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Abstract Due to perceptions of efficiency and signif-

icant productivity gains, various organisations, includ-

ing in education, are adopting Large Language Models

(LLMs) into their workflows. Educator-facing, learner-

facing, and institution-facing LLMs, collectively, Edu-

cational Large Language Models (eLLMs), complement

and enhance the effectiveness of teaching, learning, and

academic operations. However, their integration into an

educational setting raises significant cybersecurity con-

cerns. A comprehensive landscape of contemporary at-

tacks on LLMs and their impact on the educational

environment is missing. This study presents a gener-

alised taxonomy of fifty attacks on LLMs, which are

categorized as attacks targeting either models or their

infrastructure. The severity of these attacks is evalu-

ated in the educational sector using the DREAD risk
assessment framework. Our risk assessment indicates

that token smuggling, adversarial prompts, direct in-

jection, and multi-step jailbreak are critical attacks on

eLLMs. The proposed taxonomy, its application in the

educational environment, and our risk assessment will
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help academic and industrial practitioners to build re-

silient solutions that protect learners and institutions.
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1 Introduction

LLMs are designed for understanding and generating

natural language text and solving complex tasks [1–7].

These models utilise deep learning algorithms charac-

terized by a vast number of parameters, and are trained

on massive datasets to understand the relationship and

trends among the linguistic constructs. With the advent

of advanced LLMs like PaLM [8], LLaMA [9], Gemini

[10], Falcon [11], GPT and its versions specifically GPT-

3 [12] and GPT-4 [13], DeepSeek [14] and others [7],

these models mark a paradigm shift within numerous

sectors. From finance to healthcare, and manufacturing

to education, LLMs are playing a major role in innova-

tions, streamlining processes and redefining standards,

and achieving human-level performance in applications

like dialogue management, text translation, and virtual

assistance [2–5, 15, 16].

Educational Large Language Models (eLLMs) sup-

port learning in many ways, such as personalised learn-

ing experiences across space and time, content genera-

tion, automatic grading, feedback, research assistance,

scheduling, assessment evaluation, real-time problem

solving, and other institutional support [15, 17–19]. Glo-

bal Market Insights has predicted that the AI education

market, particularly using LLMs, will reach $20 billion

by 2027 [20, 21]. Unfortunately, LLMs have also sparked

widespread cybersecurity concerns in education [18, 22].

The increasing use of eLLMs expands the attack sur-

faces and the entry points an attacker can use to com-
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promise educational institutions [17, 20]. Although ed-

ucation is not the sector most driven by financial gain,

the large amount of personal data (student, employee,

and institutional), intellectual property, research data,

and lack of adequate security measures make them a

target for cyber-attacks [23, 24]. This is evident by the

surge in the number of cyber-attacks on education re-

cently [25, 26].

Ensuring security in educational workflows driven

by eLLMs is a continuous endeavour that requires deal-

ing with the increasingly sophisticated cyber-attacks on

eLLMs models and their infrastructure. These attacks

directly or indirectly impact the integrity of learning

materials, public trust of educational institutions, pri-

vacy and security of staff, students, or associated stake-

holders’ information, academic operational continuity,

and financial sustainability of educational institutions.

Thus, it is crucial to understand the attack surfaces,

techniques, tactics, and potential attack vectors utilised

by the attackers to ensure that eLLMs operate as in-

tended.

A scan of the current literature shows that despite

the growing number of studies related to security issues

in LLMs, there is a need for in-depth analysis of attacks

in terms of their level of sophistication, which could be

helpful in understanding the evolving attack landscape

and ascertaining effective defensive mechanisms. Fur-

thermore, only a few of the existing works focus on risk

analysis, while none emphasise the importance of eval-

uating risks related to critical sectors like education.

This article introduces a generalised taxonomy of

cyber-attacks on LLMs and analyses the criticality (seve-

rity) of the identified attacks in education. We conduct a

Systematic Literature Review (SLR) [27] to identify the

current security issues within LLMs. This SLR study

explores the following research questions.

– RQ1 What are the key security attacks on LLMs?

-RQ1.1 How can the attacks identified in RQ1

be characterised by the level of sophistication?

-RQ1.2 How can the characterisation, resulting

from RQ1.1, assist in recognising critical attack vec-

tors and general impact of attacks on LLMs?

– RQ2 How could the attacks identified in RQ1 be

evaluated and prioritised within the education sec-

tor?

We then propose key classification criteria to categorise

cyber-attacks on LLMs based on their level of com-

plexity/sophistication, an area that has not yet been

explored by any existing studies. We also analyse the

attack vectors and their impacts. This proposed tax-

onomy categorising the sophisticated attacks on LLMs,

attack vectors, and impacts will be useful equally for

academic and industrial practitioners to secure eLLMs.

As presented in Section 4, another novel contribution

of this study is to quantify the risks associated with

attacks on eLLMs using the DREAD (Damage, Re-

producibility, Exploitability, Affected Users, and Dis-

coverability) risk assessment framework [28, 29]. The

DREAD framework provides an elegant, systematic,

and flexible approach to identifying the critical secu-

rity risks to an organization. Its criteria are indepen-

dent (not correlated with each other), and straightfor-

ward in both application and interpretability, making

it suitable for our study to identify and address high-

priority eLLMs security risks quickly before they can

be exploited, resulting in optimal business and techni-

cal impact [30]. Applying DREAD scores for aspects of

the education sector where the adoption of eLLMs could

mean higher risk allow professionals to proactively for-

tify the corresponding security postures.

Thus, the primary contributions of this study in-

clude:

1. A systematic literature review of the up-to-date se-

curity attacks on LLMs, presented in Section 2.

2. A generalised attack taxonomy on LLMs, based on

their level of complexity, detailed in Section 3 and

Section 4.

3. Analysis of the attack vectors and their potential

impact to identify the most critical threats to LLMs-

based workflows, presented in Section 4.

4. Mapping the proposed LLMs-based attack taxon-

omy to the education sector and quantification of

the associated risks using the DREAD model, given

in Section 4.

2 Systematic Literature Review

A Systematic Literature Review (SLR) conducted in-

cludes the following phases: planning, conducting and

reporting the review [27]. The Covidence tool was used

to ensure clear reporting for a systematic review [43].

2.1 Planning

Scope definition and formulation of research que-

stions: To answer RQ1, a comprehensive literature re-

view is conducted to identify and scrutinise existing re-

search works within the area of Large Language Model

(LLM) security. The scope of this research is to investi-

gate and analyse security attacks on LLMs. We propose

an easy-to-understand generic taxonomy of attacks on

LLMs based on the level of attack sophistication (attack
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Table 1 Comparison of our Work with the Existing Secondary Studies by Research Type (Survey, Exploratory Study, Empir-
ical Study, Opinion Paper), LLMs Types (General, ChatGPT, Gemini or others), Attack Taxonomy (Yes/No), Attack Vectors
(Yes/No), Attack Impact (Yes/No), Risk Analysis (Method/No)

References
Type of
Research

Types of
LLMs

Attack
Taxonomy

Attack
Vectors

Attack
Impact

Risk
Analysis

[31] Survey General No No No No
[32] Survey General No No Yes No
[5] Survey General No Yes Yes No
[33] Survey ChatGPT Based on platform plugins Yes No No
[34] Survey General Based on backdoor Attacks Yes No No
[35] Survey ChatGPT No No Yes No
[36] Survey General No No Yes OWASP
[4] Survey General No No No No
[37] Empirical Study ChatGPT No No Yes No
[38] Exploratory Study ChatGPT No No Yes No

[39] Survey General No Yes No
Benchmark
datasets

[40] Survey General Based on jailbreak Yes No No

[41] Survey General
Based on prompt injection,
jailbreak,data poisoning

No Yes No

[42] Survey General
No (brief discussion on prompt
injection, jailbreak,backdoor)

No No No

Our work Survey General Based on Attack Complexity Yes Yes DREAD

complexity), analyse the various attack vectors for each

identified attack, and determine the impact of those at-

tacks. Moreover, we also quantify the risks posed by

each attack in the education sector. Our SLR also iden-

tifies several secondary studies in this area [4, 5, 31–

39, 41], but these studies differ significantly in their

focus and methodology, as shown in Table 1.

Based on the scope of our study, we formulated the

research questions mentioned in the Section 1.

Database selection and search query: IEEE Xplore,

SpringerLink, and Scopus were selected for this study.

