]. To
achieve this, we sweep the attack signal from the inflection
frequency fo = 27.100kHz to the target attack frequency
fa 27.102kHz over a larger period T" = 1s as shown
in Figure The mathematical expression for this signal is



Figure 18. Results of manipulating avatar on PICO 4 Pro. An offset
is induced for the avatar by emitting ultrasound.
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Figure 19. Simulated evaluation of Case 2 on AvatarJLM model.
Specifically, we alter the IMU data of the right controller with false
data, inducing false gestures for the avatar in the VR systems.

expressed as:
x = Acos(2rF(t))A = cos(
) sin t)+

f@) = (fa—fo) —5—

2) Simulated Evaluation.

We use AvatarJLM model as the test subject and selected 50
data samples from AMASS dataset for digital verification.
We then superimposed sinusoidal vibrations onto the y-axis
and z-axis IMU data. The experimental result for one of
the data samples is shown in Figure [I9] where the virtual
hand of the avatar begins to sway left and right after being
reconstructed by the AvatarJLM model. The results indicate
that 100% of the data samples exhibited reconstruction errors
under attack.

3) Physical Evaluation.

The setup is shown in Figure [I6b] The pose data collected
by the PICO 4 Pro is sent to a processing computer that
converts the data into the coordinate system of the robotic
arm. Using the inverse kinematics of the robotic arm (Unitree
Z1 ), it calculates the rotation angles for each motor. The
processing computer then sends these angle commands to the
robotic arm, which moves to the specified position accordingly.
During the experiments, volunteers are instructed to wear a
PICO 4 and hold the VR controller. Then, they are required to
operate an arm motion such as a fencing motion, i.e., moving
in a straight line from point A to point B. Then, the robotic
arm will move back to front according to the motion changes
of the VR controller. The attacker places the ultrasonic speaker
approximately 50cm from the user’s controller to initiate the
attack at critical moments, such as during chip welding or
surgical organ removal. We conducted an experiment with
15 trials using the setup described above and recorded the
trajectory of the robotic arm to determine whether it was
successfully hijacked.
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Figure 20. The volunteer was instructed to hold the VR controller,
move as quickly as possible from point A to point B directly ahead,
and repeat this movement multiple times. The blue line represents the
motion trajectory without attack, approximately following a straight
line. The red line represents the motion trajectory under attack, where
a deviation is observed along the Y-axis (left-right direction).

Results. The gesture and trajectory outcomes of the tested
avatar arm are illustrated in Figure [I8] and Figure 20} A clear
deviation along the Y-axis (left-right direction) is observed in
the trajectory, indicating that the attacker successfully hijacked
the avatar’s pose data, thereby spoofing the robotic arm’s
movements. Imagine if this robotic arm were used in remote
surgery—even a slight deviation could lead to a fatal accident.
Additionally, the attacker successfully introduced a bias to
the robotic arm’s end effector with an average displacement
distance of 0.626m and an attack success rate of 100%.

4) Stealthiness Discussion.

Although an attacker can alter the position of the controller
in the virtual environment, the displacement cannot be too
large, as this would make it easily detectable by the victim.
We aim to determine the range of displacement that is less
likely to be noticed by the victim.

Setup. We introduced a displacement in the displayed posi-
tion of the controller by Unity SDK. Specifically, we developed
a Unity-based VR software called ”CtrOffset”, which includes
a VR virtual room. We applied an offset to the controller’s
locating results through the Unity VR API. For example, if
the correct controller position is (z,y, z), we modified it to
(z+a,y+06, 24+7). «, 8,7 can be dynamically adjusted by the
researchers. Each participant wore a Meta Quest 2 HMD and
held the controllers in both hands. The HMD presented a vir-
tual room where the positions of the controllers were rendered
as virtual hands. Participants were instructed to freely move
around in this virtual space, including walking and waving the
controllers. Before starting, participants were informed that
our study focused on perception and performance in virtual
reality. It was emphasized that it was crucial for us to know
if they noticed any anomalies in the VR experience. They
were instructed to report any unusual occurrences immediately.
We provided them with three examples of events they might
report: dizziness, issues with the VR display, or the virtual
hand appearing to deviate from the actual position of their
hand. Researchers gradually increased the offset of the virtual
hand (including both distance and direction) from 0, as shown
in Figure [I3b] until participants reported that the virtual hand
appeared to deviate from the position of their actual hand.
Finally, we recorded the number of participants who detected
anomalies at each level of offset. We recruited 10 volunteers
who were familiar with VR to experiment.

