arXiv:2508.08438v1 [cs.CR] 11 Aug 2025

Selective KV-Cache Sharing to Mitigate Timing
Side-Channels in LLLM Inference

Kexin Chu'
University of Connecticut, CT, USA

Zixu Shen

Yiwei Yang
UC Santa Cruz, CA, USA

Zecheng Lin'
Independent Researcher

Jianchang Su
University of Connecticut, CT, USA University of Connecticut, CT, USA

Wenhui Zhang
Independent Researcher

Dawei Xiang
University of Connecticut, CT, USA

Cheng Chu
Indiana University Bloomington, IN, USA

Wenfei Wu
Peking University, Beijing, China

Wei Zhang"
University of Connecticut, CT, USA

Abstract—Global KV-cache sharing has emerged as a key
optimization for accelerating large language model (LLM) in-
ference. However, it exposes a new class of timing side-channel
attacks, enabling adversaries to infer sensitive user inputs via
shared cache entries. Existing defenses, such as per-user isolation,
eliminate leakage but degrade performance by up to 38.9% in
time-to-first-token (TTFT), making them impractical for high-
throughput deployment.

To address this gap, we introduce SafeKV (Secure and Flexible
KV Cache Sharing), a privacy-aware KV-cache management
framework that selectively shares non-sensitive entries while
confining sensitive content to private caches. SafeKV comprises
three components: (i) a hybrid, multi-tier detection pipeline
that integrates rule-based pattern matching, a general-purpose
privacy detector, and context-aware validation; (ii) a unified
radix-tree index that manages public and private entries across
heterogeneous memory tiers (HBM, DRAM, SSD); and (iii)
entropy-based access monitoring to detect and mitigate residual
information leakage.

Our evaluation shows that SafeKV mitigates 94%-97% of
timing-based side-cahnnel attacks. Compare to per-user isolation
method, SafeKV improves TTFT by up to 40.58% and through-
put by up to 2.66x across diverse LLMs and workloads. SafeKV
reduces cache-induced TTFT overhead from 50.41% to 11.74%
on Qwen3-235B. By combining fine-grained privacy control with
high cache reuse efficiency, SafeKV reclaims the performance
advantages of global sharing while providing robust runtime
privacy guarantees for LLM inference.

I. INTRODUCTION

Large language models (LLMs) now underpin applica-
tions from dialogue to complex reasoning. To meet time-
sensitive inference demands, key—value (KV) caching stores
intermediate attention states (“keys” and “values”) to eliminate
redundant computation for sequential or similar prompts,
thereby accelerating generation [70]. This efficiency gain is
amplified through KV cache sharing across multiple requests.

1 These authors contributed equally to this work.
* Corresponding author (wei.13.zhang @uconn.edu).

In particular, prompts with common prefixes, such as shared
dialogue history or structured prompting patterns, enable sub-
stantial throughput improvements and latency reduction. Con-
sequently, KV-cache sharing has become a critical mechanism
for boosting throughput and reducing response latency in
large-scale, multi-user LLM deployments. Empirical studies
confirm that a substantial portion of real-world prompts exhibit
prefix-level or structural overlap [42], [[74], making shared KV
reuse both practical and highly beneficial.

Despite these performance benefits, KV cache sharing raises
serious privacy and security concerns in shared or multi-tenant
deployments. Specifically, KV-cache sharing across mutually
untrusted users can lead to unintended information leakage.
Recent research has shown that adversaries can infer cache hits
by issuing carefully crafted queries and measuring response
latencies. These timing variations can leak whether a particular
prefix has been previously cached, indirectly exposing the
query patterns of others. Over time, such cache probing attacks
can reveal partial or even complete user inputs [[54], [57], [60],
[73]], posing serious threats to user privacy.

These side-channel attacks are particularly alarming for
two key reasons. First, they require no special privileges: the
attacker simply interacts with the LLM through its standard
API, mimicking normal user behavior. Second, the leaked
content often contains highly sensitive data, such as medical
questions, financial details, or private instructions to LLM
agents. Given the low barrier to attack and the high severity of
potential data leakage, KV-cache-based side channels represent
a pressing and under-addressed security threat in real-world
LLM deployments.

The severity and practicality of these attacks have been
demonstrated across several recent works. For example,
PromptPeek [60] and InputSnatch [73]] both exploit token-wise
probing and cache-hit timing feedback to reconstruct private
user prompts with high accuracy. Song et al. [54] further ex-

https://arxiv.org/abs/2508.08438v1

pand the threat landscape by uncovering timing-based leakage
in a broader range of caching schemes, including semantic
and partial-match reuse, across open-source and commercial
LLM systems. Collectively, these works expose a new class
of LLM-specific vulnerabilities that arise from performance-
oriented cache reuse mechanisms.

In this paper, we propose SafeKV , a secure and efficient
KV-cache management system designed to mitigate prompt
leakage in LLM inference. Unlike approaches that enforce
strict user-level cache isolation [49], which would sacrifice
performance, SafeKV adopts a selective reuse strategy. At
the time of cache block creation, the system classifies each
entry as either sensitive or safe for reuse, based on the privacy
characteristics of the prompts. This classification is driven by
a multi-tier, extensible privacy detection pipeline that analyzes
both token content and contextual semantics. Only those KV
entries deemed safe are eligible for cross-user reuse, enabling
SafeKV to preserve the performance advantages of caching
while enforcing strong privacy boundaries between users.

However, designing such a system raises three challenges:

o Challenge 1: Accurate and Efficient Privacy Classifi-
cation. How can the system reliably differentiate sensitive
from non-sensitive KV entries with low latency and com-
putational overhead? Rule-based methods offer low cost
but limited recall, while deep learning models improve
accuracy but introduce inference delays.

o Challenge 2: Risk Mitigation under Imperfect De-
tection. Even rare misclassifications can lead to privacy
violations if sensitive content is mistakenly shared. How
can the system detect and respond to such leakage risks
in real time?

« Challenge 3: Scalable Cache Lifecycle Management.
How should the system organize private and shared
caches to maximize reuse without sacrificing security?
Effective cache management must support fast prefix
matching, minimize redundancy, and avoid structural
fragmentation.

To tackle these challenges, SafeKV rethinks KV-cache de-
sign from a privacy-first yet performance-aware perspective.
Rather than treating privacy enforcement as an add-on, it inte-
grates security into the cache lifecycle itself. Through selective
isolation and asynchronous detection, SafeKV ensures that
sensitive content remains confined without penalizing overall
system throughput. The result is a scalable and efficient LLM
serving infrastructure that offers strong privacy protection
alongside high-performance inference.

o Privacy-Aware KV-Cache Classification. We design
SafeKV to enable fine-grained KV-cache sharing by clas-
sifying cache entries as either safe or sensitive at creation
time. To achieve accurate and efficient classification, we
introduce a multi-tier hybrid detection framework com-
bining rule-based matching, general privacy detector, and
context-aware validation. The detection pipeline is asyn-
chronous, extensible, and optimized for high-throughput
LLM serving.

TABLE I: Cache Mechanisms Comparison of Different LLM
API Vendors

Vendor/Frameworks Stream Caching Mechanisms Cache Lifetime
OpenAl [48] Y Prefix Caching 5-10 minutes
DeepSeek [31] Y Prefix Caching Hours to days
Anthropic Claude [24] Y Prefix Caching 5 minutes
Google Gemini [30] Y Prefix Caching Default 1 hour
MoonShot Kimi [50)] Y Prefix Caching Customization
vLLM [40] Y Prefix Caching Customization
SGLang [[72] Y Prefix Caching Customization

« Resilient Defense Against Misclassification. To mitigate
the risks of imperfect privacy detection, SafeKV incor-
porates runtime safeguards including cache-level isolation
by default and fallback handling for suspicious access. It
ensures that sensitive data remains confined even under
partial detection errors, preserving privacy without inter-
rupting inference execution.

o Scalable and Efficient Cache Management. We imple-
ment a privacy-aware caching subsystem using a unified
radix-tree structure that supports both private and shared
entries. It features memory-efficient indexing, adaptive
reuse policies, and multi-tier memory coordination, en-
abling high reuse rates, fast lookups, and minimal per-
formance overhead across large-scale deployments.

II. BACKGROUND
A. LLM Inference

Large Language Models (LLMs), built on the Trans-
former architecture [59]], compute contextual relationships
using scaled dot-product attention over Query (Q), Key (K),
and Value (V) vectors [38]], [43]]. Inference proceeds in two
stages: the Prefill phase processes the entire prompt in a single
forward pass to compute K/V embeddings and generate the
first output token. The subsequent Decoding phase generates
one tokens at a time, reusing cached K/V embeddings to
apply attention over the growing sequence. This KV-cache
mechanism reduces decoding complexity from quadratic to
linear in sequence length, significantly improving efficiency
for long prompts and multi-turn dialogue [35].

B. KV-Cache Sharing

To improve inference efficiency, modern LLM serving sys-
tems widely employ KV-cache sharing, allowing reuse of
previously computed key/value embeddings across requests
with overlapping prompt prefixes. As summarized in [lable I}
most commercial and open-source systems support prefix-
based caching, where shared prefixes enable subsequent re-
quests to skip redundant computation. This leads to substantial
latency reductions.

Cache retention policies vary across deployments. OpenAl
and Anthropic retain cache entries for only a few minutes,
while DeepSeek extends cache lifetime to hours or days.
Others, such as Google Gemini and MoonShot Kimi, adopt
flexible or tunable policies. Open-source frameworks like
vLLM and SGLang expose fine-grained controls over cache

eviction and reuse. Despite these differences, most systems
follow the same underlying paradigm: prefix-based caching
and reuse to accelerate inference.

C. Timing Side-Channel Attack

While shared KV caching significantly improves inference
performance, it introduces a subtle but serious vulnerability: a
software-level timing side channel. By measuring the response
latency of queries, particularly the time to first token (TTFT),
an attacker can infer whether certain prefix tokens were previ-
ously cached, revealing information about other users’ inputs.
Prior works [29], [53[], [54], [60], [65], [73]] demonstrate that
such attacks can be mounted even under black-box API access:

o Probe. The attacker submits a crafted prompt and records
the TTFT.

e Detect. A low TTFT suggests the prefix was already
cached (cache hir); a higher latency indicates cache miss.

o Reconstruct. By iteratively extending the prefix and
probing candidates token-by-token, the attacker identifies
the correct next token based on TTFT differences, grad-
ually recovering sensitive prompt content.

Notably, this vulnerability is not limited to exact prefix-
matching caches. Systems like GPTCache [25]], which reuse
responses for semantically similar inputs, also exhibit latency-
based leakage: similar queries produce faster responses if
related prompts were previously cached. These attacks require
no privileged access, only the ability to issue queries and
measure response time, yet have proven effective against
both commercial and open-source LLM services, exposing
a fundamental tension between inference efficiency and user
privacy in shared environments.