Scopus, the largest commercially accessible database of

peer-reviewed articles, also encompasses IEEE Xplore

and SpringerLink. Nonetheless, we conducted individ-

ual searches of all these databases to ensure complete-

ness.

For filtering out the primary studies, we follow the

methods reported in [44], and identified the following

security-related keywords - secur*, attack, threat,

vuln*, and risk. For LLMs, we used terms like large

language models, and LLM. The following query string

in the Scopus format represents the final combination

of the above keywords/phrases used in our SLR:

(TITLE-ABS-KEY (large AND language AND

model OR "LLM" OR "Large language model")

AND TITLE-ABS-KEY (secur*)

OR TITLE-ABS-KEY (threat) OR

TITLE-ABS-KEY (vuln*) OR

TITLE-ABS-KEY (risk))

AND PUBYEAR > 2019 AND PUBYEAR < 2025

Inclusion/Exclusion criteria: The inclusion criteria

(INC) and exclusion criteria (EXC) that were utilised for

the selection of only the relevant studies from the search

results are represented in Table 2.

Table 2 Inclusion and Exclusion Criteria

In
c
lu

s
io

n
C
r
it
e
r
ia

INC1 Studies that investigated LLMs security issues.
INC2 Studies that discuss the concepts like open chal-

lenges, problems related to the security issues
within LLMs

INC3 Studies published in conferences, journals, tech-
nical reports, pre-prints (as most of the recent
articles are shared as pre-prints)

INC4 Research studies that appeared since 2020 till
now

INC5 Studies that focused on the real-world applica-
tions of LLMs

INC6 Studies that include at least one of the specified
keywords

E
x
c
lu

s
io

n
C
r
it
e
r
ia

EXC1
Studies where title, keywords and/or abstract
do not lie within defined scope

EXC2 Studies do not investigating any security issues
within LLMs

EXC3 Studies that address solely the concept of pri-
vacy issues of LLMs

EXC4 Studies focusing on attacks that could be
launched using LLMs

EXC5 Studies that do not have full text
EXC6 Books, thesis, tertiary studies, tutorial and opin-

ion papers
EXC7 Studies not written in English
EXC8 Studies whose new version is available or are not

peer-reviewed

2.2 Conducting the review

Search and data extraction: For this study, we per-

formed both automated (using Covidence) and manual

searching.
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Figure 1 shows the search execution chronology (Cov-

idence’s PRISMA flow diagram). The initial automated

search resulted in 1542 articles. Due to duplicate records

and screening of the titles, keywords, or abstracts, a sig-

nificant number of studies were excluded, leaving 816

studies for eligibility selection. A further 724 studies

were removed after carefully examining each study’s in-

troduction, conclusion, and full text. The number dropped

to 60 after meta-analyses. Data extraction from auto-

matic search includes the identification of the keywords

by reading abstracts, introductions, and conclusions (if

needed) [44]. In the case of manual search, ATLAS [45],

AI Incident Database [46] and OWASP framework [47],

and white papers related to the security issues of LLMs

were selected. As there is a continuous rise in the num-

ber of security-related studies on LLMs, manual search

plays an important role in enhancing the confidence

of the comprehensiveness of the review. For manual

search, data extraction is performed using the keywords

selected for our query string. Furthermore, scanning the

manual results for the attack scenarios and extracting

the utilised tactics, techniques, and sub-techniques for

particular attacks on LLMs resulted in including ten

more relevant articles.

Databases Search: Scopus, IEEE
Xplore, Springer Link

(n=1542)

Identification
Screening

Eligibility 
Included

Duplicate records removal, 
Titles, keywords and abstract screened 

(n=816)

Full-text articles assessed
(n=92)

Articles included (Primary Studies)
(n=60)

INC1,INC5,INC6,
EXC1,EXC7, EXC8

INC1-INC5,
EXC2-EXC6

INC1,INC5,
EXC3,EXC5,EXC7

Fig. 1 Search execution chronology

Quality Assessment: Our quality assessment criteria

contains five measures QC1–5 [48]. Each study is as-

signed a score of 0, 0.5, or 1 for each measure. The final

quality score for a study is the aggregation of the in-

dividual scores, which is quantified as low when 0.5 ≤
quality score ≤ 2, medium for 2.5 ≤ quality score ≤ 3,

or high (3.5 ≤ quality score ≤ 5).

Based on the measures mentioned above, the scoring

for our SLR is calculated as follows.

QC1. Our study clearly states the objective of the re-

search, and so it gets a score of 1.

QC2. A score of 1 is assigned as Inclusion and Exclusion

criteria are defined.

QC3. A score of 1 for presenting an explicit synthesis

method based on a well-used methodology.

QC4. The quality assessment of selected primary studies

was performed, but not reported, so our study gets a

score of 0.5.

QC5. A score of 1 for providing information about each

primary studies.

Overall, our SLR scores 4.5, indicating it is a high-

quality review.

2.3 Reporting (threats to validity)

Overlooking Important Relevant Studies: An SLR

is intended to cover the depth of a research area by

analysing the existing works in that area. There is a

chance of overlooking some relevant current literature,

so the query string is formulated to retrieve the maxi-

mum number of studies from the databases. The titles

and abstracts of the articles could also be ambiguous.

Therefore, we thoroughly read the introductions, con-

clusions, and full-texts, if needed, to ensure the inclu-

sion of relevant primary studies. Moreover, selecting the

specific databases could also result in missing studies;

hence, a manual search was also performed to mitigate

this threat. We also used the Covidence tool for SLR.

The use of the tool and manual search therefore pro-

vides another layer of assurance and helps find articles

that may be missed due to the use of non-standard ter-

minology.

Researcher Bias: Researcher bias could impact the

validity of research. The systematic literature review

protocol was established and followed carefully with the

support of domain experts and co-authors.

Selection of the Query String: The final selection

of the primary studies depends on the scope, novelty

of research areas, and search strings. To create a query

string that could not be very strict and define the scope,

we tweaked it to remain comprehensive (return all rel-

evant papers) while reducing the number of irrelevant

papers returned. For example, with the keyword risk in

the query string, we omitted keywords like risk analy*,

mitig* and assess* intentionally because even by in-

cluding these terms, the result of retrieving the number

of studies does not change. Also, including keywords

such as language model, natural language processing,

natural languages, deep learning, machine learning, and
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Generative AI reduces the number of articles retrieved

to only 152. Similarly, the keyword related to LLMs in

education results in numerous irrelevant papers, while

the other relevant papers were already filtered out using

our final query mentioned in Section 2.1.

3 Taxonomy of Security Attacks on Large

Language Models (LLMs)

LLMs are susceptible to various attacks (Figure 2),

which are either on their models (parameters, hyperpa-

rameters, model input, test data, training data, model

documentation) directly or their infrastructure (deploy-

ments, storage, network, servers, hardware). We pro-

pose a novel taxonomy to classify the identified attacks

on models and associated infrastructure based on the

attack complexity or sophistication level.

Sophistication Level (Attack Complexity): Attack

complexity or the level of the sophistication indicates

the extent of the actions that must be taken by the at-

tacker to compromise LLMs. The actions are based on

the need of specialised skills, knowledge of the model

and/or infrastructure or ease of exploitation. We used

the following attack complexity metric to categorise the

attacks on LLMs mentioned in the selected primary

studies.

1. High (H): The level of sophistication is high if

the attacker has to use specialised or advance tactics,

skills, methods or tools to compromise the LLMs or

needs an in-depth knowledge of the LLMs model or

infrastructure. These attacks are indicated by the color

red in Figure 3 and Figure 4.

2. Medium (M): The attack sophistication level is

medium when the attacker performs multiple steps in

a sequence without using very specialised techniques or

tools to compromise the LLMs. Medium level attacks

are represented by yellow in Figure 3 and Figure 4.

3. Low (L): The level of sophistication is low (il-

lustrated in green color in Figure 3 and Figure 4) if

the attacker uses single step (maliciously craft simple

or direct prompt), or require less expertise or does not

require the internal knowledge of the model or the in-

frastructure to launch an attack on LLMs.

The detail of each type of attack is presented in

following sections. The summary of attack vectors and

impacts is given in Table 4.

3.1 Security Attacks on LLMs Models

This section discusses various security attacks on the

LLM models, as presented in Figure 3, along with their

corresponding vectors and impacts. Table 3 further elab-

orates on the Figure 3 by presenting the complexities

of each identified attack, determined using the previ-

ously mentioned sophistication level metric. Also, Ta-

ble 4 summarises the associated vectors and the specific

impacts of each attack.