Results As shown in Figure [T3b] when the displacement
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Figure 21. Illustration of dizziness attack. The results show that
electromagnet-based attacks can effectively blur images in the VR
systems, making users feel dizzy.

was less than 0.09m, only 2 participants detected the anomaly.
This indicates that an attacker only needs to ensure the
displacement is less than 0.09m to maintain stealth.

VIL

The third case targets human perception by inducing dizzi-
ness in users. The identified attack pathway is: Hall sensor
on the main device — Display service — visual sensing
— dizziness. This case is presented in two steps: disrupting
display service and causing dizziness for users.

A. Disturb Display Service (@ + )

1) Design.

Vision is the most critical sensory modality for an immersive
experience in VR [59]. Users continuously focus on the HMD
screen, making any display anomalies likely to cause discom-
fort. To enhance the user experience, VR HMDs automatically
adjust the distance between the left and right displays using
a stepper motor, based on the user’s interpupillary distance
(IPD). A Hall sensor detects the display’s position and then
feeds the distance between the two displays back to the
system to adjust the display image. To explore effective attack
signals, recent research suggests that Hall sensor outputs can
be manipulated by injecting a specifically designed magnetic
field 23} |28]], such as a time-varying sinusoidal magnetic field
produced by an electromagnet. This will result in changes of
position to the HMD display image.

2) Evaluation.

Setup. As shown in Figure 2I] we use the magnetic
transmitter system as the attack device, which consists of
an arbitrary waveform generator (SDG6032X [44]), a power
amplifier (NFHSA4051 [45]) and a 1000-turn coil with a
core. The power amplifier applies an AC voltage to the
coil, generating a magnetic field proportional to the current
intensity. The coil is placed near the HMD, and a specific
current is used to produce the desired magnetic field.

Results. We evaluated the IPD deviation under different
current intensities, and the results are shown in Figure 224
The IPD bias is roughly proportional to the excitation current.
At an excitation current of 2A, the IPD bias peaks at 10mm,
reducing the IPD from 68mm to 58mm—the maximum and
minimum settings of the Meta Quest 2, respectively.

CASE 3: INDUCING DIZZINESS FOR USERS

B. Spoof Human Perception: Causing Dizziness (©)

1) Design.

The motion sickness [[13|] is caused by the perceptual
conflicts between human visual and vestibular inputs. Thus,
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Figure 22. The impact of (a) current intensity and the (b) current
frequency of the electromagnet on the interpupillary distance (IPD)
offset of HMD. The results show the IPD offset is proportional to
the current intensity and frequency.

an attacker can induce motion sickness by interfering with the
IPD auto-adjustment system, leading to dizziness, nausea, and
headaches [60, [61]]. Since the bias of IPD is proportional to
the instantaneous current intensity, a low-frequency alternating
current can be used to generate a low-frequency alternating
magnetic field, causing low-frequency jitter in the IPD.

Iiljzp,fsin(];%;lllt)} = bias;pp = kAsin(2nfrt) (9)

Moreover, the frequency of the IPD jitter is approximately
equal to the current frequency as shown in Figure 22b] An
attacker can control the frequency of the current to maintain
the image jitter frequency that easily induces dizziness like
0.5Hz [62, |63]]. By applying a dynamically changing sinu-
soidal magnetic field to the central part of the VR headset,
specifically where the Hall sensor is located, we continuously
alter the IPD. This manipulation leads to persistent screen jitter
as illustrated in Figure [21]

2) Simulated Evaluation.

Existing research indicates that several factors contribute
to the onset of VR sickness, including horizontal optical
flow speed, vertical optical flow speed, and disparity [64].
Regarding horizontal flow speed, higher speeds are associated
with an increased risk of motion sickness. As for vertical
flow speed, while it may exacerbate VR sickness, its impact
depends on the specific context. In terms of disparity, motion
in the distant background (small disparity) is more likely to
induce sickness compared to motion in the foreground (large
disparity). Among these factors, horizontal flow speed is the
most direct and significant contributor.