D. Motivation: Privacy Risk and Isolation Cost

a) The Risk of KV-Cache Leakage.: To access the
privacy risks posed by structured privacy-sensitive data in
large language model (LLM) training corpora, we analyze
two widely adopted datasets: C4 [51] and Pile [37]. As
summarized in these datasets contain substantial
volumes of personally identifiable information (PII), including
usernames, phone numbers, credit card details, and US Social
Security Numbers. For example, the C4 dataset alone contains
more than 1.4 billion occurrences of usernames, and the
Pile dataset includes approximately 69 million instances of
US bank account numbers. These findings underscore the
widespread presence of sensitive data in real-world corpora,
rendering inference-time leakage through shared components
like the KV cache a realistic and pressing concern.

These statistics shows a tangible threat: if KV-cache entries
containing such structured PII are shared across users, attack-
ers exploiting pattern-guided probing can efficiently detect the
existence of sensitive content within shared caches, potentially
reconstructing sensitive content. Therefore, protecting privacy-
sensitive tokens from unintended reuse becomes a core re-
quirement in multi-tenant LLM deployments.

TABLE II: Personal Information Counts in C4 and Pile.

Personal Information Type C4 Pile
User Name 1,444,683,066 3,273,163,949
Phone Number 19,592,273 23,191,595
Email Number 9,056,833 13,336,793
US Bank Number 7,139,838 69,763,678
Credit Card Number 61,405 741,815
US SSN 2,352,339 12,541,022
IP Address 1,890,090 14,975,663
Total 1,484,780,621 3,407,722,116

[0 SGlLang I Cache-Partition

TTFT Compare (%)
TTFT Compare (%)

CharaGPT Multitiirn Multitaclk

(a) Llama-2-13B

CharaGPT Multitiirn Multitacl

(b) Llama-2-70B

Fig. 1: Normalized performance of TTFT between SGLang
(global-sharing) and Cache-Partition (isolated-per-user).

b) Performance Impact of Full Isolation.: A straight-
forward mitigation strategy is to enforce per-user cache iso-
lation, thereby preventing any possibility of cross-user KV
reuse for sensitive content [49]. However, this comes at a
steep cost: isolating the KV cache for each user forfeits
the computational and memory benefits afforded by cache
sharing [44], [63]]. Specifically, it results in redundant storage
of identical prefixes and diminishes memory efficiency across
the multi-tiered memory hierarchy (HBM, DRAM, and SSD).
Given that real-world LLM workloads frequently exhibit sig-
nificant cross-user query reuse(as shown in [Table III), per-
user isolation introduces severe performance overheads. Our
motivation experiments, as shown in reveal that
the Cache-Partition(per-user isolation) increases Time-to-First-
Token (TTFT) by 2.3% to 8.9% for LLaMA-2-13B [7]] and by
8.3% to 38.9% for LLaMA-2-70B [8]] across three different
datasets.

TABLE III: Intra-session and Inter-session KV-Cache reuse
rates across different datasets.

Dataset Intra-User Reuse Inter-User Reuse
ShareGPT V3 [1] 7.06% 25.49%
Multiturn Chat [2] 31.47% 9.45%
Prompt Multitasks [[34] 0.0% 63.10%

To reconcile the trade-off between low-latency cache reuse
and strong privacy isolation, we introduce SafeKV , a selec-
tive KV-cache sharing framework that distinguishes between
private and non-private KV cache entries. Sensitive content is
confined to user-specific private caches, while non-sensitive
data is allowed to be shared safely across requests. This
selective strategy achieves robust privacy protection without

sacrificing the performance benefits of shared caching, striking
a balance between security and efficiency.

III. THREAT MODEL

A. System Model

Multi-tenant LLM serving spans local to cloud deployments.
A core constraint across settings is limited GPU memory ver-
sus large per-request KV footprints, which hinders batching.
Prior work mitigates this by sharing KV across requests with
identical prefixes [41]], [62], [71], improving concurrency and
latency [41]], [[62], [71]. KV for token t; is reusable across
requests iff all preceding tokens match exactly. Hence, prefix
mismatches (especially at the first token) preclude sharing.
For example, vLLM [16], [41]] materializes KV blocks tagged
by hashes, timestamps, and refcounts; retains while memory
allows, evicting oldest on pressure. SGLang [15], [71] stores
KV in a radix tree on GPU; uses LRU eviction and Longest
Prefix Match (LPM) scheduling to prioritize requests with
longer shareable prefixes.

The scheduler impacts the KV cache sharing. Users submit
requests to an inference server. A scheduler batches queued
requests and dispatches them to a GPU worker; results are
streamed back to users. IV users issue requests r at frequency
f. Each r has ¢ input tokens {¢1,...,t¢;}; the server returns
j output tokens {¢;41,...,%;4;}, with j configurable (e.g.,
max_tokens in VLLM) [15], [16]]. Orders requests by a
scheduling policy Ps and forms a batch b = {ry,..., 7} un-
der batching policy Pp. KV handling follows Pk ; responses
follow Pp. A single LLM runs on one GPU. Memory M is
partitioned into model Myo4e1, KV Mky, and other activations
Mohers [41]. With per-token KV size m; (model-dependent),
the concurrent token capacity is

MKVJ

Tmax = \‘
my

When KV sharing is enabled, entries persist while space
permits; upon reaching T,.x, eviction proceeds per eviction
policy Pg [60]. Scheduling policy Pg, batching policy Pp,
eviction policy Pg, KV-cache policy Py, and output policy
Pp are vendor-specific, evolve rapidly across serving stacks,
and are often undocumented. Unlike prior work [60] that
assumes these policies are public and fixed, we treat them
as closed and time-varying; our analysis does not rely on
their internals and remains robust to implementation-defined
changes.

B. Threat Model

1) Attackers’ Goal: An adaptive adversary seeks to recover
prompt-borne secrets (e.g., names, emails) by exploiting tim-
ing side channels in shared LLM serving systems [54]], [[73]].
As illustrated in the adversary uses standard APIs
against the same backend as benign users and infers sensitive
content from latency fluctuations—notably TTFT, which is
induced by KV-cache reuse.

ee
3 [Compute .
V-Cache Prompt Co
LLM Server &P Attacker
@

Fig. 2: Attack Overview.

2) Attackers’ Knowledge: We assume a black-box adver-
sary with no access to model internals or victim request
contents, but who possesses structural priors over common
secret formats (e.g., email addresses, phone numbers, SSNs),
tokenizer knowledge to map candidate strings to the de-
ployed model’s token sequences using public tokenizers, and
an understanding of shared KV-cache semantics and reuse
conditions. The adversary is limited to API-visible outputs
and timing signals (e.g., TTFT) and cannot observe model
parameters, logits, or KV-cache states.

3) Attack Strategy: The attack proceeds in an iterative,
adaptive probing loop designed to reconstruct user secrets
using side-channel leakage. The methodology is illustrated in
Figure 2| and follows these stages:

o Prompt Construction: The attacker prepares a set of
candidate prompts with shared prefixes likely to overlap
with the vitim’s orivacy query. Candidates may be derived
from sensitive data templates or synthetically generated
via local LLMs.

o Timing Probing: Each candidate is submitted to the in-
ference backend. The attacker records TTFT to determine
whether prefix tokens were already cached, exploiting
reduced latency as a leakage signal.

o Adaptive Refinement: Using TTFT feedback, the at-
tacker prunes unpromising candidates and recursively
extends the prefix until the complete sensitive content is
inferred.

« Distributed Evasion: To bypass rate limiting or entropy-
based defenses, the attacker can distribute probes across
multiple user identities and schedule them non-uniformly.

C. SafeKV Approach

1) Defense Goals: SafeKV seeks to prevent timing-based
side-channel leakage stemming from shared KV-cache reuse
in multi-tenant LLM inference. Our defense is designed to
achieve the following objectives:

o G1: Privacy Preservation. Ensure that KV-cache blocks
containing privacy-sensitive content are never reused
across user boundaries.

o G2: Performance Retention. Selectively share safe KV
blocks to preserve the throughput and latency benefits of
cache reuse.

¢ G3: Runtime Resilience. Detect and mitigate residual
misclassifications via access pattern monitoring and adap-
tive isolation.

2) Defense Knowledge: SafeKV assumes a black-box
threat model and operates with limited observability. Specifi-
cally:

e No privileged access: The system does not rely on

internal model parameters, gradients, or logits.

o Token-level visibility: Observes tokenized prompts and
per-request cache metadata (e.g., prefix length, reuse
count).

o Detection priors: Leverages pattern-based matching,
lightweight privacy detectors, and context-aware LLM
validators to identify sensitive inputs.

« Behavioral signals: Tracks KV reuse entropy and user
distribution drift to detect anomalous access patterns at
runtime.

3) Proof of Defense: Let r, = ti,ta,...,t; denote a
victim prompts prefix and C(¢1,ts,...,t;) indicate whether
the corresponding KV-Cache block is publicly visible. An
attacker issues prob request 7, with matching prefix and
observe the TTFT latency:

Ty -
TTFT(ry) = {Thzt

SafeKV ensures that C(ty,ta,...,t;) = True only if the
block has passed all detection stages. Let «; denote the false
negative rate of detection Tier — i (i € {1,2,3}). Then the
probability of a sensitive block being publicly exposed is:

if C(ty,to,...
otherwise

,tk) = True

(1)

3
P)leak S H (673 (2)
i=1

Empirically, we observe oy < 0.63, as < 0.04, and a3 <
0.29, even at worst cas, yielding Py < 0.03 in practice (
detailed in Section |VIIJ).

In the presence of such leakage, SafeKV monitors entropy
H;, of block b:

Ucnt
= 3
hiten ©)

where ucy is the number of unique user accesses and hity, the
total access count. A rising entropy combined with historical
low wucn triggers a downgrade of b from public to private,
terminating reuse and bounding leakage exposure over time.
Collectively, these mechanisms ensure that: leftmargin=*
e Only KV blocks passing strict multi-tier detection are
reusable across users.
o Any residual misclassification is detected within bounded
usage epochs.
« Private blocks never induce observable latency variation
across users.

Hy

IV. OVERVIEW OF SAFEKV

SafeKV is a privacy-aware KV-cache management frame-
work that enables safe cache sharing by isolating sensitive
content while maximizing reuse of non-sensitive entries. Its
design addresses three key challenges outlined in Section [I}
(1) Accurate and Efficient Privacy Classification, (2) Risk
Mitigation under Imperfect Detection, and (3) Scalable Cache
Lifecycle Management.

Hybrid Detector | Serving LLMs
Rule-Based 5 ¢
Detector {l_ 3 Cache Cache Search| | Cache
v S il i i
G ocator Engine Evictor
General- v 7 v
Detector
Y N Hybrid KV- Path
Context-Aware Cache Compressor
Validation KV Cache

Fig. 3: The Architecture Overview of SafeKV .

A. Design Objectives

To address these challenges, SafeKV is guided by the
following system goals:

o G1: Privacy-Aware Reuse. Maximize KV-cache reuse
opportunities across users without compromising privacy.

e G2: Minimal Latency Impact. Ensure that detection
and access control introduce negligible delay to LLM
inference.

e G3: Scalability. Maintain efficiency and correctness
across large-scale deployments with diverse user traffic
patterns and cache workloads.