Multi-Modal Attack: A multi-modal attack on LLMs

is an adversarial attack to exploit the processing and

understanding capabilities of LLMs when dealing with

different input types [49, 50]. To launch this attack,

the attacker uses various attack vectors such as adver-

sarial images, crafted noise or text with images, poi-

sonous association to manipulate the LLMs’ generated

output or their operational behaviours [32]. These at-

tacks could take many forms like text guided image

generation, cross-modal attack and adversarial image.

In text guided image generation attack, an intruder

embeds malicious text with an image to trigger the

LLMs for the generation of the manipulated image with

malicious intent like spreading misinformation [51, 52].

The attacker could either use pre-trained models or

should have a knowledge of basic prompt engineering

and with trial and error, he can crafts prompts to gener-

ate misleading output. Therefore, the attack complexity

of this attack is low (L).

In cross-modal attacks, attackers exploit vulnera-

bilities in the interaction between different modalities,

such as, text, audio, images, etc. to confuse the model

[52]. An attacker should have some knowledge of the

model such as, pertaining to the linkage of text and

images, and needs knowledge of prompt engineering

to introduce minor inconsistencies in the modalities.

Also, attackers need multi-step procedures to launch

this attack, first they exploit the vulnerability of one

modality (such as audio) and then utilise that compro-

mised modality to trigger a specific response from the

LLM. Therefore, the attack complexity of this attack is

medium (M).

Adversarial image attacks involve subtle modifica-

tions to images using hidden patterns such as impercep-

tible noise or minor pixel-level adjustments that mislead

LLMs to trigger the specific response [32, 53, 54]. The

attack complexity is high (H) because the attacker adds

adversarial perturbations in the images, so they need

high expertise and in-depth knowledge of the model to

launch this attack.

Flowbreaking Attack: Flowbreaking is a newly in-

troduced/novel LLM attack that targets the reasoning

and coherence of LLM models while generating the re-

sponse [55]. Compared to input data manipulation at-

tacks, the internal logic of the model’s output is dis-
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Fig. 2 A Generalised Taxonomy of Attacks on LLMs

rupted by flow-breaking attacks. Even benign prompts

can lead the model to produce incorrect or harmful re-

sponses or result in information disclosure. There are

two types of flowbreaking attack: second thoughts, and

stop and roll [55, 56].

A second thoughts attack occurs when LLMs mod-

els initially provide a response to the prompt but halt

or retract upon detecting a sensitive topic and either

generate a simple error message or new modified con-

tent; attackers exploit this behavior to extract sensitive
information. This attack requires prompt engineering

skills and some knowledge of the model to exploit the

guardrails (filters) or streaming window. Therefore, the

attack complexity is medium (M).

A stop and roll attack involves the manipulation of

LLM output using hidden commands or crafting spe-

cific prompts. During the answering phase, the attacker

breaks the flow of the LLM’s reasoning by pressing the

stop button, but the answer is still streaming and can-

not be deleted. This attack results in unauthorized ac-

tions, information disclosure, or potentially damaging

responses even though the system policies are violated.

The ease of exploitation is simple using the stop but-

ton. However, the attacker needs model knowledge and

some expertise to craft the specific instructions, so the

complexity of the attack is medium (M).

Prompt Injection Attack: In the prompt injection

attack, malicious prompts replace the LLM’s original

instructions, manipulating them to respond to differ-

ent queries rather than fulfill their intended function

[3, 57–59]. There are various forms of prompt injection

attacks, such as adversarial prompt injection attacks,

decoy and distraction prompt injection attacks, indirect

prompt injection attacks, prompt divergence attacks,

and direct prompt injection attacks.

An adversarial prompt injection attacker exploits

the model’s instruction-following behaviour to mislead

LLM’s intended response by directly adding adversar-

ial instructions. Adversarial prompt injection, thus, can
result in undesirable or unauthorised outputs, such as

offensive responses or unauthorised data disclosure [60].

Attack vectors are user input fields or APIs that allow

external text input to the LLMs. In this attack, at-

tackers need basic prompt engineering skills to craft ef-

fective phrases without requiring detailed knowledge of

the model’s internal workings. The adversarial prompt

injection attacks are straightforward due to LLMs’ ten-

dency to follow prompts precisely [60]. Thus, the attack

complexity is low (L).

Likewise, in decoy and distraction prompt injection

attacks, the attacker misguides the LLMs by embedding

off-topic or confusing information within the prompt

[61]. This decoy information causes LLMs to prioritise

the distraction, shifting the model’s attention from the

main question to the misleading content, leading to in-

accurate or off-topic outcomes [60]. The attacker must

be familiar with prompt structuring and model’s priori-

tising to place distractions into the input. As a result,

decoy and distraction prompt injection attacks have
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Fig. 3 A Breakdown of Taxonomy of Attacks on LLMs Models

medium complexity (M) because they require an un-

derstanding of prompt dynamics to mislead the model

accurately [61]. The attack vectors are frequently seen

in chat interfaces or information retrieval systems where

off-topic details can be embedded easily [60].

In an indirect prompt injection attack, adversarial

prompts are inserted into retrievable data sources that

the LLMs access [62, 63]. This causes the model to

process compromised data, which may result in unin-

tended responses or data leaks. Because these indirect

prompt injection attackers exploit the model’s data re-

trieval processes, LLMs unknowingly execute embedded

commands from external sources, allowing the attacker

to remotely manipulate outputs without requiring di-

rect prompt input. Indirect prompting leads to exces-

sive agency vulnerability [57]. Thus, an attacker may

have some knowledge of the model and expertise to ef-

fectively understand the model’s data retrieval mech-
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anisms and manipulation of external data by placing

malicious prompts (attack complexity is medium (M)).

Attack vectors can be external data sources such as

websites, APIs, or shared documents that the LLMs

may access during the data retrieval [62].

Furthermore, in prompt divergence, attackers em-

bed ambiguous or conflicting instructions within the

prompt, causing the LLM to interpret these instruc-

tions in ways that produce divergent responses to de-

viate from LLM’s original goal [64]. The attacker may

understand prompt structure and model processing to

create conflicting contexts, which are complex methods

requiring high skills [64]. Attack vectors can be struc-

tured applications in multi-step tasks with diverging

instruction encoding techniques. Therefore, the attack

complexity of this attack is high (H).

In direct prompt injection, attackers append adver-

sarial commands directly to the system prompt, over-

riding the LLM’s intended functionality [3]. The at-

tacker needs minimal technical knowledge about LLMs

to append commands [60] and lead to unintended or un-

safe outputs. Direct prompt injection attacks are com-

monly used attack due to its low (L) complexity [60].

Embedded Attack: In an embedded attack, the at-

tackers craft malicious instructions or manipulate the

tokens to carry out harmful actions, e.g., output haz-

ardous knowledge [65] to change the workflow of LLMs

[66]. These attacks can be adversarial example attacks

or embedded space attacks [67].

In the adversarial example attack, attackers craft

small changes to the input that are undetectable for

the user but can trick or confuse the model into mak-
ing erroneous predictions [68]. The adversarial example

attacker can make small perturbations to the input us-

ing basic understanding of input crafting without need-

ing the internal knowledge of LLMs [68]. Therefore, an

adversarial example attack has a low complexity (L).

Embedded space attacks, on the other hand, modify

the embedding layer of open-source LLMs by passing

the input string via a tokenised process [67]. The user

cannot see these modifications since they are hidden in

the LLM’ embedded layers. Attackers utilising embed-

ded space must be proficient in open-source LLMs and

able to transform input text into hidden token/word

representations through specific tactics like gradient de-

scent [67]. Thus, embedded space attacks are complex

as attackers follow specific tactics and skills in modi-

fying LLMs’ embedding, resulting in high complexity

(H).

Jailbreak Attack: Jailbreak attacker bypasses LLMs’

safety guardrails to respond to unsafe or restricted ques-

tions and output inappropriate content such as mal-

ware, scams, and illegal or socially harmful instruc-

tions [32, 49, 58]. Jailbreak attacks come in different

forms, such as Do Anything Now (DAN) mode, multi-

step prompt, ad-hoc jailbreak and token level jailbreak

attacks.