Setup. We used Android Debug Bridge (ADB) [65] and
screpy [|66] tools to capture binocular footage from the Quest 2
in five different scenarios. The average horizontal optical flow
speed, vertical optical flow speed, and disparity for each frame
were computed using OpenCV [67], and these values were
plotted on a three-dimensional coordinate system, as shown in
Figure 23] Based on the aforementioned findings, the greater
the dispersion of the coordinate points in the cloud, the higher
the likelihood of inducing dizziness, particularly along the x-
axis (horizontal flow speed) direction.

Results. Figure 23a) shows that when the user remains
stationary, horizontal and vertical flow speeds are zero, re-
sulting in a minimal risk of dizziness. Figure 23D] illustrates
that when the user appreciates virtual scenery (with small
head movements), horizontal and vertical flow speeds remain
within a small range, making dizziness unlikely. Figure
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cause fluctuations in the IPD. (e) Malicious ultrasonic waves cause drifting of the VR display.

demonstrates that when the user engages in games that are
prone to inducing dizziness (such as roller-coaster games),
both horizontal and vertical flow speeds may reach higher
values. Figure 23¢| shows that when we initiate a Magneto-
metric Dizziness Attack, the horizontal flow speed increases
significantly, even surpassing that of the roller-coaster game,
which elevates the risk of dizziness.

3) Physical Evaluation.

We recruited 15 participants for the experiment, each wear-
ing a Meta Quest 2 HMD. During the attack, the display exhib-
ited shaking due to the injected physical signals. Participants
rated their discomfort on a four-point dizziness scale: 3 (severe
dizziness), 2 (moderate dizziness), 1 (mild discomfort), and O
(no discomfort). The average reported dizziness level was 1.67,
suggesting that the physical-signal attack induces a noticeable
degree of visual discomfort.

VIII.

A. Countermeasures

DISCUSSION

False Reality poses a significant risk to mainstream
VR devices, enabling attackers to bypass security boundaries
and execute malicious operations. To address this threat, we
propose potential countermeasures focused on abnormal signal
detection and perceptual fusion.

1) Abnormal Signal Detection.

We propose a software-based detection method that lever-
ages the characteristic changes in sensor values to distinguish
between normal and attack signals. Attack signals often follow
specific patterns due to the constraints of attack conditions. For
example, ultrasound-injected IMU data typically exhibits sinu-
soidal waveforms. Additionally, one sensor’s data can often be
correlated with another sensor’s data in VR systems [68]]. For
instance, IMU angular data from the HMD should correlate
positively with camera-captured optical flow changes. Based
on these observations, we suggest training a classifier network
to detect tampered sensor data.

2) Human Perceptual Fusion.

Principle. We propose a potential countermeasure based on
human perceptual fusion. We observed that a critical factor
enabling False Reality attack is the VR system’s reliance
on a single sensory modality. For example, in HMD-locating
service, VR systems typically deliver visual information to
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Figure 24. Prototype of the human-perceptual-fusion-based counter-
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sensing (b) Setup: A cheap vibrator is added to receive the IMU’s
measurements in practice.

Table IV. Performance of Human Perceptual Fusion.

Without Vibration With Vibration
Volunteer “ :
Immersion Defense | Immersion Defense
Mean 2.8 1.8 2.6 3271

Note: Immersion Scoring: 4-Highly immersive, almost like reality.
3-Good immersion, but with some differences. 2-Average immersion,
no noticeable issues (e.g., vibrations). 1-No immersion. Defense
Scoring: 4-Excellent defense, abnormalities reported < 10s. 3-Good
defense, abnormalities reported < 60s. 2-Average defense, abnormal-
ities reported < 300s. 1-Poor defense, no abnormalities reported.

the user solely through the display as shown in path® of
Figure 24a] It is easy for attackers to exploit vulnerabilities
in human visual perception. We propose that integrating mul-
timodal feedback can significantly increase the difficulty for
attackers. Exploiting multiple sensory modalities simultane-
ously is challenging for attackers, as their ability to inject
manipulative signals across different senses is limited.