B. System Architecture

To enforce fine-grained privacy control without undermining
inference efficiency, SafeKV adopts a modular architecture
centered around two core components, each tailored to address
specific system-level challenges introduced in Section [I|

1) Hybrid Detection Pipeline. (addresses Challenge 1
& 2) A multi-tier privacy classification system that
evaluates each KV-cache block at allocation time. It
includes: (i) Tier-1 rule-based pattern matching, (ii)
Tier-2 lightweight transformer-based detection, and (iii)
Tier-3 context-aware validation using large models. The
detection pipeline is asynchronous and incorporates run-
time fallback mechanisms to ensure coverage without
stalling inference (Section [V).

2) SafeKV Memory Manager. (addresses Challenge 3)
A radix-tree-based KV-cache index that supports unified
management of public and private entries. It incorporates
path compression for efficient lookups and coordinates
eviction based on sensitivity and reuse (Section [VI).

These two components work in tandem: the detection
pipeline classifies cache entries based on privacy semantics,
and the memory manager enforces fine-grained sharing poli-
cies accordingly. Together, they enable SafeKV to support
secure, scalable, and low-latency KV-cache sharing in LLM
serving systems.

V. SAFEKV-DETECT: HYBRID PRIVACY DETECTION

In this section, we present the design of SafeKV ’s pri-
vacy detection subsystem. This component is responsible
for classifying each KV-cache block as private or shareable
at allocation time and enforcing runtime safeguards against
potential misclassifications.

A. Design Requirements

SafeKV ’s detection system is designed to satify the follow-
ing requirements:

o R1: Lightweight and Extensible. Detection must incur
minimal overhead to support real-time inference and
remain adaptable to new privacy policies and domains.

¢ R2: Accurate and Context-Aware. The system must
detect both explicit and subtle privacy-sensitive content,
including implicit identifiers embedded in conversational
context.

« R3: Resilient Against Misclassification. False negatives
must be detected and contained through runtime behavior
monitoring and anomaly-aware fallback strategies.

o R4: Asynchronous and Non-Blocking. Detection must
be decoupled from the main serving path to avoid de-
grading latency or throughput.

To meet these goals, SafeKV employs a three-tier hybrid
detection pipeline (Section for challenge 1, a runtime
fallback mechanism (Section for challenge 2, and an
asynchronous scheduling strategy (Section for efficiency.

B. Three-Tier Hybrid Detection Strategy

Each newly generated KV-cache block undergoes a three-
stage classification process at creation time. The pipeline is
structured as follows:

o Tier 1: Rule-Based Pattern Matching. This stage ef-
ficiently captures explicit sensitive content using config-
urable pattern matching techniques.

o Tier 2: General Privacy Detector. This stage employs
a compact transformer model to assess the privacy sen-
sitivity of text blocks not flagged by regex or heuristics.
This scoring stage balances detection accuracy, latency
and model size to support efficient detection.

o Tier 3: Context-Aware Validation. This stage com-
bines the context (including the history of multi-turn
conversations) to evaluate the sensitivity. Avoid leaking
sensitive information when combined with its context,
which is hard to be detected by tier 1/2. This ensures the
robustness of semantically related phrases or multi-turn
conversations.

This tiered architecture allows SafeKV to balance detection
accuracy, extensibility, and performance across diverse input
types and usage scenarios.

1) Rule-Based Pattern Matching:

We first deploy a rule-based detection stage to efficiently
identify explicit sensitive content using configurable pattern-
matching methods.

This initial defense combines regular expressions with cus-
tomizable blacklists. Regular expressions capture structured
variable-length data such as emails, phone numbers, and
IDs, while blacklists manage fixed-format terms like internal
project codes or organization-specific tokens. This dual ap-
proach ensures rapid and high-coverage detection of known
privacy-sensitive patterns.

TABLE IV: Taxonomy of User-Related Data Categories in

Privacy Detection

Category Type Examples
Privacy General Information Nickname, avatar, signature
(Personal) Basic Information Third-party account information
Identity Information ID card, passport, driver’s license, SSN
Location Information Country, region
Biometric Identification Fingerprints, face, voiceprint, iris, gene info
System/Network Identification UserID, IP, Cookie, RFID, password, certs
Device Software Device Information Android ID, IDFA, IDFV, OS, region
Hardware Device Information MAC, IMEI, GUID, serial number
Profile Cultural & Social Info Job, education, qualification certificates
Financial Info Bank account, property, loan records
Social Info Likes/follows, contacts, collections
Service Content Info Browsing/purchase/download records
Behavior Service Log Info Login, behavior, purchase logs

TABLE V: Comparison of lightweight fine-tuned models for
PII detection

Model Base Arch. Size Accuracy Token vs Seq Langs / Types
DistilBERT-PII |5] DistilBERT-base 66M 95.22% Token-level 1 lang / 5 types
Piiranha-v1 [6] DeBERTa-v2-base 125M 99.44% Token-level 6 langs / 17 types
PII-BERT-base [3 BERT-base-cased 110M 99.11% Token-level English / gen data
dbert-pii-det. [14] DistilBERT-uncased 66M 94.33% Token-level mixed syn.
DePrompt |55 ChatGLM2-6B 6B 95.95% Sequence-level Chinese
GPT-40-mini [52] GPT-40-mini 1B 98.95% Sequence-level English / Edu

Designed for extensibility and ease of operation, the detec-
tion module supports a pluggable, configuration-driven frame-
work. Developers can dynamically register new privacy rules
via regular expressions or update blacklists through a standard-
ized interface. The system features hot-reloading capabilities,
allowing new rules to take immediate effect without service
downtime, providing agility for evolving privacy needs.

Table V| summarizes the current categories of user-related
data types already supported in the rule-based matching stage.
These include structured privacy identifiers (e.g., names, IDs),
device metadata, behavioral logs, and profile-related content.
Each entry in the table corresponds to a category that is
currently covered by our default pattern library, either through
regular expressions or Trie-based detection logic.

2) General Privacy Detector:

While SafeKV ’s Tier-1 employs configurable rule-based
detection for identifying common PII, such approaches in-
herently suffer from limited coverage. First, they rely on
predefined patterns and regular expressions, which cannot
generalize to diverse or ambiguous forms of sensitive in-
formation. Second, they fail to detect context-dependent pri-
vacy risks—such as personal addresses, medical history, or
relational descriptors, that do not conform to rigid syntactic
structures. To address these limitations and improve coverage
of latent privacy leakage, SafeKV introduces a Tier-2 detector
based on a lightweight language model capable of generalized
privacy classification.

To determine an effective model for this purpose, we
firstly conducted a comprehensive evaluation of fine-tuned
transformer-based detectors in terms of resource efficiency
(model size and memory footprint), multilingual and multi-
type PII coverage, and detection accuracy. As summarized
in [Table V| models such as DistilBERT-PII, PII-BERT-base,
and Piiranha-vl demonstrate strong overall performance,
achieving over 93% accuracy across multiple languages and
PII categories. Among them, Piiranha-vI strikes the best

balance, offering multilingual detection (6 languages, 17 types)
with 99.44% accuracy and only 125M parameters, making it
an attractive candidate for lightweight inference.

However, traditional fine-tuned classifiers still exhibit sev-
eral limitations: (1) their token-level classification often leads
to false positives and fragmented predictions, (2) they general-
ize poorly to real-world inputs beyond their training domains,
their detection accuracy degrades significantly when encoun-
tering unseen or rare PII categories. For instance, on a curated
subset of the pii-masking [4] containing 16 PII types
unsupported by Piiranha-vi (e.g., SSN, IPV4, PHONEIMEI),
Piiranha-v1 achieves only a 33.43% detection rate.

To overcome these issues, we explored compact, general-
purpose LLMs such as the Qwen3 [18], [22], [23] and
LLaMA-3 [9]—[11] series (details in Appendix @ and bench-
marked them for robustness, accuracy, and inference cost.
Based on these evaluations, we selected LLaMA-3.2-1B as
the final detector in Tier-2, which achieves an accuracy of
near 100% on the same test set. This model offers improved
adaptability to diverse prompt contexts, stronger resistance to
out-of-distribution inputs, and maintains low inference latency
suitable for real-time deployment.

3) Context-Aware Validation:

While rule-based and lightweight model detectors (Tier-1
and Tier-2) effectively capture explicit or localized privacy
indicators, they often fail in scenarios involving implicit
cues, cross-segment dependencies, or multi-turn conversational
flows. To address these limitations, SafeKV introduces a
context-aware validation mechanism that leverages the in-
service LLM already deployed for user inference. For KV
cache blocks whose privacy status remains uncertain after
initial filtering, SafeKV constructs enriched prompts by em-
bedding relevant conversational history. These prompts are
then evaluated by the in-service LLM to assess the overall
privacy sensitivity of the contextual input.

This design is motivated by the observed shortcomings of
earlier detection stages in handling complex and semantically
subtle inputs. As demonstrated in Section small-
scale models often miss context-dependent privacy disclosures,
whereas larger LLMs exhibit greater semantic understanding
and contextual reasoning capabilities. However, deploying a
separate LLM solely for validation is impractical due to the
substantial infrastructure cost, especially since only a small
fraction of requests reach this stage.

To balance detection accuracy and system efficiency,
SafeKV reuses the existing inference LLM as the backend
validator. By exploiting the framework’s native scheduling
and KV-cache reuse mechanisms, this design enables seam-
less integration of context-aware validation into the primary
inference pipeline with minimal latency overhead. As a result,
SafeKV achieves high-precision detection of nuanced privacy
risks without incurring additional deployment cost or compro-
mising overall system throughput.

C. Fallback Protection and Attack Mitigation

Despite employing a hybrid, multi-stage detection pipeline,
SafeKV acknowledges that the privacy classification may
occasionally fail, either due to nuanced semantic ambigu-
ity, incomplete pattern coverage, or model’s limitation. To
safeguard against these residual risks, SafeKV incorporates a
runtime anomaly-aware fallback mechanism that continuously
monitors KV-cache access behaviors to detect and respond to
suspicious activity post-deployment.

At the core of this runtime defense is a lightweight statistical
monitor that continuously observes access behaviors to each
KV-cache block. Specifically, SafeKV maintains a rolling
window of metadata for each entry, recording the current
hit count (hit_cur), the number of unique user identifiers
(u_cnt), the previous hit count (hit_pre), and the previous
number of unique users (u_pre). These values are used to
compute the distribution entropy entropy = u_cnt/hit_cur
that reflects the dispersion of access: low entropy indicates
access concentration (e.g., frequent hits by a single user), while
high entropy suggests broad usage across accounts.

Upon detecting significant shifts in access patterns, SafeKV
apply differentiated mitigation strategies based on the histor-
ical reuse pattern of the KV-cache block and the user type
involved. If the block previously exhibited broad reuse (u_pre),
the access pattern change is considered reasonable. However, if
historical reuse is minimal (u_pre ~ 1), the change is treated
as suspicious:

e Customer-owned blocks are immediately reclassified as
private to prevent potential leakage.

o Business-owned blocks undergo moderated traffic control
and user authentication, including Zero Trust Identity
(ZTI), certificate validation, and attestation. Alerts are
also issued to enterprise clients to enable collaborative
decisions regarding cache status adjustment.