In DAN mode jailbreak prompt attack, LLMs are be-

ing forced to undertake dangerous, harmful actions like

“Do Anything Now” (DAN) mode, preventing them

from completing their intended task [61]. This means

the attacker prompts the model to act unrestrictedly,

effectively using role-playing instructions and unlock-

ing capabilities limited by safety protocols [69]. The

DAN jailbreak attacker requires creativity in prompt

construction and an understanding of role-play dynam-

ics, instead of a deep technical background. Thus, DAN

jailbreak attacker does not need high skills (attack com-

plexity is M) because it uses creative framing to exploit

the model’s flexibility with user roles, relying more on

inventive prompting than in-depth model knowledge.

In multi-step jailbreak attacks, the LLM model’s fil-

ters are gradually weakened by a series of prompts,

eventually reducing the chance that the model will fol-

low its limitations, such as red queen attack [70]. There-

fore, the attacker does not need specific tools to compre-

hend how prompts sequencing interacts over a number

of steps and how contextual layering can affect model

behaviour, which is regarded as medium-level complex-

ity (M) [71].

Ad-hoc jailbreak attacks are characterised by impro-

vised, creatively crafted prompts to bypass the model’s

restrictions [32]. The attacker directly inputs crafted

prompts that manipulate the model into providing re-

stricted information. Techniques include hypothetical

scenarios, attention-shifting, and context manipulation,

where the prompt creates a scenario or role-play that

bypasses ethical guidelines. The ad-hoc jailbreak at-

tacker skill requirement is generally low because it may

mainly involve basic prompt phrasing without deep tech-

nical understanding. However, some prompts may re-

quire insight into how models interpret instructions, re-

lying on creativity and user insight rather than techni-

cal expertise [72]. Overall, this attack has medium (M)

complexity.

Attackers that use token manipulation jail breaks

take advantage of particular tokens, often anomalous

or special text, that the model processes in unusual

manners. By employing tokens or sequences that trig-

ger behaviors inconsistent with the model’s intended

aim, these attacks take advantage of the way models

interpret tokenised input [73]. Tokenisation has unique

effects on model behavior; special tokens like or are fre-

quently used to exploit it. These tokens cause the model
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Table 3 Attacks on LLMs Model and Attack Complexities

Attacks
Attack
Sub-types

Required
Skills

Knowledge of Model/
Infrastructure

Ease of
Exploitation

Attack
Complexity

Multi-Modal

Text guided image
generation

L L L L

Cross-modal M L M M
Adversarial image H M H H

Flowbreaking
Second thoughts M M M M
Stop and roll M M L M

Prompt Injection

Adversarial prompt M L L L
Decoy and distract M M L M
Indirect prompting M M L M
Prompt divergence H H H H
Direct injection L L L L

Leakage
Data leakage M L M M
System Prompt leakage H H M H

Embedding
Embedding space H H H H
Adversarial example L L L L

Jail break

Do anything now M L M M
Multi-step jailbreak L M M M
Adhoc jailbreak L M M M
Token-level jailbreak H H H H

Backdoor

Dataset backdoor L L M M
Pre-trained backdoor L L L L
Fine-tune backdoor H H H H
Composite H H H H

Poisoning
Dataset poisoning L L L L
Pre-trained poisoning L L L L
Fine-tune poisoning M L M M

Inference
Membership inference M M L M
Attribute inference L L L L
Input inference H H H H

Manipulation
Token manipulation H H H H
Content manipulation H H H H

Extraction
Model gradient H H H H
Training data extraction L L L L
Model theft H H H H

Evasion
Obfuscation L L L L
Token smuggling L L L L

Hallucination
Weak semantic H H H H
Out-of-distribution H H M H

Hijacking
Square L L L L
Vocabulary H H H H

to output responses that bypass restrictions, possibly

due to the special token’s influence in the tokenisation

or generation process. This attack requires understand-

ing tokenisation, generation mechanisms, and specific

token functions within the LLM’s architecture. The at-

tackers require high skill and technical knowledge to

manipulate tokens to achieve specific behavior within

the LLMs, making the overall attack complexity high

(H) [73].

Poisoning Attack: Poisoning attacks influence the in-

tegrity of the training data; attackers can introduce de-

liberately manipulated data into the model’s training

phases [74]. There are different classifications for poi-

soning attacks, such as pre-training poisoning, dataset

poisoning and fine-tuning poisoning.

In pre-training poisoning, attackers can inject mali-

cious or biased content into public internet sources such

as Wikipedia, a widely used resource for LLMs training.

This poisoned data may included in the LLM’s initial

training set. Since LLMs rely on massive datasets, mi-

nor edits are hard to detect but can substantially affect

LLMs’ behaviour [75]. Thus, the complexity of this at-

tack is low (L) as the attackers do not need task-specific

knowledge or high skills [74].

In dataset poisoning, attackers add harmful or bi-

ased content to specific datasets devised for a particu-

lar application (e.g., medical sector) domain [76]. Thus,

dataset poisoning limits selected domains by adding bi-

ased or misrepresentative content to carefully selected

datasets. This can skew the LLM’s behaviour in spe-

cific applications, especially where data curation is im-
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perfect, leading to slight but impactful biases in task-

specific LLMs outputs [74]. Attackers do not need to

manipulate large datasets, but must understand the ba-

sic curation process. Thus, knowledge of the dataset’s

intended application helps attackers insert biases that

may not be easily detected in specific domains [75]. The

impact of the dataset poisoning attack is typically lim-

ited to specific tasks or fields where curated datasets are

applied. Thus, the attack complexity is medium (M).

However, it can create severe biases or misinformation

in sensitive applications (e.g., health or legal), affecting

user trust in model outputs.

Fine-tuning poisoning attack targets the final train-

ing phase, where LLMs are fine-tuned for specific tasks

or applications. Attackers introduce harmful data to

override safety and alignment features, often embedding

backdoors that activate with specific input triggers [77].

Attackers exploit fine-tuning APIs to insert carefully

crafted triggers or backdoors, which modify the model’s

behaviour upon receiving specific prompts. This ap-

proach allows attackers to bypass moderation controls

by embedding hidden behaviours that activate only un-

der specific conditions [75]. Therefore, fine-tuning poi-

soning attackers requires specific API knowledge to evade

moderation controls effectively and balance subtlety with

effectiveness, creating hidden triggers that only activate

when intended [67]. Overall, the attack complexity is

high (H).

Evasion Attack: In an evasion attack, the attacker

crafts fake samples during the inference phase, which is

not noticeable but leads to incorrect/unexpected be-

havior [77–79]. Evasion attacks have different forms,

such as obfuscation or token smuggling.

In an obfuscation attack, an input text is manip-

ulated using word-level or character-level subtle per-

turbation [79]. The attacker changes the input in sev-

eral ways, such as by replacing a single word or cer-

tain words with similar words, adding special charac-

ters, or altering the sentence’s structure. Collectively,

these techniques make the model confusing, making it

difficult for the model to recognize the intended mean-

ing of the input. In this attack, the attacker does not

have the authority to change the model’s architecture

or its parameters. Therefore, to evade the detection, the

attacker needs basic obfuscation tactics only, and with

trial and error, the attacker could result in harmful, or

restricted contents. Overall, the attack complexity of

the obfuscation attack is low (L).

Token smuggling attack comprises the banned words,

which are encoded in the attacker’s input to evade the

filters or detections. The purpose of the attack is to al-

ter the behavior of the model to produce the incorrect

output. The complexity of this attack is also low (L) as

to launch this attack, the attackers only need to simply

split the words and do not need in-depth knowledge of

the model.

Extraction Attack: In extraction attacks, attackers

use model training data or extract the specific LLM ar-

chitecture and parameters and recreate the model for

execution [80]. The attackers can leverage the target

LLM by supplying prompts refined to induce the LLM

to perform the intended task (e.g., summarisation, chat-

based responses, question answering, etc.). This refined

prompting process enables attackers to effectively re-

fine and transfer the task-specific capabilities into the

extracted model for their purposes [80]. Extraction at-

tacks could be of several types such as model gradient

attacks, training data extraction and model theft.

In model gradient attacks, attackers use precise gra-

dient based training to recreate the model because gen-

erally malicious actors cannot steal highly valuable mod-

els, such as those trained on rare or hard-to-obtain

datasets. This attack poses a significant threat, as it en-

ables the theft of cloud-hosted models without requiring

input data. Consequently, such attacks have high (H)

complexity as attackers require having an in-depth un-

derstanding of the LLM model and infrastructure [81].