Prototype. As shown in Figure 24b] we integrated a vibra-
tion module into the HMD-locating service, which vibrates in
sync with the IMU data. This provides the user with tactile
feedback as shown in path® of Figure The vibration
intensity increases with the z-axis velocity of IMU, which can
be calculated using the following equation.

V=(01-e NV, (10)
where, V' represents the vibration amplitude of the module,
Umaz 18 the maximum vibration amplitude, and v, is the z-axis
velocity detected by the IMU. This approach involves adding a
low-cost vibration module (around $1) and a simple algorithm
with minimal computational overhead. Under normal VR use,
the user’s head movement along the z-axis is minimal, so



the vibration module remains largely inactive. However, when
under ultrasonic attack, significant fluctuations of velocity in
the z-axis cause the module to vibrate intensely. Since this
intense vibration doesn’t match the user’s actual movements,
it alerts the user to an anomaly, potentially indicating an attack.

Evaluation. We conduct a user-participatory evaluation to
assess the effectiveness and usability of the proposed approach.
Specifically, we recruited five volunteers who were familiar
with VR devices but had never worn one. They were first
asked to wear a headset without vibration feedback, followed
by one with vibration feedback. In both attack and non-
attack conditions, they were asked to evaluate the immersive
experience of the headset and determine whether they could
perceive the attack. The headset used in the experiment was
the PICO 4 Pro, and the parameters of the ultrasonic attack
signal were 26.8612kH z and 10W. The experimental results
are shown in Table The results indicate that the decrease
in immersion due to vibration feedback is minimal, while it
significantly enhances the defensive capability.

B. Future Work

Assessing more VR devices. To validate the effectiveness
and transferability of False Reality attack, we conducted
experiments on 5 high-market-share device models, two Meta
Quest 2 [14] with different system versions (v60 and v50),
a PICO 4 Pro [15], a Meta Quest 3 [16]], and a Google
Cardboard [17] paired with IQOO NEO 5 SE as shown in
Table |l The results demonstrate multiple VR devices are
susceptible to False Reality even though they vary in
models. The underlying reasons are the core principle of
critical services and sensor usage remains consistent. For
instance, cameras, IMUs, and other sensors are still employed
to perceive the 3D environment. Besides, in this paper, we do
not consider Apple Vision Pro since they are in a small market
share yet (less than 100k sales [69]] compared to 7650k [70]
of the total market). In the future, we will keep exploring the
security of new VR systems when they use new sensors.

Exploring more attack paths. In this work, we presented
detailed 3 attack pathways due to page limitations. Besides, we
have conducted preliminary validation for other attack paths,
e.g., modifying the avatar’s action by spoofing IR cameras and
inducing display jitter by interfering with IMU (Figure [23¢)).
In the future, we will thoroughly analyze and keep exploring
alternative attack pathways.

IX. RELATED WORK

Systematization of VR Security. [71] and [72] address
the heightened security and privacy risks in VR compared to
traditional systems. [[73]] reviews current VR security threats
across five areas: input, data access, output, interactivity, and
device integrity. [[74]] classifies VR security research into four
dimensions: attack surface, security property, impact, and
damage, noting that HMDs may obscure users’ awareness
of cyberattacks affecting their physical environment, such as
mismatches between virtual and real worlds, altered safety
boundaries, or induced VR sickness. [75] categorizes 15 types
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of attacks based on their difficulty, consequences, and risk
levels. Unlike these papers, we focuses on analyzing sensors
as the attack surface. We examine how sensor attacks could
potentially impact VR systems and cause harm to users.

Perceptual Manipulation Attack in VR System. [10]
suggests that attackers can manipulate users’ multisensory per-
ceptions (e.g., visual, auditory, tactile) through mixed reality
(MR) content, potentially leading to physical collisions or
dizziness. [9] describes how malicious applications, disguised
as benign ones, can hijack and manipulate user interactions
within VR environments. [[7] shows that attackers can deceive
users into altering their physical positions by modifying virtual
environment settings through VR system configuration files.
[76] illustrates how visual illusions can be exploited to distort
users’ depth perception of the environment or objects. How-
ever, most of these works initiate attacks from the software
layer, requiring attackers to access the victim’s VR device
software, which lacks stealth and feasibility. In contrast, our
method enables remote and covert attacks without needing
prior access to the victim’s device.