This entropy-based runtime defense complements static
detection by offering adaptive, context-sensitive protection,
ensuring robust privacy safeguards while preserving system
flexibility.

D. Asynchronous Detection and Streaming-Aware Scheduling

To prevent classification from degrading inference latency,
SafeKV fully decouples the privacy detection pipeline from
the critical execution path of LLM serving. All KV-cache
blocks are initially assigned a private label by default, allowing
the system to proceed immediately with inference. Privacy
classification is executed asynchronously in a separate thread
or coroutine, operating in batched mode to improve efficiency
and exploit parallel hardware resources.

An adaptive thresholding mechanism is employed to in-
terpret transformer scores in Stage 2. Instead of relying on
fixed cutoffs, SafeKV adjusts thresholds dynamically based
on system load, historical detection outcomes, and sensitivity
score distributions. For instance, under high workload or
suspected attack patterns, the system lowers the threshold for
classifying blocks as private to favor conservatism. Conversely,

[-] Public Block

Ques 1: ...
You are a helpful assistant Ans 1: ... [Z] Private Block

Ques 2: ..

Ans 2: ...
User: Hello! [j
Asssitant:Hi!

Ques: My IPis ... [Ques:.. |Ques: ...

User:My Email is ... Ans: ... Ans: ... Ans: ...
Assitant: Sure! ...

L] P

Fig. 4: The Unified Privacy/Public Cache Index Tree.

during normal operation, the thresholds may be raised slightly
to improve cache reuse. This flexibility helps SafeKV strike a
balance between false negatives and excessive over-isolation.

Once detection completes, blocks with confirmed public
labels are reclassified and made available for cross-user reuse.
Private blocks remain isolated. Furthermore, the privacy classi-
fication results are recursively propagated to descendant nodes
in the prefix tree, avoiding repeated evaluations for blocks with
inherited sensitivity.

This asynchronous and pipelined detection strategy ensures
that privacy guarantees are enforced without compromising
inference responsiveness. It enables SafeKV to remain both
performant and privacy-preserving in multi-user, real-time
LLM environments

VI. SAFEKV-CACHE: PRIVACY-AWARE CACHE
MANAGEMENT

In this section, we present the memory system design of
SafeKV . The cache layer must enforce strict privacy bound-
aries while supporting high-throughput prefix matching, multi-
tier storage coordination, and efficient memory reclamation.
To meet these requirements, SafeKV built a unified radix-
tree—based cache index with privacy-aware access control,
path-aware memory optimizations for private entries, and a
progressive eviction strategy.

A. Unified Privacy-Preserving Cache Index

To balance memory efficiency and privacy isolation,
SafeKV introduces a unified KV-cache management mecha-
nism based on an extended radix tree index. Inspired by the
prefix-matching architecture in SGLANG, SafeKV enhances
this structure to support both global (public) and user-specific
(private) KV-cache blocks within a single scalable and privacy-
aware hierarchy.

As shown in [Fig 4] all KV-cache entries—regardless
of their visibility—are organized under a unified radix tree
in HBM/DRAM/SSD. Each node is annotated with two key
metadata fields: private_tag (0 for public, 1 for private)
and creator_1id (user identifier). These annotations enforce
fine-grained access control during cache lookups: public en-
tries are accessible to all users, while private entries are only
visible to their creator.

o Insert. New KV-cache blocks are incrementally inserted
into the radix tree after decoding.

Ori Path Compress Eviction

v v v

r \ - -
private node k pri_root pri_root
[kv_addr,] [kv_addry , kv_addry,;, [kv_addry , kv_addrq,
kv_addry 5, kv_addry 5] kv_addry,]
Y
) Tt o oo \ T To T \
node k+1 , nodek+l , nodekt+l
[kv_addr,] 1 [pri_root_addr] 1 1 [pri_root_addr] 1
---i__a -_—$__J
> S S > S S
node k+2 , nodekt2 , nodekt2
[kv_addr,,] 1 [pri_root_addr] 1 1 [pri_root_addr] 1
- $ e
S R \
node k+3 y nodekt3
[kv_addr, 3] 1 [pri_root_addr] 1
______ ”

Fig. 5: An Example of Path Compression and Progressive
Eviction.

o Search. Lookups traverse the radix tree, verifying each
node’s private_tag. Public nodes are accessible to all
users, whereas private nodes require the querying user’s
identity to match the node’s stored creator_id. This
ensures private entries remain logically isolated even if
they share prefixes with public entries.

« Evict. Eviction follows an LRU-based policy, removing
least recently used leaf nodes first. Private nodes are
incrementally pruned to avoid prematurely removing en-
tire user-specific branches, while public nodes rely on
reference counting to preserve frequently reused paths.

B. Private Tree Optimization and Progressive Eviction

While the unified radix tree structurally consolidates all
KV-cache entries, SafeKV further optimizes private subtrees
by leveraging their linear structure and user-specific access
patterns. Unlike public blocks, which frequently branch and
interleave, private blocks generally form linear, single-user
paths, enabling two key optimizations: path compression and
progressive eviction.

1) Path Compression: illustrates the path com-
pression process. For private nodes forming single-user, non-
branching paths, SafeKV compresses them into a single node.
The root node of the compressed path (pri_root) aggregates
descendant kv_cache_addresses into a single list and is flagged
as is_compressed = true, which instructs the search engine to
terminate further traversal upon reaching this node and directly
use the cached address list for inference.

To enable reversible and trackable compression, all descen-
dant nodes are retained in the tree and updated as follows:
(1) their after_compress flag is set to true, indicating that
they are inactive and serve only metadata roles, and (2) their
kv_cache_address is replaced with a reference to the pri_root
node. These references allow the system to locate the pri_root
quickly during subsequent eviction, ensuring that memory
cleanup affects the correct storage entries. SafeKV also up-
dates the metadata of the pri_root to reflect the cumulative
KV-cache memory usage of the compressed subtree.

2) Progressive Eviction: SafeKV adopts a bottom-up evic-
tion strategy, targeting leaf nodes with the oldest access
epochs, tracked via a global epoch_counter. In compressed
subtrees, inactive leaf nodes (after_compress = true) are pri-
oritized. Upon eviction, the corresponding entry in the parent
node’s (pri_root) compressed address list is removed, gradu-
ally pruning the subtree while preserving reusable upstream
prefixes. Only after all descendant nodes have been evicted
does pri_root itself become eligible for removal, preventing
premature loss of reusable private contexts.

3) Epoch-Based LRU with Privacy-Aware Priority.: To
manage eviction order efficiently, SafeKV uses an epoch-
based LRU approximation. Each node stores its most recent
access_epoch, and a global epoch_counter advances periodi-
cally. Nodes with the largest epoch_delta (i.e., oldest usage)
are prioritized for eviction. Among nodes with identical age,
SafeKV evicts public nodes first—based on the assumption
that private blocks have lower access frequency. This eviction
policy strikes a balance between maximizing memory avail-
ability and minimizing potential privacy violations.

Together, these optimizations enable efficient compression
and controlled eviction of private KV-cache entries, aligning
memory usage with the dynamic requirements of multi-tenant
LLM inference systems.

VII. EVALUATION

In this section, we comprehensively evaluate SafeKV
across a diverse set of state-of-the-art LLMs, including Phi-
4 [13], Qwen3-30B-A3B [20], Qwen3-32B [21I]], Qwen3-
235B-A22B [19], Llama-3.3-70B and DeepSeek-R1 [17].
Our evaluation aims to answer the following research ques-
tions:

o [RQ1] Effectiveness: How reliably does SafeKV miti-
gate timing side-channel attacks and prevent leakage of
sensitive content?

o [RQ2] Cost: What are the system costs, including model
deployment overhead and latency introduced by privacy
detection?

o [RQ3] Performance: Compared to full isolation-based
cache management, what performance advantages does
SafeKV offer under realistic workloads?

Experimental Setup. At the time of this writing, although
vLLM has introduced KV-cache sharing, its implemen-
tation remains preliminary. In contrast, SGLang offers a
fully featured stack with support for KV-cache sharing, fine-
grained eviction, and batching strategies. As such, we imple-
mented SafeKV within the SGLang framework and conducted
all experiments on a server equipped with 8x NVIDIA H20
96GB GPUs. For privacy-related evaluation, we adopt the
pii-masking dataset from ai4privacy [4]], which includes
multilingual samples covering 54 categories of personally
identifiable information (PII).

Attacker Model. Our threat model focuses on timing-based
side-channel attacks in multi-tenant LLM serving. We do not
model the internal candidate generation strategies of attackers.
Instead, we assume the adversary has prior knowledge of

Il Phi-4-14B I Qwen3-32B s Qwen3-235B

Qwen3-30B B |lama3-70B B DeepSeek-R1

100+
~ 801
S
2 604
o
o 40+
O
<

20 1

english_pii french_pii german_pii italian_pii

Fig. 6: Accuracy of Protecting Private Information from Tim-
ing Side-Channel Attacks

the non-sensitive prefix portion of a target query and seeks
to recover the sensitive suffix tokens. Candidate tokens are
drawn from the same benchmark dataset. The attacker infers
the correctness of each guess based on the observed Time-to-
First-Token (TTFT) latency differences. The effectiveness of
SafeKV is measured by the reduction in attacker success rate
when attempting to reconstruct privacy-sensitive tokens.

A. RQI Effectiveness Evaluation

a) Overall Defense Effectiveness.: We first evaluate
SafeKV °’s ability to defend against timing-based side-channel
attacks. In our experimental setup, both benign users and
adversaries access deployed LLM models (e.g., Qwen3-235B-
A22B, DeepSeek-R1) via OpenAl-compatible APIs. Adver-
saries attempt to infer privacy-sensitive tokens from victim
prompts by measuring Time-to-First-Token (TTFT) latency, as
described in our attacker model.

presents the defense success rates of SafeKV
across different model backbones. Across all evaluated models,
SafeKV consistently achieves high effectiveness, exceeding
94% in blocking timing-based inferences. Notably, the defense
accuracy improves with more powerful in-servce LLMs. For
example, under DeepSeek-R1, SafeKV achieves defense rates
of 96.30%, 96.90%, 96.24%, and 97.26% across privacy-
sensitive datasets in four languages, demonstrating strong
robustness and generalization.

Additionally, the Microsoft Phi-4 deployment achieve near-
complete coverage against adversarial probes. We attribute
this to Phi-4’s rigorous safety-oriented post-training, which
includes supervised fine-tuning on a wide range of security-
sensitive categories. These findings highlight a promising
trend: as foundation models grow in capability, SafeKV °’s
defense effectiveness also improves. This indicates that our
approach is future-proof and benefits from underlying model
advancements. .

b) Accuracy of Multi-Tier Detection.: We now evaluate
the accuracy and effectiveness of SafeKV ’s hybrid privacy
detection pipeline, which operates in three stages: Tier-1 rule-
based matching, Tier-2 lightweight general privacy detector,
and Tier-3 context-aware validation.