Training data extraction attackers can exploit LLMs

which are trained on private datasets. By querying the

language model, they can recover individual training

samples, extracting verbatim sequences from the model’s

training data using only black-box query access. This

enables attackers to retrieve (publicly available) person-

ally identifiable information (e.g., names, phone num-

bers, and email addresses) and other non-sensitive in-

formation [82]. Thus, this attack is accomplished in a

single step, and the complexity of this attack is classi-

fied as low (L).

Model theft attack is a black-box adversarial attack.

Attackers create an extracted model by deriving specific

features (e.g., architecture, parameters, and hyperpa-

rameters) from the target model of interest, enabling

them to reconstruct it. Once the extracted model is

established, attackers can carry out further adversarial

attacks, such as model inversion, membership inference,

privacy data leakage, and model intellectual property

theft [80]. To execute a model theft attack, attackers

require extensive knowledge of LLMs to perform sev-

eral critical steps such as prompt design for crafting

prompts to attain task-specific LLM responses, data

generation to derive extracting model characteristics,

extracted model training for model recreation and ML

attack staging against a target LLM [80]. Due to the
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complexity and technical depth involved, the complex-

ity of a model theft attack is classified as high (H).

Backdoor Attack: The concept of a backdoor at-

tack is to inject triggers (short phrases, prompts, or

instructions) into models, including LLMs [34]. The

attacker inserts triggers into a specific section, such

as an open-source library, poisoned training data, etc.

[83, 84]. When user inputs are triggered, the model will

output some specific contents by the attacker [83]. The

backdoor attacks are of various types, including dataset

backdoor, pre-trained backdoor, fine-tuned backdoor,

and composite attacks.

In the dataset backdoor, attackers deploy poisoned

training data in an open-source library. If some LLM

developers utilise it to train their models, they may

unknowingly embed a hidden backdoor in the model

and open it for manipulation by attackers. This at-

tack doesn’t require comprehensive technical skills. The

dataset backdoor, however, needs the attacker to per-

form multi-steps to launch an attack. Hence, the attack

complexity of this attack is medium (M) [34, 85].

In the pre-trained attacks, the attacker is assumed

to be an untrusted third-party service provider and of-

fers (or open-source) pre-trained LLMs, which are tai-

lored to specific targets (such as datasets or prompt

templates) designed to attract potential users. Con-

sequently, the attacker has complete control over the

training dataset and the training process of the target

model, so attacker does not require internal knowledge

of the model and does not require specific expertise to

launch an attack (attack complexity is low (L)) [84].

The fine-tuned backdoor attack is similar to a dataset

backdoor, but attackers need more technical skills. For

example, attackers embed a backdoor into a model and

upload it to the Internet, waiting for some unsuspecting

victims (like developers) to download this model. The

difference is when the developer proceeds with models

to fine-tune them for a specific purpose, the attacker

operates in a white-box environment and modifies the

model’s parameters, structure, and training data [34].

These vectors require the attacker to be very famil-

iar with the trained model and skilled in model train-

ing. Thus, fine-tuning backdoor attack needs in-depth

knowledge and highly complex skills for launching an

attack on the LLMs. Overall, sophistication level of this

attack is medium (M).

For the composite backdoor attack (CBA), attack-

ers need to set up triggers just like any other back-

door attack, but in this attack, multiple trigger keys

are scattered across different prompt components [86].

The composite backdoor will only be activated when all

trigger keys coincide. The composite backdoor attack

is considered more complex and requires advanced ex-

pertise, and the attacker must understand the model’s

internal workings to execute it effectively [83]. There-

fore, the attack complexity level is high (H) as com-

posite backdoor attacks require high skill and technical

knowledge.

Inference Attack: In inference attacks the attacker’s

motive is to illegitimately retrieve the victim’s sensi-

tive information from the LLMs [87]. LLMs tend to

memorise information from their training data, and at-

tackers investigate that memorisation of training data.

There are three main sub-types of attacks on LLMs:

membership inference attacks (MIA), attribute infer-

ence (model inversion), and input inference attacks.

Membership inference attack (MIA) is one of the

most basic forms of inference attack, which allows at-

tackers to fetch data to determine whether a given sam-

ple belongs to a training dataset. The attacker’s goal is

to determine if a specific data point was used in the

training dataset of LLMs by analysing its output, such

as memorisation of training data, copyright violations,

and test-set contamination [84]. Attackers do not re-

quire deep technical background for this attack but only

deal with the training dataset and data points. As a re-

sult, this is a medium complexity (M) attack.

Attribute inference attack can extract various char-

acteristics of the victims, like ethnicity or gender infor-

mation from a model, even if this information was not

explicitly included in the training data [88, 89]. In this

attack, attackers only need to utilise some simple steps

to fetch private information. Therefore, the complexity

of an attribute inference attack is low (L).

In an input inference attack, attackers may need a

way to intercept the user input to LLMs, using other

methods such as network sniffing, exploiting compro-

mised APIs, backdoor attacks, or combining these tech-

niques in a composite attack strategy. Only after ob-

taining the user’s input data can the attacker carry

out an inference attack on sensitive information. Con-

sequently, this type of attack requires attackers to have

highly advanced technical skills due to its composite na-

ture, so the complexity of input inference is high (H).

Manipulation Attack: LLMs may be vulnerable to

potential manipulation attacks, which results into pub-

lic distrust, reputational damage or biased output or

misrepresentation [90]. These attacks allow an attacker

to manipulate the model’s generated output, enabling

malicious samples to evade detection without affecting

the overall system performance. Attackers can utilise

trusted data sources to inject malicious content so that

they can introduce manipulated data into the training
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Table 4 Attacks on LLMs, Attack Vectors and Impact of Attacks

Attacks Attack Vectors Impacts

L
L
M

s
M

o
d
e
l-
B
a
se

d
A
tt
a
c
k
s Multimodal Crafted text with an image or sound, adversarial

images, dataset, poisoned associations (adversar-
ial perturbation), pre-trained model,crafted noise
with audio

Faulty output, model’s operation behavior,
misinformation

Flowbreaking Input prompts, stop button Information disclosure, unauthorised ac-
tion, incorrect output

Prompt Injection Input fields, website’s code, APIs, encoding tech-
niques, system level-prompts, instruction tuning
datasets

Data breaches, unauthorised action, erro-
neous output, misinformation

Leakage Malicious code, model confidence scores, system
prompts

Data breaches, information disclosure

Embedding Crafted instructions, characters or tokens, open
source LLMs

Output biases, faulty/erroneous/toxic out-
put

Jailbreak Heuristic-based prompting, tokens, simple
crafted inputs, hypothetical scenarios with
acknowledgment, pretrained model

Tricking LLMs, incorrect output, unautho-
rised access, personal information leakage,
privilege escalation, political propaganda

Backdoor Dataset, open source libraries, triggers, entrusted
third party service provider, pre-trained model,
trigger keys (one or many)

Faulty/incorrect decision, unauthorised ac-
cess

Poisoning Bad data from unreliable sources, large amounts
of skewed or biased input, publicly available re-
sources, fine-tuned APIs

Output biases, unethical behavior,
faulty/erroneous results, disinformation,
misinformation

Inference Dataset, query a particular data-point, network
sniffing, compromised APIs

Unauthorised access, data breaches, pri-
vacy violation, reputational damage

Manipulation Tokens, malicious instructions, fine-tuning pro-
cess

Biased output, customer dissatisfaction,
misrepresentation

Evasion Fake samples, simple, banned, similar words, spe-
cial characters

Data breaches, Incorrect output

Extraction Datasets, gradients queries, spoofing by trusted
parties, biometric, crafted code, open API, model
architecture and parameters, poorly configured
outputs

Incorrect/unexpected predictions, biased
output, information disclosure, financial
losses

Hallucination Fabricated code libraries, semantic input craft,
random tokens

Nonsensical/unfaithful output

Hijacking attack Delimiters or instructions, randomised search
methods, LLM vocabulary

Information disclosure, false output, unau-
thorised control, offensive behavior

L
L
M

s
In

fr
a
st
r
u
c
tu

r
e
-B

a
se

d
A
tt
a
c
k
s Unbounded con-

sumption
Numerous crafted inputs, complex and resource-
intensive queries, cloud-based AI services

Model service degradation, financial losses,
reputational damage, service unavailabil-
ity, system failure

Inadequate Sand-
boxing

Passwords, API keys, files/network access, plug-
ins’ permissions, misconfigurations

Unauthorised access and action, cross-
system exploitation, privilege escalation,
data corruption/loss.