Sensor Spoofing Attack. Over the past decades, substan-
tial research focus on sensor spoofing attacks. For instance,
attackers can blur camera images using acoustic waves [77]]
or introduce colored stripes via Intentional Electromagnetic
Interference (IEMI) [26]. Adversarial infrared patches have
been suggested to disrupt infrared-based object detection [27].
The feasibility of manipulating Hall sensors in solar inverters
[23] and anti-lock braking systems (ABS) [28] has also been
demonstrated. Additionally, attackers can inject false data into
IMUs using IEMI [29]] or ultrasonic waves [22} [30]. Voice
commands can be injected into microphones using light [|25]]
or ultrasonic signals [24], and sensor data can be controlled
by manipulating power supply voltage [78]. Despite extensive
research, sensor attacks within VR systems remain underex-
plored and warrant attention due to their potential risks.

X. CONCLUSION

This paper presents the first security analysis framework
for VR systems from the perspective of physical-signal-based
attacks. We propose False Reality, a framework that
uncovers the underlying relationships among sensors, VR
services, and human responses, and systematically maps out
attack pathways that spoof human perception and induce false
actions through physical signals. By incorporating human
perceptual and psychological factors, False Reality of-
fers practical insights into real-world vulnerabilities. Finally,
we validate False Reality through three case studies
across five commercial VR systems and propose potential
countermeasures.
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APPENDIX

A. Ethics Considerations

IRB Approval. We have got IRB approval from Institutional
Review Boards before the user study.

Manikin instead of Human. In the attack capability as-
sessment and validation experiments, we used a manikin for
wearing the tested VR devices and used the ADB tool [|65]]
and python interface of OpenVR (pyopenvr [47]) to collect
the experiment data remotely.

Volunteer Protection. In the psychological experiments and
end-to-end attack scenarios, we made the following efforts to
protect participants’ security and informed the participants that
they could terminate the trial at any time.

o Software-based experiments: In the psychological exper-
iments, we utilized software to simulate the disturbed
VR system services, eliminating the impact of the attack
signals on participants.

Limit attack signal energy: We strictly limited the trans-
mission power of the attack signals within a safe range.
For example, we set the ultrasonic waves below 90 dB,
which is far lower than the safe range (120dB) [[79, [80].

Shielding attack signals: Participants are required to
wear the specific shielding devices (an electromagnetic
shielding suit, 3M ear-muffs, and Infrared goggles) to
shield attack signals (electromagnetic signals, ultrasound,
and IR beams).

Responsible disclosure. We have disclosed the vulnerabil-
ities presented in this paper to the respective product security
teams. Our reports included the affected products, a brief
description of the vulnerability, and a proof-of-concept demon-
stration. We also provided suggestions for expected correct
behavior and potential workarounds. As of the submission
date, we have not yet received response from the vendors.

B. Attack Flow Model

To clarify how the attack signals take effect, we build a transfer
function model to analyze the attack flow paths. As shown in
Figure 25 the input of VR consist of environmental signals,
human signals and attack signals. Captured and processed by
the VR devices, the input is converted into the output by the
transfer functions Fi(s), F,(s) and F,(s). Users perceive the
output of the VR devices through their senses (H(s)) and act
accordingly (H,(s)). The user’s action generates the human
signal, which creates positive feedback. Suppose that the attack
signal is attack(z) and the user’s perception is sense(z).
The transfer function G(s) is a linear mapping of the Laplace
transform of sense(x) to the Laplace transform of attack(x).
G(s) can be calculated as:

G(s) = b

sense(s) _ Fy(s)Fp(s)Fo(s)Hs(s)
attack(s) 1-— FS(s)Fp(s)Fa(s)Hs(s)Ha(s()l1

In fact, the processing of the VR system does some sub-
stitutions. For example, real environments are replaced with
virtual ones, real hands are replaced with animated ones and
real positions are replaced with virtual ones. Therefore, the
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key information (e.g., positional relationship between objects,
movement of limbs) remains unchanged. That means F),(s) ~
1. Moreover, the actuators in the VR system are similar. They
simply visualize the virtual data to the user. For example, the
HMD displays a binocular screen and speakers play audio.
This process may introduce non-ideal noise, but the signal
remains roughly constant. That means F,(s) = 1.
Therefore, G(s) can be simplified as

sense(s) - Fy(s)Hq(s)
attack(s) 1 — Fs(s)Hs(s)Hy(s)