Tier-1: Rule-Based Pattern Matching. As outlined in
Section the first stage performs fast keyword and

EmE Tier 1 mmm Phi-4-14B mmm Qwen3-32B mmm Qwen3-235B
B Tier 2 I Qwen3-30B I Llama3-70B I DeepSeek-R1
100 -
= 80 1
e
S 601
o
S 40
[}
<
20 1
english_pii french_pii german_pii italian_pii
(a) Accuracy
B Tierl B Phi-4-14B mmm Qwen3-32B mm Qwen3-235B
- Tier 2 Emm Qwen3-30B mm lama3-70B Bm DeepSeek-R1
80 1
S
< 60 -
>
o
e
5 40 1
o
2
20 A

english_pii

french_pii german_pii italian_pii

(b) Accuracy with Complex Prompts

Fig. 7: Comparison of the Accuracy of Multi-Tier Privacy
Detectors under simple/complex requests

regular expression matching to capture structured and ex-
plicit sensitive content. By default, SafeKV includes a com-
prehensive rule set covering the PII types listed in
which can also be extended via a configurable file
(privacy_pattern_config. json) or APl interface. On
multilingual test sets, the Tier-1 engine achieves detection
accuracies of 39.24%, 38.09%, 37.35%, and 37.33% respec-
tively (as shown in [Figure 7(a)). While lightweight and
highly efficient, this tier lacks semantic understanding and
demonstrates limited accuracy, particularly for obfuscated or
implicitly expressed privacy content.

Tier-2: General Privacy Detector. To compensate for Tier-
1’s limitations, employs a compact transformer-based language
model to detect privacy-sensitive content that escapes pattern
matching. Based on our benchmarking in Appendix [A] we
adopt Llama-3.2-1B as the default Tier-2 detector, offering
a favorable trade-off between detection accuracy, inference
latency, and GPU resource usage. As shown in [Figure 7(a),
Llama-3.2-1B achieves strong and consistent accuracy across
all tested languages, reaching 96.85%, 96.30%, 96.64%, and
97.15% respectively.

Tier-3: Context-Aware Validation. Despite the effective-
ness of Tiers 1 and 2, certain complex inputs remain challeng-
ing, particularly those where sensitive information is embed-
ded within long-range context or multi-turn conversations. In
such cases, the limited capacity of compact models like Llama-
3.2-1B leads to degraded detection quality. As illustrated
in[Figure 7(b), its accuracy falls to around 50% when process-
ing privacy cues that rely on broader conversational context.
To address this, Tier-3 invokes a more capable model such as

B Phi-4-14B mmm Qwen3-32B s Qwen3-235B
B Qwen3-30B I Llama3-70B BN DeepSeek-R1
12.5 1
a
> 10.0
o
c
Y 7.5
(1]
-}
c 5.0
©
[
= 2.5
english_pii french_pii german_pii italian_pii
(a) Mean Latency
Il Phi-4-14B mmm Qwen3-32B mmm Qwen3-235B
m Qwen3-30B mm lama3-70B Bm DeepSeek-R1
— 801
)
>
9 60 1
9]
=
5 40
n
()]
o 20.
english_pii french_pii german_pii italian_pii
(b) P95 Latency
B Phi-4-14B mm Qwen3-32B mmm Qwen3-235B
m Qwen3-30B B Llama3-70B Bm DeepSeek-R1
150

1254
100 -

wu
o

P99 Latency (s)
~
w

N
wv

o
I

english_pii french_pii

(c) P99 Latency
Fig. 8: The Latency of PII detection of Large Scale LLMs

german_pii italian_pii

DeepSeek-R1, which achieves over 90% accuracy under the
same conditions. This significant improvement underscores the
importance of Tier-3 in handling nuanced, context-dependent
privacy risks that lightweight detectors may miss.

B. RQ2 Cost Evaluation

a) Overhead of Multi-Tier Detection: In Section [VII-A]
we demonstrated the effectiveness of SafeKV in mitigating
timing side-channel attacks and quantified the detection accu-
racy of each tier individually. Here, we further evaluate the
overall runtime overhead of the complete multi-tier privacy
detection pipeline across different LLM backends. Specifically,
presents the average, P95, and P99 latency of SafeKV
when deployed using various foundation models. Given that
Tier-3 performs context-aware validation using the underlying
LLM itself, its latency is inherently dependent on the model
size and inference complexity.

Although the mean latency depicted in may
initially appear high, it predominantly results from Tier-

mm Tier-1 mm Tier-2 H Tier-3

37.8%

(a) Phi-4-14B (b) Qwen3-30B-A3B

2
39.8%

(e) Qwen3-235B-A22B

(c) Qwen3-32B

(d) LLama-3.3-70B

(f) DeepSeek-R1

Fig. 9: Workload Ratio of Multi-Tier Detectors under different
Large Scale LLMs.

3’s computationally intensive validation (further analyzed in
Section [VII-BOB). Importantly, this overhead is significantly
mitigated in practice. First, as illustrated in more
than 92% of requests are resolved by the lightweight and
low-latency Tier-1 and Tier-2 stages, ensuring that only a
small subset of queries proceed to the more expensive Tier-3.
Second, SafeKV employs an asynchronous detection pipeline
that effectively decouples privacy classification from the crit-
ical inference path. Consequently, privacy checks do not
block token generation, minimizing any impact on latency-
sensitive serving. Overall, by integrating multi-tier detection
with asynchronous processing, SafeKV delivers robust pri-
vacy enforcement with minimal overhead. A comprehensive
analysis of system performance improvements is detailed in
Section [VII-C|

b) Per-Tier Detection Cost.: We next quantify the detec-
tion overhead separately for each tier. As shown in
the rule-based detection in Tier-1 completes within 0.2 ms
per prompt, while Tier-2, which utilizes the compact Llama-
3.2-1B model, incurs an average latency below 125 ms. For
Tier-3, illustrates how detection latency scales with
different base model sizes, clearly indicating a latency increase
correlated with larger model parameters and associated infer-
ence complexity.

Additionally, model latency is influenced not only by model
size but also by the prompt length and contextual complexity.
Due to space limitations, detailed data and analysis on the
impact of prompt length can be found in Appendix

C. RQ3 Performance Evaluation

In this section, we evaluate the performance of SafeKV by
comparing it against three representative KV-cache manage-
ment strategies:

« SGLang [15]: Full global cache sharing with no privacy

protection, achieving maximum efficiency.

BN Phi-4-14B mmm Qwen3-32B mmm Qwen3-235B
B Qwen3-30B I Llama3-70B EEE DeepSeek-R1
50 A
<2 401
>
2
o 304
=
©
-
c 204
©
()
= 101
english_pii french_pii german_pii italian_pii
(a) Mean Latency
I Phi-4-14B mmm Qwen3-32B mmm Qwen3-235B
B Qwen3-30B B Llama3-70B Bm DeepSeek-R1
100 1
< 80+
>
2
@ 601
=
8
o 401
g
20+
0.
english_pii french_pii german_pii italian_pii
(b) P95 Latency
B Phi-4-14B mm Qwen3-32B mmm Qwen3-235B
m Qwen3-30B B Llama3-70B Bm DeepSeek-R1
. 150+
)
>
2
g 100 -
©
-
S 50+
o
0.

english_pii french_pii

(c) P99 Latency

german_pii italian_pii

Fig. 10: The Latency breakdown of Tier-3 PII detection across
four languages.

« Cache Partitioning [49]: Strict per-user isolation using
separate radix-trees, ensuring strong privacy but no cross-
user reuse.

o Public System Prompt: A hybrid that allows reuse of
shared system prompts atop isolated user data.

We evaluate these methods across three representative work-

load types:

« Single Request PII: Short privacy-sensitive queries.

o Multi-Turn Chat: Conversational sessions with embed-
ded PIIL

o System Prompt: Requests with shared system prompts
and user-specific PIL.

a) LLM Inference Latency: Our primary evaluation
metric is inference latency, particularly focusing on Time-To-
First-Token (TTFT), which is a key indicator of responsiveness
in LLM serving systems. Given that KV-cache reuse primarily
accelerates the prefill stage, TTFT effectively captures perfor-
mance differences among cache management strategies.

TABLE VI: Latency breakdown of Tier-1 and Tier-2 across four languages.

english_pii french_pii german_pii italian_pii
Tier Mean(ms) P95(ms) P99(ms) | Mean(ms) P95(ms) P99(ms) | Mean(ms) P95(ms) P99(ms) | Mean(ms) P95(ms) P99(ms)
Tier-1 0.10 0.16 0.20 0.11 0.17 0.20 0.11 0.17 0.21 0.11 0.17 0.20
Tier-2 124.93 152.14 171.85 113.03 125.68 127.17 11391 126.31 129.54 116.12 128.77 140.77
As depicted in all four methods exhibit com- 30017 o 5Glang
parable TTFT on single-request PII workloads, primarily 250 { MW Cache-Partition
due to the limited opportunity for cache reuse with short, 200] o onared-System-promet

unique queries.However, in multi-turn conversational scenar-
ios (constructed using SharedGPT dialogues augmented
with pii-masking queries to embed privacy-sensitive in-
formation), substantial opportunities for prefix reuse emerge,
resulting in notable performance variations. Specifically, under
larger models such as Qwen-235B-A22B and DeepSeek-R1,
SafeKV significantly reduces the latency overhead associ-
ated with full cache isolation—from 50.41% and 118% to
just 11.74% and 34.28%, respectively. Finally, in the system
prompt scenario (pii-masking requests with a uniform system
prompt(approximately 8192 tokens)), SafeKV continues to
perform effectively, although slightly behind the Public System
Prompt method explicitly optimized for this scenario. Overall,
these results demonstrate that SafeKV consistently achieves
superior latency performance compared to Cache Partitioning
and remains adaptable across diverse real-world use cases.

b) LLM Inference Throughput: In addition to latency,
throughput is critical for evaluating a system’s capability
to handle sustained high-volume requests. To measure this,
we conduct throughput benchmarking at a fixed load of 16
requests per second (RPS), reporting token throughput as the
total number of tokens divided by the end-to-end inference
time. Test workloads are derived from three representative
datasets: pii_masking [4]], ShareGPT [[1]], and the
requests with uniform system prompt.

As shown in SafeKV substantially outper-
forms Cache Partitioning by selectively isolating only sen-
sitive KV-cache entries, thus preserving reuse opportunities
for non-sensitive content. This selective isolation results in
throughput improvements ranging from 1.36x to 2.66x across
the evaluated workloads. Performance gains are particularly
pronounced when using larger foundation models such as
DeepSeek-R1. These findings highlight that SafeKV effec-
tively balances rigorous privacy enforcement with significant
throughput enhancements, making it well-suited for practical,
high-traffic LLM deployments.

VIII. DISCUSSION & LIMITATIONS

A. Protection Scope and Assumptions

SafeKV targets timing-based prompt leakage in shared KV-
cache systems. It assumes an adversary with black-box knowl-
edge of the LLM—no access to model internals, parameters,
or user-level metadata beyond API-visible timing. Under this
setting, SafeK'V ’s hybrid detection and entropy-aware runtime
isolation substantially reduce the risk of cache-probing attacks.