Access Control Access control policies, API, file/ network in-
formation, social engineering tactics, by-default
configurations, arbitrary codes execution on
server

Data breaches, privilege escalation, misin-
formation, harmful output, public distrust

Supply Chain Datasets, compromised or outdated libraries or
models, pre-trained models, insecure plugins
or APIs, misconfigurations, unclear policies or
agreements

Service outage, privilege escalation, unau-
thorised action, data breach, biased out-
put, network disruption

Side-Channel Model parameters and architecture information,
training data, response time, API, power con-
sumption information

Information disclosure, system exploita-
tion

Server-side Re-
quest Forgery

Inputs, security misconfiguration, internal services
access request, API, secured data stores

Unauthorised access, model malfunctioning,
data exfiltration, Tempering

Remote Code Ex-
ecution

Code, shell commands, arbitrary code execution Network disruption, system unavailable,
unauthorised access

Ransomware Publicly available code repositories, databases,
CVEs, fine-tuned models

System unavailable, data breach reputa-
tional damage, financial losses

pipeline by compromising the data source or intercept- ing it in transit [91]. The manipulation attacks include
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two sub-types of attacks, token manipulation and con-

tent manipulation. Please note: token-level jailbreak at-

tack could also lie in this category.

In a token manipulation attack, the attackers ex-

ploit the vulnerabilities in the process of tokenisation

through token substitutions, removals, and syntactic re-

ordering to generate incorrect outputs[92]. The attacker

needs in-depth knowledge of natural language process-

ing tasks (tokenisation process), and detail knowledge

of the model’s internal architecture and parameters.

This attack could also lie under the category of token

level jailbreak. The overall complexity of the attack is

high (H).

In a content manipulation attack, attackers can ma-

nipulate models to generate fake content and spread

AI-generated fake news (disinformation) and social bots

on social media platforms. They may also use LLMs to

produce targeted user outputs, deceiving the public for

profit. This attack is relatively easy to execute once

attackers gain control of LLMs [59, 93]. Therefore, at-

tackers use specialised methods to craft the ambiguous

input and need good understanding of the model be-

havior to achieve their goals. The complexity of content

manipulation attack is classified as high (H).

Leakage Attack: In the leakage attack, LLMs acciden-

tally leak sensitive and confidential information from

their training data through the responses. These at-

tacks include two sub-types, data leakage and prompt

leakage.

In data leakage attack, attackers exploit the model’s

memorisation of sensitive training data to infer, extract,

or misuse private information. Such attacks leverage

techniques like membership inference or data extrac-

tion to recover portions of the training data, potentially

including personally identifiable information (PII) or

other confidential content, from the model’s outputs

[94]. Attackers need advanced expertise, understanding,

and skills to launch data leakage attacks on the LLMs.

Overall, the attack’s sophistication is medium (M).

System prompt leakage attack is a specialised attack

targeting LLMs, which, if uncovered, facilitates other

types of attacks [57]. Since the functionality and perfor-

mance of LLM applications heavily rely on the system

prompt, which directs the underlying LLMs on what

tasks to perform, developers typically keep these sys-

tem prompts confidential. In this attack, an attacker

sends instructions to the target LLM application, and

its responses inadvertently reveal the system prompt

(such as information describing various roles and per-

missions, connection strings, or passwords). Unlike jail-

break attacks, the ultimate goal of prompt leakage is

to replicate the same, precise system prompt [95]. The

prompt leakage attack requires considerable skill to un-

derstand the model architecture and prompt engineer-

ing, and the attacker can accomplish its motive by try-

ing different instructions within the LLMs, making the

attack complexity high (H).

Hijacking Attack: In a hijacking attack, attackers use

controlled instructions to take unauthorized control or

exploit the behavior, output, or functionality of an LLM

for malicious purposes [77, 96]. There are two types of

hijacking attacks, vocabulary and square.

In a vocabulary attack, attackers manipulate LLMs

by inserting delimiters or systematically rephrasing in-

structions until they achieve their goal—such as reveal-

ing confidential information, generating specific false in-

formation, or exhibiting offensive behavior [97]. To exe-

cute this, attackers first identify words in the LLM’s vo-

cabulary that trigger the desired target behavior when

included anywhere in the user prompt. These words are

referred to as adversarial vocabulary [98]. This attack

is typically the hardest to detect in user prompts using

filters or other pattern-matching defenses, as many sys-

tem prompts are designed to ensure a certain level of ro-

bustness in LLM applications, and some LLMs include

automatic text filters for detection. However, the at-

tack requires attackers to understand the specific model

in-depth and to optimise arbitrary word sequences in-

serted into prompts to alter the model’s behavior [97].

Therefore, the skill complexity required for this attack

is classified as high (H).

The square attack is based on a randomised search

strategy that involves selecting square-shaped localized

updates at random positions of the input text [96].

This ensures that, in each iteration, the perturbation

remains roughly on the boundary of the feasible set of

the input text [99]. The square attack requires minimal

expertise in LLMs, making its complexity low (L) to

manipulate the input and produce the incorrect out-

put.

Hallucination Attack: Hallucination attack is possi-

ble due to the nature of LLMs where attackers reveal

the vulnerability in LLMs during the inference phase

and manipulate them to generate fabricated outputs

when users are querying the model [100]. Poor benign

prompt engineering or just badly functioning models

cause these attacks, which results in excessive agency

vulnerability [57]. Thus, attack vectors for such attacks

are fabricated code libraries. There are different classifi-

cations for hallucination attacks, such as weak semantic

attacks and out-of-distribution (OoD) attacks.

Weak semantic attacks are the attacks in which at-

tackers alter a small number of tokens with semantic

input and trick the model into generating false infor-
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mation [64]. The attackers uses a gradient-based token

replacement approach for the replacement of few token

and insert a perturbed prompt instead for maintaining

the semantic of the input. This attacks need in-depth

knowledge of the model and advances techniques for

understanding the semantics of programming language

used, so the attack complexity is high (H).

The out-of-distribution (OoD) attacks use random

tokens (semantics are not preserved) that do not match

with training data relevant to LLMs. As a result, LLMs

fabricate non-sensible or unfaithful outputs [100]. The

attacker needs to understand the distribution of train-

ing data, prompt engineering, decoding strategies and

in-depth knowledge of the working of the model, there-

fore complexity of the attack is high (H).

3.2 Security Attacks on LLMs Infrastructure

The methodologies, various vectors, and impacts of se-

curity attacks on the LLMs infrastructure (Figure 4) are

presented in this section. The analysis of the complex-

ities of each identified attack is elaborated in Table 5.

Supply Chain Attack: The LLMs supply chain in-

volves the whole lifecycle, from model training to on-

going maintenance. Supply chain attacks infiltrate var-

ious stages of the LLMs infrastructure, including data

preparation, data pre-processing, model training, model

deployment, model optimisation, etc. and exploit vul-

nerabilities in the components of each stage [57, 101].

The attacker may inject poisoned data into training, al-

ter model during training or deployment, upload com-

promised models to public repositories, or manipulate

third-party libraries or code, that support LLMs devel-

opment. It may also involve the exploitation of insecure

APIs or LLM plugin extensions that cloud providers

use to host LLM infrastructure and target deprecated

model dependencies or terms and conditions, and copy-

right material [102, 103]. LLM supply chain attack re-

sults into data breaches, output manipulation and de-

nial of services as well. Depending on the type of supply-

chain attack, the attack complexity could vary. From

the perspective of infrastructure level attack, attacker

needs in-depth understanding of LLMs and needs to

have sophisticated technical skills, therefore, the over-

all attack complexity is high (H).

Inadequate Sandboxing: Sandbox attacks exploit the

isolated environment (sandbox) where LLMs run to ex-

ecute unintended commands, access unauthorised in-

formation, or manipulate the model’s behaviour [104].

These attacks could be of two types: environmental seg-

regation and system-level interaction.

Attackers target vulnerabilities within the sandbox

environment and compromise the LLM’s interaction with

external components such as operating system, other

containers or virtual machines, resulting into unautho-

rised access and information disclosure [105]. Such an

attack is called environmental segregation attack. The

attack complexity is high (H) as attacker needs high

skills and technical knowledge for sandbox operations,

isolation handling, and an exploit development environ-

ment [104].