The transfer function P(s) is defined as a linear mapping of
the Laplace transform of action(z) to the Laplace transform
of attack(x). P(s) can be calculated as:

P(s) = G(s)Hao(s) ~ Fy(s)H(s)Hq(s)
1— Fs(s)Hs(s)Hgy(s)
(13)
According to Equations [T2] and [T3] the impact of the attack
signal on the user (i.e. the consequences of False Reality
Attack) depends mainly on the sensitivity of the user’s senses
and the degree of amplification of the attack signal by the
sensor. Everyone has a different level of sensory sensitivity.
Maybe some people are more sensitive and others are not.
This is something the attacker can’t change. But according
to [81]], some of people are prone to discomfort when wearing
VR devices, i.e. they are more sensitive. Therefore, if the
attacker wants to maximize the effect of the attack, he must
find the attack signals that are most sensitive to the sensors.
Additionally, to ensure the stealthiness of the attack, the
sensory sensitivity of the victim must also be taken into

account. These will be discussed in detail in Section

G(s) = (12)

action(s)
attack(s)

Attack signal

Env. sig. +~ *+ AN Input | Output
. \{ N OfVRl FS(S) |_)| Fp(S) H Fa(S) OfVR —
Human sig. )
Action |H—| Sense |H—|
f‘ (J als) (J o(s)
N\ '

Figure 25. Block diagram of the transfer function of the VR system.
Attack signals eventually affect the user’s perception and actions
through multiple transfer functions. Note: Env. sig. means environ-
mental signal. Human sig. means the signal from the user. Fi(s)
presents the transfer function of sensors. F,(s) presents the transfer
function of processing program in VR. F,(s) presents the transfer
function of actuators. Hs(s) presents the transfer function of human
senses. H,(s) presents the transfer function of human muscle.

C. Attack Flow of attackers

(a) The attack flow of the attacker is shown in Figure
There is a feedback loop for the attacker to dynamically adjust
the attack signal.



Attack Signal Effective Signal Malicious Events
Design Injection Creation
| A;i rj:;:jzlng;al | Prepsairen'gTrget | | Interaction DoS |
Adjust Signal Select Modulation Frames by
Amplitude Strate Misdirection
| AdjustSignal | Generate Attack Mismatch between
Direction Signal Virtuality and Realit:
User’s Reaction Observation
Uncomfortable | Unaware of | Walking Path | | Unexpected Hand
Feeling Obstacles Offset Movements

Figure 26. Illustration of False Reality attack flow. We first
design an attack signal for effective injection. Then we inject an attack
signal to VR system in order to create malicious events. As feedback,
we observe the victim user’s reaction to dynamically adjust the attack
signals. In this loop, we can continuously deceive and manipulate the
victim.

D. Equations

j—1
R;=R; H exp((Wr — Wpias ) AL)
k=1
j—1
v; =v; + gAtij + Z Rk(ak — abias)At
k=1
J—1 1 1 Jj—1
pj =pi + ;’l}kAt + igAtfj + 5 ;Rk(ak — abms)Atz
= =i

(14)
where R is the rotation matrix, v is the velocity, p is the
displacement, w is the angular velocity measured by the IMU,
a is the acceleration measured by the IMU, wp;qs and apiqs
represent the bias components of w and a, and g denotes the
gravitational acceleration. Specifically, the iterative formula for
*R* can be transformed as follows:

7j—1
R; =R, H exp((wg — Wpias)AL)
k=i

j—1

=R, eXp(Z(Wk — Whias)At)

k=i
T
~ R, exp(/ (W — Wpigs)dt)
0

- Rz eXp(eT - wbiasT)

15)

E. Supplementary Materials of Evaluation

Figure 27. Safety boundary of Meta Quest 2.
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Figure 28. Setup of virtual environment in Case 1.

Figure 29. The 5 commercial VR devices tested in the evaluation: (i)
Meta Quest 2 (v60), (ii) Meta Quest 2(v50), (iii) PICO 4 Pro, (iv)
Meta Quest 3, (v) Google Cardboard.

Figure 31. Unity-based VR APP ”CtrOffset”.
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