Mean Latency (ms)
= =
o wu
o o

ul
o
L

o
|

308 329 708 358

Rl
Q\Ne“3 _\ama3 Q\Ne“}l Dee9":’ee\<

. 2109
pricd qwen

(a) Single Request Pii

B SGlang mmm Cache-Partition B Shared-System-Prompt ~ mEE SafeKV
m J
g 2000
3
I 1500 4
i)
5 1000 A
c
8 500
=
O .
. 208 308 2328 708 1359 R
P-4 quen3™ quen3 7 \ama3 T (en3 7'Deepsee\(
(b) Multi-Turn
Bl SGlang W Cache-Partition BN Shared-System-Prompt ~ HEE SafeKV
5000 -
m
£ 4000 A
>
[
€ 3000 |
2
©
—1 2000 1
c
b
= 1000 1
O .
. AAAB 308 328 708 1359 R
P‘(\\‘A Q end QW end 0 ama3 o en3 2 oee psee\(

(c) System Prompt

Fig. 11: Comparison of TTFT of SafeKV with SGLang,
Cache-Partition, and Systme-Prompt-Sharing in different
working scenarios

For adversaries exploiting non-timing side channels (e.g.,
GPU resource contention, speculative execution, shared-
memory leakage), we regard these as orthogonal and mitigate
them via confidential computing (e.g., Intel TDX for CPUs
and NVIDIA H100 Confidential Computing for GPUs); a
full treatment is deferred to separate work. SafeKV assumes
tokenizer alignment between attacker and victim; when to-
kenization mismatches or prompt obfuscation arise, SafeKV
can incorporate input normalization (e.g., canonicalization,

5000 - Bl SGlang
Cache-Partition
B Shared-System-Prompt

mmm SafekV

4000 A

3000 -

2000 -

Throughput (token/s)
S
8

o
I

308 329 108

Qwe

Fig. 12: Comparison of Throughput of SafeKV with SGLang,
Cache-Partition, and Systme-Prompt-Sharing

358

Deepsee\"Yn

1AD
A-L Q\Nen3 Q\Ner\3 L\ama3

phi- n3-2

Unicode folding, whitespace/punctuation regularization) to
improve robustness. Alignment of tokenization schemes is
orthogonal to our focus and is not discussed further.

B. Detection Robustness and Safeguards

Although our hybrid detector attains high empirical ac-
curacy, novel PII formats may still induce detection errors.
In such cases, false negatives (i.e., private data misclassified
as public) can transiently enter the shared cache. SafeKV
mitigates this via runtime entropy monitoring that flags and
quarantines anomalously accessed entries. The time to detect
and revoke a leaked cache block depends on traffic volume
and user distribution, yielding a bounded but nonzero exposure
window; in practice, this window can be further reduced by
caching and batching, limiting residual risk.

C. Deployment and Integration Considerations

SafeKV introduces predictable memory and compute re-
quirements due to multi-tier privacy detection and private-
block isolation. Detection is decoupled from the critical in-
ference path and supports asynchronous classification; oper-
ators should provision capacity to sustain target throughput
(Tier-2 detector: Llama-3.2-1B, ~2.6 GB GPU HBM). Tier-
3 verification leverages the running LLM and adds a small
amount of inference work. In cost-focused environments,
lighter detectors or rule-only configurations can be selected,
with a corresponding trade-off in protection strength.

SafeKV integrates with existing LLM inference stacks (e.g.,
vLLM [41], SGLang [71]) by extending their cache sub-
systems with private/public block indexing, per-user origin
tags, and entropy-based access tracking. These extensions
are modular, preserve existing scheduling/batching and API
surfaces, and can be reused across deployments with minimal
disruption to serving logic.

D. Generality and Transferability

Our detection pipeline targets privacy-sensitive inputs in
natural-language prompts. Extending SafeKV to multimodal
LLMs (e.g., image+text) may require modality-aware detec-
tion strategies; however, the unified cache-management layer
is KV-cache—centric and model-agnostic, and thus remains
directly compatible with multimodal serving stacks.

IX. RELATED WORKS
A. Multi-tenant Security

Side-channel attacks have long threatened multi-tenant sys-
tems due to shared resource usage. It can be broadly catego-
rized into classical system-level attacks and emerging model-
level side channels.

Classical side-channel attacks exploit shared hardware or
OS abstractions in multi-tenant systems. Cross-VM attacks
recover sensitive data between co-located virtual machines
by monitoring CPU caches or memory access patterns [56],
[61], [68], [69]. Other works leverage shared OS resources,
such as OS data structure or public file systems, to launch
cross-application attacks in Unix, Android, or iOS environ-
ments [28]], [36], [58]], [64], [66l, [67]. Recent studies further
reveal that multiple WebAssembly modules isolated in the
same runtime are vulnerable to cross-module attacks [39],
[46].

Complementing these, recent work highlights a new class
of attacks targeting LLM inference backends. These attacks
exploit timing differences caused by shared KV-cache reuse
to infer user inputs [54], [60], [73]. For example, Prompt-
Peek [54] and InputSnatch [[73]] reconstruct user prompts via
TTFT measurements in black-box settings. Unlike classical
channels, these attacks are unique to LLM-serving pipelines,
where performance optimizations inadvertently expose privacy
risks. Our work builds on these findings by proposing a prac-
tical, multi-tier defense system that addresses this emerging
attack surface.

B. Defenses Against KV-Cache Side Channels

To mitigate KV-cache side-channel attacks, researchers and
practitioners have proposed a range of defenses.

The most straightforward solution is User-level cache isola-
tion, it prevents cross-user sharing by allocating distinct cache
namespaces per user. This containment strategy eliminates
cache-based interactions between users and is adopted by
some LLM providers(OpenAl [48] and DeepSeek [31]) and
researchers [49] for prefix caching. While effective, such strict
isolation sacrifices memory efficiency and undermines the
performance benefits of cache reuse.

Rate Limiting serves as a complementary defense by
throttling the frequency of user queries, thereby impeding
rapid probing required for cache-timing attacks. For instance,
OpenAl enforces rate limits to prevent abuse and ensure
infrastructure stability [47]. However, rate limiting must be
carefully tuned to avoid degrading service quality for benign
users.

A third line of defense is Timing Obfuscation, which aims
to eliminate observable latency differences between cache
hits and misses. Prior work in model extraction has shown
that response time can correlate with internal architecture
details [26], [32], [33], motivating similar countermeasures
in LLM serving. Two common strategies are: (i) enforcing
constant-time execution [45] or injecting random delays to
flatten latency variance [27|], and (ii) disabling token-level

streaming, which removes fine-grained timing signals from
observable outputs. While these approaches can mask timing
patterns, they often incur latency penalties or reduce the
interactivity of real-time systems.

X. CONCLUSION

This paper presents SafeKV , a privacy-preserving KV-
cache management framework for LLM serving systems,
designed to mitigate timing side-channel attacks arising
from shared cache entries. SafeKV combines a hybrid pri-
vacy detection pipeline, comprising rule-based matching,
lightweight LLM detectors, and context-aware validation, with
a sensitivity-aware KV-cache manager that supports efficient
reuse through a unified radix tree index.

Our multi-tiered detection achieves accurate privacy classifi-
cation with minimal latency, while the cache manager enables
fine-grained isolation without compromising performance. Ex-
tensive evaluations show that SafeKV mitigates over 94%
of timing-based attacks across multiple LLM backbones and
improves throughput by up to 2.66x compared to per-user
cache isolation.These results demonstrate that selective KV-
cache sharing, guided by efficient privacy detection, provides
a practical balance between security and scalability.

REFERENCES

[1] “anon8231489123/sharegpt_vicuna_unfiltered,” https://huggingface.co/
datasets/anon8231489123/ShareGPT_Vicuna_unfiltered, 2023.

[2] “Bellegroup/multiturn_chat_0.8m,” https://huggingface.co/datasets/
BelleGroup/multiturn_chat_0.8M, 2023.

[3] “ab-ai/pii_model,” https://huggingface.co/ab-ai/pii_model, 2024.

[4] “aidprivacy/pii-masking-200k,” https://huggingface.co/datasets/
aidprivacy/pii-masking-200k, 2024.

[5] “beki/flair-pii-distilbert,” https://huggingface.co/beki/flair-pii-distilbert,
2024.

[6] “iiiorg/piiranha-v1-detect-personal-information,” https://huggingface.co/
i1org/piiranha- v1-detect- personal-information, 2024.

[7] “meta-llama/llama-2-13b-hf,” https://huggingface.co/meta-1lama/Llama-
2-13b-ht, 2024.

[8] “meta-llama/llama-2-70b-hf,” https://huggingface.co/meta-1lama/Llama-
2-70b-ht, 2024.

[9] “meta-llama/llama-3.1-8b,” https://huggingface.co/meta-llama/Llama-3.

1-8B\ 2024.

[10] “meta-llama/llama-3.2-1b,” https://huggingface.co/meta-llama/Llama-3.
2-1B\ 2024.

[11] “meta-llama/llama-3.2-3b,” https://huggingface.co/meta-llama/Llama-3.
2-3B| 2024.

[12] “meta-llama/llama-3.3-70b-instruct,” https://huggingface.co/meta-1lama/
Llama-3.3-70B-Instruct, 2024.

[13] “microsoft/phi-4,” https://huggingface.co/microsoft/phi-4, 2024.

[14] “omshikhare/dbert-pii-detection-model,” https://huggingtace.co/
omshikhare/dbert-pii-detection-model, 2024.

[15] “The sglang source code,” https://github.com/sgl-project/sglang, 2024.

[16] “vllm, easy, fast, and cheap llm serving for everyone,” https://github.
com/vllm-project/vllm?tab=readme-ov-file, 2024.

[17] “deepseek-ai/deepseek-r1-0528,” https://huggingtace.co/deepseek-
ai/DeepSeek-R1-0528, 2025.

[18] “Qwen/qwen3-0.6b,” https://huggingtace.co/Qwen/Qwen3-0.6B, 2025.

[19] “Qwen/qwen3-235b-a22b,” https://huggingface.co/Qwen/Qwen3-235B-
A22B, 2025.

[20] “Qwen/qwen3-30b-a3b,” https://huggingface.co/Qwen/Qwen3-30B-
A3B, 2025.

[21] “Qwen/qwen3-32b,” https://huggingface.co/Qwen/Qwen3-32B, 2025.

[22] “Qwen/qwen3-4b,” https://huggingface.co/Qwen/Qwen3-4B| 2025.

[23] “Qwen/qwen3-8b,” https://huggingface.co/Qwen/Qwen3-8B, 2025.

[24] Anthropic, “Prompt caching with claude.” 2024, accessed: 2025-07-17.

[Online]. Available: https://www.anthropic.com/news/prompt-caching

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

F. Bang, “Gptcache: An open-source semantic cache for Ilm applications
enabling faster answers and cost savings,” in Proceedings of the 3rd
Workshop for Natural Language Processing Open Source Software
(NLP-OSS 2023), 2023, pp. 212-218.

L. Batina, S. Bhasin, D. Jap, and S. Picek, “{CSI}{NN}: Reverse
engineering of neural network architectures through electromagnetic side
channel,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 515-532.