System level interaction attack, due to inadequate

sandboxing, exploit the direct interaction of LLMs with

system-level processes, APIs, hardware components, and

shell commands and result in privilege escalation, and

unauthorised access, making the overall sophistication

level of an attack high (H).

Access Control Attack is the exploitation of vulner-

abilities in the access control policies or mechanisms

that restrict and manage unauthorised access and ex-

port to the model’s output, data, and parameters. The

attacker uses vectors such as API access, file or network

information, arbitrary code execution on servers, social

engineering tactics, or by-default configurations, result-

ing in privilege escalation, data breaches, misinforma-

tion, or harmful output. The attacker needs to know

the API, network configurations, authentication, and

authorisation mechanisms, or have expertise in prompt

engineering. Overall, the access control attack complex-

ity is high (H).

Ransomware Attack: Ransomware attackers target

the model infrastructure or data to compromise LLMs

operations. Attackers can encrypt, lock, or manipulate

the LLM’s functionality to disrupt its usability or ex-

tract sensitive information, which cannot be used until

the ransom is paid [106]. The attacker can exploit train-

ing datasets, pre-trained models, explore CVEs to iden-

tify unpatched vulnerabilities, and third-party code to

launch an attack. Therefore, attackers require advanced

knowledge of the LLM architecture, APIs, hosting en-

vironment, and cryptographic methods and need high

skills in AI-specific deployments [106, 107]. The attack

complexity of a ransomware attack is high (H).

Unbounded Consumption Attack: An unbounded

consumption attack is a malicious attempt in which an

attacker makes the LLMs services unavailable for legiti-

mate users or involved in the target’s financial resources

depletion. To launch unbounded consumption attack,

the attacker exploits the LLM’s ability to generate un-

controlled responses based on input queries, resulting

in resource exhaustion, system failure, and economic
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Fig. 4 A Breakdown of Taxonomy of Attacks on LLMs Infrastructure

Table 5 Attacks on LLMs Infrastructure and Attack Complexities

Attacks
Attack
Sub-types

Required
Skills

Knowledge of Model/
Infrastructure

Ease of
Exploitation

Attack
Complexity

Unbounded
Consumption

Denial of service M M M M
Denial of wallet L M M M

Inadequate
Sandboxing

Environmental
segregation

H H H H

System-level interaction H H H H
Access control H H M H
Supply Chain Attack H H H H

Side-Channel Attack
Timing attack L L L L
Power analysis M H H H

Server-side Request
Forgery

H H H H

Remote Code
Execution

M M M M

Ransomware Attack H H H H

losses [57]. Unbounded consumption attacks are cate-

gorised as denial-of-service (DoS) (resource-exhaustion

attack) and denial of wallet (DoW) attack.

In denial-of-service or resource-exhaustion attack,

attackers craft inputs to disrupt or degrade the services

of LLMs for legitimate users. The attacker overwhelms

LLMs with varying lengths of inputs, sends them the

sheer volume of inputs that exceed the LLM’s con-

text window, or submits complex or resource-intensive

queries to perform resource-heavy operations. Resource-

exhaustion attacks result in resource depletion, increased

latency, degraded performance, or even complete ser-

vice unavailability, unresponsiveness, and potential fail-

ures. The attacker should have knowledge of prompt

engineering or can use tools to send a large number of

prompts, needs knowledge of the model, such as the to-

ken or context window limit, and infrastructure, so the

attack complexity is medium (M).

In denial of wallet (DoW) attack, attackers exploit

the financial model of cloud-based AI services by per-

forming a high volume of operations, impacting finan-

cial sustainability of the service provider. The attacker

could use bots, have knowledge of prices of the services

and have some understanding of model and cloud ser-

vice provider security measures to bypass them. These

factors make the overall attack complexity medium (M).

Side-Channel Attack: Side-channel attacks exploit

the model parameters and architecture information, sys-

tem’s physical or logical operations information to in-

fer sensitive user data [57]. Attackers utilise training

data filtering, input preprocessing, and query filtering

against language models to cause data leakage in mod-

els [108, 109].

The attackers could perform side-channel timing at-

tacks where attacker could use tools to determine the

response times of the queries [110]. The attacker needs
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the basic knowledge of timing variations and does not

need to understand the internal architecture of the model

or the system; only basic information about the API to

measure response time is required. Timing attack has

overall low (L) complexity.

A power analysis side-channel attack on LLMs is

launched to acquire sensitive information about the data,

parameters, and architecture of LLMs by exploiting

variations in the power consumption of the LLM’s hard-

ware. The attack complexity is high (H) as attackers

need in-depth knowledge of the underlying infrastruc-

ture, hardware configuration, and the identification of

meaningful insights from noisy data and shared mem-

ory systems [111].

Server-side Request Forgery: In this attack, the at-

tackers target vulnerabilities in the servers where the

LLMs are deployed and exploit weaknesses in token

transmission, API endpoints, or the network infrastruc-

ture to intercept, manipulate, or extract sensitive data.

Therefore, attackers need high skills to monitor en-

crypted traffic and analyse token-length sequences to

reconstruct LLMs’ responses [112]. Overall, the attack

complexity of this attack is high (H).

Remote Code Execution Attack: Remote Code Ex-

ecution (RCE) attacks are infrastructure attacks where

attackers exploit vulnerabilities in software systems to

execute arbitrary code on the target machine. These

attacks are due to improper output handling by LLMs

[57]. The attacker provides prompts such as code, shell

commands, or specific operations executable by the shell

or interpreter, and the motive of an attack is to manip-

ulate the LLMs to produce dangerous output. The at-

tack needs prompt-engineering knowledge, knowledge

of shell commands, and the knowledge of LLMs op-

erations and interactions [113]. These attacks lead to

unauthorised access, data disclosure, and system com-

promise [113]. Attackers use multiple steps to manipu-

late the model’s behavior in this attack. Therefore, this

is of a medium (M) complexity attack.

4 Application of Taxonomy on Education

Sector with Dread Model

This section presents various categories of the DREAD

threat model. We also present the rationale for the se-

lection of scores/levels for each of the categories. Then,

the proposed taxonomy is mapped on the education

sector using the DREAD score.

4.1 DREAD Model Categories, Scores and Rationale

DREAD provides a structured and quantitative approach

to assess and prioritise security threats based on a risk

score, calculated using five criteria. These criteria are:

(1) Damage (impact of an attack), (2) Reproducibil-

ity (ease of reproducing/replicating an attack), (3) Ex-

ploitability (the effort required to launch an attack),

(4) Affected Users (number of (end) users affected by a

threat being exploited), and (5) Discoverability (likeli-

hood of a threat being exploited (discovered)). A threat

receives a score of 0 to 10 for each category. The final

rating of the threat is calculated based on the individual

scores, and then the average score (overall risk score) is

taken. Please note: the risk score ratings for each cate-

gory in this study are based on subjective observations

by security and educational experts in our team and

would likely vary when assessed by other experts.

Damage: In the educational sector, the attacks on LLMs

can damage or have an impact on student, researcher,

employee (faculty members and professional staff) per-

sonal or financial information, academic integrity, or

research data (intellectual property) or other institu-

tional data, institution’s infrastructure, including net-

works, applications, and devices, or involve reputational

damage, institutional financial losses or operational dis-

continuity. Table 6 shows the damage scores and their

respective rationales.

Table 6 Damage score and rationales

Score Rationale
0 No Damage
2.5 Non-sensitive data exposure
5 Output biases/ unethical behavior/

faulty/erroneous/misleading output
7.5 Privilege escalation/ misprediction/ personal in-

formation disclosure/ data breach
10 Operational disruption/ financial losses/ disin-

formation (reputational damage)

Reproducibility; The reproducibility of LLM-based

attacks can range from easy to circumstantial (Table 7).

This categorisation is based on the number of steps or

internal details of the model.

Exploitability: The exploitability of an attack could

be determined from the skills or experience required by

the attacker. For this category, the relevant scores are

mentioned in Table 8 and rationale for these scores are

as follow:
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Table 7 Reproducibility score and rationales

Score Meaning Rationale
0 NA
2.5 Circumstantial Extremely difficult or impossi-

ble to reproduce the attack.
5 Very Complex Use of multiple steps and

in-depth internal knowledge
about the model is required.