J. Breier, D. Jap, X. Hou, and S. Bhasin, “A desynchronization-based
countermeasure against side-channel analysis of neural networks,” in
International Symposium on Cyber Security, Cryptology, and Machine
Learning. Springer, 2023, pp. 296-306.

Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app without
actually seeing it:{UI} state inference and novel android attacks,” in
23rd USENIX Security Symposium (USENIX Security 14), 2014.

K. Chu, Z. Shen, D. Xiang, and W. Zhang, “SafeKV: Safe
KV-cache sharing in LLM serving,” in Machine Learning for
Computer Architecture and Systems 2025, 2025. [Online]. Available:
https://openreview.net/forum?id=jhDsbdSeXL

deepmind, “Gomini,” 2025, https://deepmind.google/technologies/
gemini/.

DeepSeek, “Deepseek api docs: Deepseek api introduces context
caching on disk, cutting prices by an order of magnitude.” 2024,
accessed: 2025-07-17. [Online]. Available: https://api-docs.deepseek.
com/news/news0802/

G. Dong, P. Wang, P. Chen, R. Gu, and H. Hu, “Floating-point
multiplication timing attack on deep neural network,” in 2019 IEEE In-
ternational Conference on Smart Internet of Things (SmartloT). 1EEE,
2019, pp. 155-161.

V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas, “Stealing neural
networks via timing side channels,” arXiv preprint arXiv:1812.11720,
2018.

V. Gallego, “Configurable safety tuning of language models with syn-
thetic preference data,” 2024.

N. Ho, S. Bae, T. Kim, H. Jo, Y. Kim, T. Schuster, A. Fisch, J. Thorne,
and S.-Y. Yun, “Block transformer: Global-to-local language modeling
for fast inference,” Advances in Neural Information Processing Systems,
vol. 37, pp. 48 740-48 783, 2024.

S. Jana and V. Shmatikov, “Memento: Learning secrets from process
footprints,” in 2012 IEEE Symposium on Security and Privacy. IEEE,
2012.

N. Kandpal, B. Lester, C. Raffel, S. Majstorovic, S. Biderman,
B. Abbasi, L. Soldaini, E. Shippole, A. E. Cooper, A. Skowron,
J. Kirchenbauer, S. Longpre, L. Sutawika, A. Albalak, Z. Xu,
G. Penedo, L. B. Allal, E. Bakouch, J. D. Pressman, H. Fan,
D. Stander, G. Song, A. Gokaslan, T. Goldstein, B. R. Bartoldson,
B. Kailkhura, and T. Murray, “The common pile v0.1: An 8tb dataset
of public domain and openly licensed text,” 2025. [Online]. Available:
https://arxiv.org/abs/2506.05209

S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,
“Transformers in vision: A survey,” ACM computing surveys (CSUR),
vol. 54, no. 10s, pp. 1-41, 2022.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 2019 IEEE Sym-
posium on Security and Privacy (SP), 2019.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the 29th
Symposium on Operating Systems Principles, 2023, pp. 611-626.
——, “Efficient memory management for large language model serving
with pagedattention,” in Proceedings of the 29th Symposium on Oper-
ating Systems Principles, 2023.

H. Li, Y. Li, A. Tian, T. Tang, Z. Xu, X. Chen, N. Hu, W. Dong, Q. Li,
and L. Chen, “A survey on large language model acceleration based on
kv cache management,” arXiv preprint arXiv:2412.19442, 2024.

T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” Al
open, vol. 3, pp. 111-132, 2022.

J. Lucas and R. Harang, “Structuring applications to secure the
kv cache,” https://developer.nvidia.com/blog/structuring-applications-to-
secure-the-kv-cache/, Apr. 2025, accessed: 2025-05-01.

S. Maji, U. Banerjee, and A. P. Chandrakasan, “Leaky nets: Recovering
embedded neural network models and inputs through simple power and

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M
https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M
https://huggingface.co/ab-ai/pii_model
https://huggingface.co/datasets/ai4privacy/pii-masking-200k
https://huggingface.co/datasets/ai4privacy/pii-masking-200k
https://huggingface.co/beki/flair-pii-distilbert
https://huggingface.co/iiiorg/piiranha-v1-detect-personal-information
https://huggingface.co/iiiorg/piiranha-v1-detect-personal-information
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/meta-llama/Llama-2-70b-hf
https://huggingface.co/meta-llama/Llama-2-70b-hf
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/microsoft/phi-4
https://huggingface.co/omshikhare/dbert-pii-detection-model
https://huggingface.co/omshikhare/dbert-pii-detection-model
https://github.com/sgl-project/sglang
https://github.com/vllm-project/vllm?tab=readme-ov-file
https://github.com/vllm-project/vllm?tab=readme-ov-file
https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
https://huggingface.co/Qwen/Qwen3-0.6B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://huggingface.co/Qwen/Qwen3-30B-A3B
https://huggingface.co/Qwen/Qwen3-30B-A3B
https://huggingface.co/Qwen/Qwen3-32B
https://huggingface.co/Qwen/Qwen3-4B
https://huggingface.co/Qwen/Qwen3-8B
https://www.anthropic.com/news/prompt-caching
https://openreview.net/forum?id=jhDsbd5eXL
https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/
https://api-docs.deepseek.com/news/news0802/
https://api-docs.deepseek.com/news/news0802/
https://arxiv.org/abs/2506.05209
https://developer.nvidia.com/blog/structuring-applications-to-secure-the-kv-cache/
https://developer.nvidia.com/blog/structuring-applications-to-secure-the-kv-cache/

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

timing side-channels—attacks and defenses,” IEEE Internet of Things
Journal, vol. 8, no. 15, pp. 12079-12092, 2021.

S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang,
A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. Tullsen et al.,
“Swivel: Hardening {WebAssembly} against spectre,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021.

OpenAl, “Openai developer platform, rate limits.” 2024, accessed: 2025-
07-17. [Online]. Available: https://platform.openai.com/docs/guides/
rate- limits/what- are- the-rate- limits- for-our-api

——, “Prompt caching: Reduce latency and cost with prompt
caching.” 2024, accessed: 2025-07-17. [Online]. Available: https:
/Iplatform.openai.com/docs/guides/prompt-caching

Z.Pang, W. Wang, and Y. Liao, “Cache partitioning for mitigating timing
side-channel attacks in llm serving systems,” in 2024 6th International
Conference on Frontier Technologies of Information and Computer
(ICFTIC). IEEE, 2024, pp. 1238-1245.

R. Qin, Z. Li, W. He, J. Cui, F. Ren, M. Zhang, Y. Wu, W. Zheng,
and X. Xu, “Mooncake: Trading more storage for less computation—a
{KVCache-centric} architecture for serving {LLM} chatbot,” in 23rd
USENIX Conference on File and Storage Technologies (FAST 25), 2025,
pp. 155-170.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” arXiv e-prints, 2019.

Y. Shen, Z. Ji, J. Lin, and K. Koedginer, “Enhancing the de-identification
of personally identifiable information in educational data,” arXiv preprint
arXiv:2501.09765, 2025.

M. Soleimani, G. Jia, I. Gim, S.-s. Lee, and A. Khandelwal, “Wire-
tapping llms: Network side-channel attacks on interactive llm services,”
Cryptology ePrint Archive, 2025.

L. Song, Z. Pang, W. Wang, Z. Wang, X. Wang, H. Chen, W. Song,
Y. Jin, D. Meng, and R. Hou, “The early bird catches the leak:
Unveiling timing side channels in 1lm serving systems,” arXiv preprint
arXiv:2409.20002, 2024.

X. Sun, G. Liu, Z. He, H. Li, and X. Li, “Deprompt: Desensitization and
evaluation of personal identifiable information in large language model
prompts,” arXiv preprint arXiv:2408.08930, 2024.

V. Varadarajan, Y. Zhang, T. Ristenpart, and M. Swift, “A placement
vulnerability study in {Multi-Tenant} public clouds,” in 24th USENIX
Security Symposium (USENIX Security 15), 2015.

S. Wang, Y. Zhao, Z. Liu, Q. Zou, and H. Wang, “Sok: Understanding
vulnerabilities in the large language model supply chain,” arXiv preprint
arXiv:2502.12497, 2025.

Z. Wang, J. Guan, X. Wang, W. Wang, L. Xing, and F. Alharbi, “The
danger of minimum exposures: Understanding cross-app information

leaks on ios through multi-side-channel learning,” in Proceedings of

the 2023 ACM SIGSAC Conference on Computer and Communications
Security, 2023.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Transformers: State-
of-the-art natural language processing,” in Proceedings of the 2020
conference on empirical methods in natural language processing: system
demonstrations, 2020, pp. 38-45.

G. Wu, Z. Zhang, Y. Zhang, W. Wang, J. Niu, Y. Wu, and Y. Zhang, “I
know what you asked: Prompt leakage via kv-cache sharing in multi-
tenant llm serving,” in Proceedings of the 2025 Network and Distributed
System Security (NDSS) Symposium, San Diego, CA, USA, 2025.

Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one
cloud flops:{Cross-VM} row hammer attacks and privilege escalation,”
in 25th USENIX security symposium (USENIX Security 16), 2016.

L. Ye, Z. Tao, Y. Huang, and Y. Li, “Chunkattention: Efficient self-
attention with prefix-aware kv cache and two-phase partition,” arXiv
preprint arXiv:2402.15220, 2024.

W. Zeng, Y. Dong, J. Zhou, J. Ma, J. Tan, R. Wang, and M. Li,
“MPCache: MPC-friendly KV cache eviction for efficient private LLM
inference,” 2025. [Online]. Available: https://openreview.net/forum?id=
QIliOktBcy3

K. Zhang and X. Wang, “Peeping tom in the neighborhood: Keystroke
eavesdropping on multi-user systems.” in USENIX Security Symposium,
2009.

T. Zhang, G. Saileshwar, and D. Lie, “Time will tell: Timing side
channels via output token count in large language models,” arXiv
preprint arXiv:2412.15431, 2024.

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

X. Zhang, X. Wang, X. Bai, Y. Zhang, and X. Wang, “Os-level side
channels without procfs: Exploring cross-app information leakage on
i0s,” in Proceedings of the Symposium on Network and Distributed
System Security, 2018.

X. Zhang, Y. Xiao, and Y. Zhang, “Return-oriented flush-reload side
channels on arm and their implications for android devices,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM conference on Computer and communications security, 2012.
——, “Cross-tenant side-channel attacks in paas clouds,” in Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2014.

J. Zhao, Z. Fang, S. Li, S. Yang, and S. He, “Buzz: Beehive-structured
sparse kv cache with segmented heavy hitters for efficient llm inference,”
arXiv preprint arXiv:2410.23079, 2024.

L. Zheng, L. Yin, Z. Xie, J. Huang, C. Sun, C. H. Yu, S. Cao,
C. Kozyrakis, I. Stoica, J. E. Gonzalez et al., “Efficiently programming
large language models using sglang,” arXiv preprint arXiv:2312.07104,
2023.

L. Zheng, L. Yin, Z. Xie, C. L. Sun, J. Huang, C. H. Yu, S. Cao,
C. Kozyrakis, I. Stoica, J. E. Gonzalez et al., “Sglang: Efficient ex-
ecution of structured language model programs,” Advances in Neural
Information Processing Systems, vol. 37, pp. 62557-62 583, 2024.

X. Zheng, H. Han, S. Shi, Q. Fang, Z. Du, X. Hu, and Q. Guo,
“Inputsnatch: Stealing input in Ilm services via timing side-channel
attacks,” arXiv preprint arXiv:2411.18191, 2024.

Z. Zheng, X. Ji, T. Fang, F. Zhou, C. Liu, and G. Peng, “Batchllm:
Optimizing large batched llm inference with global prefix sharing and
throughput-oriented token batching,” arXiv preprint arXiv:2412.03594,
2024.

https://platform.openai.com/docs/guides/rate-limits/what-are-the-rate-limits-for-our-api
https://platform.openai.com/docs/guides/rate-limits/what-are-the-rate-limits-for-our-api
https://platform.openai.com/docs/guides/prompt-caching
https://platform.openai.com/docs/guides/prompt-caching
https://openreview.net/forum?id=QliOktBcy3
https://openreview.net/forum?id=QliOktBcy3

APPENDIX A
TIER-2 DETECTION ACCURACY AND EFFICIENCY.

As discussed in Section [V-B] Tier-2 serves as the primary
detection path for most incoming requests, complementing
Tier-1 by providing more accurate privacy classification with
minimal latency and resource overhead. To meet this goal, we
evaluate six lightweight LLMs from the Qwen3 and Llama3
families as Tier-2 candidates, seeking a favorable trade-off
between detection accuracy and runtime efficiency.

We first analyze their accuracy under varying output
lengths. As shown in Llama3 models main-
tain high detection accuracy even with short outputs
(max_output_length = 10), while Qwen3 models require
significantly longer outputs (> 75) to match this performance,
likely due to their reliance on intermediate reasoning.

—— Qwen3-0.6B —— Qwen3-8B —— Llama-3.2-3B
- Qwen3-4B = [lama-3.2-1B = | lama-3.1-8B
100 ===
—~ 80+
g vl /
> 601
o
o
> 401
[}
2
20 1
0 T T T T T T T T
25 50 75 100 125 150 175 200

Max Output Length
Fig. 13: Accuracy vs Max Output Length on english-pii-43k.

We then benchmark all six models on multilingual privacy
datasets, using the best-performing output lengths per family
(Qwen3: 75; Llama3: 10). As shown in[Figure 14} Llama-3.2-
1B consistently achieves the highest accuracy across all tasks,
reaching 96.85%, 96.30%, 96.64%, and 97.15%. Moreover,
as shown in its shorter output requirement also
results in significantly lower average, P95, and P99 latencies
compared to Qwen3 models. These results make Llama-3.2-
1B a strong default choice for Tier-2 detection.

Given its strong accuracy, fast response time, and low
memory footprint (Llama-3.2-1B only requires 2.6GB GPU
memory), Llama-3.2-1B is selected as the default Tier-2
detector in SafeKV .

mmm Qwen3-0.6B
I Qwen3-4B

s Qwen3-8B
B Llama-3.2-1B

B [lama-3.2-3B
B Llama-3.1-8B

100 A

80 A

60 -

40

Accuracy (%)

20 A

english_pii

french_pii german_pii italian_pii

Fig. 14: Accuracy of lightweight genral LLM models for PII
detection

APPENDIX B
PII DETECTION OVERHEAD VS. VARIES PROMPT LENGTH

In addition to model size, LLM inference latency is heavily
influenced by the length of the input prompt. To quantify this
effect, we measured the privacy detection latency under vary-
ing input lengths (assuming a fixed output length of 4096 to-
kens and allowing the model to perform multi-step reasoning),
as shown in The results reveal an approximately
linear increase in latency with respect to prompt length, which
aligns with the computational characteristics of LLM serving.
Specifically, longer prompts introduce additional overhead in
the prefill phase due to increased token processing, and also
result in more extensive KV-cache computations during the
decoding phase.

We further observe that large models, such as DeepSeek-
R1, experience substantial latency increases under long in-
put prompts. On our testbed, privacy detection times for
input lengths of 512, 1K, 2K, and 4K tokens reached 49.1s,
59.2s, 61.6s, and 70.4s, respectively—ultimately surpassing
the system’s timeout threshold at the higher end. Consequently,
latency measurements for DeepSeek-R1 with long prompts
are omitted from These findings underscore the
importance of restricting Tier-3 detection to only high-risk or
uncertain cases, thereby maintaining system responsiveness.

APPENDIX C
P95/P99 LATENCY OF SAFEKV PERFORMANCE.

As presented in Section [§ VII-C] SafeKV notably reduces
average time-to-first-token (TTFT) compared to the Cache-
Partition baseline, particularly in the Multi-Turn Chat and Sys-
tem Prompt scenarios. To further assess tail latency, we report
the P95 and P99 TTFT across different models and scenarios

in The results reveal three key observations:

e (1) Across all evaluated settings, SafeKV consistently
achieves lower P95 and P99 TTFT than Cache-Partition,
indicating its effectiveness in mitigating long-tail latency.

e (2) Although the Shared System Prompt approach reaches
performance close to SGLang in the System Prompt
scenario, it does not yield tail latency improvements in
the other two workloads.

e (3) In the System Prompt setting, while SafeKV deliv-
ers significant improvements in mean TTFT, its asyn-
chronous detection mechanism—where KV-cache entries
are initially isolated and later reclassified—introduces
additional delay for some requests, resulting in slightly
elevated P95 and P99 TTFT in these cases.

== Qwen3-0.6B mmm Llama-3.2-1B == Qwen3-0.68 mmm Llama-3.2-1B 10 = Qwen3-0.68 mEm Llama-3.2-1B
44 Qwen3-4B == lama-3.2-3B 8 Qwen3-4B = lama-3.2-38 Qwen3-4B Llama-3.2-38
- s Qwen3-8B mm Llama-3.1-88 Py s Qwen3-8B m Llama-3.1-8B — g mmm Qwen3-8B m Llama-3.1-8B
O @ 0
g O 0
2 g g
2 g 2
: : 2
english_pii french_pii german_pii italian_pii english_pii french_pii german_pii italian_pii english_pii french_pii german_pii italian_pii
(a) Mean Latency (b) P95 Latency (c) P99 Latency
Fig. 15: Latency of lightweight genral LLM models for PII detection
) 4y 4y
—— Tierl - Qwen3-30B —— Llama3-70B —— Tierl —— Qwen3-30B —— Llama3-70B ——— Tierl —— Qwen3-30B —— Llama3-70B
- 351 — Tier2 ~—— Qwen3-32B —— Qwen3-235B 351 — Tier2 ~—— Qwen3-32B —— Qwen3-235B 351 — Tier2 ~—— Qwen3-32B —— Qwen3-235B
230 o 30 o 30
T2s 325 >25
o c c
s 20 220 220
i} i 5
c 15 o 15 > 15
2 o o
210 2 10 2 10
5 5 5
0 - - - 0 - - - 0 - - -
1K4K 8K 16K 32K 64K 1K4K 8K 16K 32K 64K 1K4K 8K 16K 32K 64K
Prompt Length Prompt Length Prompt Length
(a) Mean Latency (b) P95 Latency (c) P99 Latency
Fig. 16: The Latency of PII detection vs different prompt length
== SGlang mm SGlang Wmm Cache-Partition WM Shared-System-Prompt EEE SafeKV mm SGlang mmm Cache-Partition WEE Shared-System-Prompt EEE SafeKV
. Cache-Partition 3000 5000
@ B Shared-System-Prompt — —
£ . SafekV é 2500 lé 4000
;’ >, 2000 IS
S g 2 3000
& 8 1500 2
S 8 2000
§ o 1000 n
€ 500 2 1000
0 0
2108 308 2328 5908 5358 R . 4108 308 3228 5708 4358 R . 4108 308 3228 5708 5358 R
phi-A Q\Nen3 Qwe"e' _\a\’“63 Q\Ne“3 7 Deepsee\(A Qwe“3 Qwe“3 _\a“‘a3 Qwe“3 2 Deepsee\‘ A Q\Ne"‘3 Q\Nen3 _\af"‘a3 Qwe\"3 2 Deevsee\‘
(a) Single Request PII P95 Latency (b) Multi-Turn Chat P95 Latency (c) System Prompt P95 Latency
== SGlang mEm SGlang ®=m Cache-Partition WEE Shared-System-Prompt EEEE SafeKV mEm SGlang == Cache-Partition WS Shared-System-Prompt HEE SafekV
. 400 B Cache-Partition 5000
E mmm Shared-System-Prompt = 3000 I
= 300 { W SafekV £ £ 4000
g 2 2000 Z 3000
% 200 § §
Py 8 8 2000
< o 1000 °‘
2 100 2 2 1000
0 0 0
. 2148 308 328 108 1358 R . 2148 308 328 708 1358 Rl . 2148 308 328 708 1358 Rl
P quien® > quien 3 gmad T en3 2T ogseet o quien® > quiend 3 o3 en3 P cepses® o quien® > quiend 3 o3 en3 23 cepses®

(d) Single Request PII P99 Latency
Fig. 17: Comparison of TTFT (P95 & P99) of SafeKV with SGLang, Cache-Partition, and Systme-Prompt-Sharing in different
working scenarios

(e) Multi-Turn Chat P99 Latency

(f) SYstem Prompt P99 Latency

	Introduction
	Background
	LLM Inference
	KV-Cache Sharing
	Timing Side-Channel Attack
	Motivation: Privacy Risk and Isolation Cost

	Threat Model
	System Model
	Threat Model
	Attackers' Goal
	Attackers' Knowledge
	Attack Strategy

	SafeKV Approach
	Defense Goals
	Defense Knowledge
	Proof of Defense

	Overview of SafeKV
	Design Objectives
	System Architecture

	SafeKV-Detect: Hybrid Privacy Detection
	Design Requirements
	Three-Tier Hybrid Detection Strategy
	Rule-Based Pattern Matching
	General Privacy Detector
	Context-Aware Validation

	Fallback Protection and Attack Mitigation
	Asynchronous Detection and Streaming-Aware Scheduling

	SafeKV-Cache: Privacy-Aware Cache Management
	Unified Privacy-Preserving Cache Index
	Private Tree Optimization and Progressive Eviction
	Path Compression
	Progressive Eviction
	Epoch-Based LRU with Privacy-Aware Priority.

	Evaluation
	RQ1 Effectiveness Evaluation
	RQ2 Cost Evaluation
	RQ3 Performance Evaluation

	Discussion & Limitations
	Protection Scope and Assumptions
	Detection Robustness and Safeguards
	Deployment and Integration Considerations
	Generality and Transferability

	Related Works
	Multi-tenant Security
	Defenses Against KV-Cache Side Channels

	Conclusion
	References
	Appendix A: Tier-2 Detection Accuracy and Efficiency.
	Appendix B: PII Detection Overhead vs. Varies Prompt Length
	Appendix C: P95/P99 Latency of SafeKV Performance.