7.5 Complex Using multiple steps, but does
not require the internal knowl-
edge of the model or the infras-
tructure.

10 Easy Using a single step, or does not
require the internal knowledge
of the model or the infrastruc-
ture.

Table 8 Exploitability score and rationales

Score Meaning Rationale
0 NA
2.5 Circumstantial Extremely difficult or impossi-

ble to launch an attack.
5 Very Complex Use of specialised or ad-

vance tactics, skills, methods
or tools.

7.5 Complex Attacker needs some skills or
experience with some sophisti-
cated techniques and available
tools.

10 Easy Attacker uses available tools,
publicly available information
or does not require any skills
or expertise.

Affected Users: There are a number of internal or ex-

ternal stakeholders that could be impacted or affected

by an attack on LLMs in an educational institution.
The affected users could be students, operational staff,

administrative staff, academic staff, personnel from up-

per management, board members, etc. The attack could

impact an individual such as, a single student or staff

member, or a group of people, such as a research team

(students, researchers, and staff) or an administrative

team such from admissions.

This category is similar to the Damage category,

however, here we only consider the number and type of

users affected by the attack rather than overall dam-

age. Generally, an attack is scored higher if more users

are affected from the attack, and vice versa. We have

classified attacks affecting Admin users or higher man-

agement as 7.5 since such attacks potentially affect a

larger number of end-users. Where it is felt that the

attack may be conducted in ways that affect different

number of users, we choose the highest possible score.

Discoverability: The ease with which an attack is able

to discover a vulnerability depends on the attack vec-

Table 9 Affected User score and rationales

Score Rationale
0 No User(s)
2.5 An individual user- student/ staff/researcher
5 Group of users
7.5 Administrative user(s) or higher management in-

dividual(s)
10 All stakeholders

tors utilised by the attacker. The level of the discover-

ability could be easy, complex, very complex and im-

possible as shown in the Table 10. The rationale for the

each level is as follows:

Table 10 Discoverability score and rationales

Score Meaning Rationale
0 NA
2.5 Circumstantial Difficult or impossible to dis-

cover a vulnerability
5 Very Complex Use of heuristic based prompt-

ing or in-depth knowledge of
the model or infrastructure is
required

7.5 Complex Discovery based on the crafted
instructions or or some knowl-
edge of the model or infras-
tructure is required

10 Easy Discovery based on simple in-
put prompts or trial or error
basis, or internal details of the
model or infrastructure not re-
quired

4.2 DREAD-based risk assessment of LLMs Attacks

We now show an application of the generalised LLM

attack taxonomy with the DREAD model for assess-

ing LLM-based risk in the educational sector. In order

to do so, each DREAD category has been evaluated

and scored for each attack. It must be noted that these

scores are provided for generally known and accepted

use cases of LLMs in various organisational aspects of

an educational institution. It is likely that in a specific

context and a specific organisation, the scores will vary.

Table 11 shows the overall risk score and risk severity

level for each type of the attack categorised in our pro-

posed taxonomy (Section. 3) in the context of education

sector. The overall risk scores are calculated using the

average of the DREAD categories’ scores (discussed in

Section 4.1). The risk severity levels (Figure 5) have

been adopted from the levels specified by NIST [114].

Based on the security risk levels, it has been ob-

served from the Table 11 that four attacks are the most
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Table 11 Risk Assessments of the Attacks on LLMs in Education Sector using DREAD (Damage, Reproducibility, Ex-
ploitability, Affected Users, Discoverability) Model

Attacks Attack Sub-Types D R E A D Risk Score Level

L
L
M

s
M

o
d
e
l-
B
a
se

d
A
tt
a
c
k
s

Multi-Modal

Text guided image
generation

5 10 10 7.5 10 8.5 H

Cross-modal 5 7.5 7.5 7.5 10 7.5 H
Adversarial image 7.5 5 5 7.5 7.5 6.5 M

Flowbreaking
Second thoughts 7.5 5 7.5 2.5 7.5 6 M
Stop and roll 7.5 7.5 10 2.5 10 7.5 H

Prompt Injection

Adversarial prompt 7.5 10 10 7.5 10 9 C
Decoy and distract 5 7.5 10 5 7.5 7 H
Indirect prompting 7.5 7.5 7.5 10 7.5 8 H
Prompt divergence 7.5 5 5 5 5 5.5 M
Direct injection 5 10 10 10 10 9 C

Embedding
Embedding space 5 7.5 5 7.5 5 6 M
Adversarial example 5 10 10 7.5 10 8.5 H

Evasion
Obfuscation 5 10 10 7.5 10 8.5 H
Token smuggling 7.5 10 10 7.5 10 9 C

Jail break

Do anything now 5 7.5 7.5 10 10 8 H
Multi-step jailbreak 10 10 7.5 10 7.5 9 C
Adhoc jailbreak 7.5 10 7.5 7.5 7.5 8 H
Token-level jailbreak 5 5 5 7.5 5 5.5 M

Poisoning
Dataset poisoning 5 10 10 5 10 8 H
Pre-training poisoning 5 10 10 5 5 7 H
Fine-tuned poisoning 7.5 7.5 7.5 7.5 10 8 H

Backdoor

Dataset backdoor 5 10 7.5 5 10 7.5 H
Pre-trained backdoor 5 10 7.5 5 10 7.5 H
Fine-tuned backdoor 5 5 10 5 10 7 H
Composite 7.5 5 5 5 5 5.5 M

Inference
Membership inference 7.5 7.5 10 7.5 10 8.5 H
Attribute inference 2.5 10 10 10 10 8.5 H
Input inference 7.5 5 5 10 5 6.5 M

Manipulation
Token manipulation 5 5 5 7.5 10 6.5 M
Content manipulation 10 5 5 10 5 7 H

Extraction
Model gradient 5 5 5 10 5 6 M
Training data extraction 7.5 10 10 7.5 7.5 8.5 H
Model theft 10 5 5 10 5 7 H

Leakage
Data leakage 7.5 7.5 7.5 10 10 8.5 H
System prompt leakage 7.5 5 7.5 10 5 7 H

Hallucination
Weak semantic 7.5 5 5 7.5 5 6 M
Out-of-distribution 7.5 5 5 5 5 5.5 M

Hijacking
Vocabulary 7.5 5 7.5 7.5 5 6.5 M
Square 5 10 5 7.5 10 7.5 H

In
fr
a
st
r
u
c
tu

r
e
-B

a
se

d
A
tt
a
c
k
s Unbounded

Consumption
Denial of service 10 7.5 7.5 10 7.5 8.5 H
Denial of wallet 10 7.5 7.5 10 7.5 8.5 H

Inadequate
Sandboxing

Environmental segregation 7.5 5 5 7.5 7.5 6.5 M
System-level interaction 7.5 5 5 10 5 6.5 M

Access Control 10 5 7.5 7.5 5 7 H
Supply chain 10 5 5 10 5 7 H

Side-Channel
Timing attacks 5 7.5 10 10 10 8.5 H
Power analysis 7.5 7.5 7.5 10 7.5 8 H

Server-Side
Request Forgery

7.5 5 7.5 10 7.5 7.5 H

Remote Code
Execution

10 5 7.5 10 7.5 8 H

Ransomware 10 5 5 10 5 7 H

critical risks for the education sector. Thirty-two (32)

attacks out of 50 attacks targeting LLMs are considered

as the high risks within the education sector. None of

the attack is at low level, and the remaining attacks are

the medium risks. In the rest of this section, we discuss

some examples to understand the assigned score.

4.2.1 Ransomware Attack: A high risk infrastructure

attack in the education sector

The calculated DREAD risk score and level show that

the ransomware attack (Section. 3.2) has high risk in

the education sector (Table 11). The following descrip-
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Fig. 5 Risk severity levels adopted from NIST

tion illustrates that a ransomware attack results in high

damage and impacts a large number of stakeholders.

However, as the attack is technically sophisticated com-

pared to others, it is challenging to reproduce, exploit,

and discover. Overall, this results in a high risk rating. If

an attacker employs ransomware-as-a-service, the tech-

nical skills required are significantly lower, making the

attack more easily reproducible. This aspect increases

the severity of the ransomware threat. For instance, if

we assigned reproducibility criteria a value of 10 due to

the ease, the overall average risk score will be 9.5, mak-

ing ransomware a critical threat for an organisation to

focus on. However, in the following paragraphs, we have

considered the scenario where attackers are executing

the attack independently.

Educational Institution Reputational Damage:

A successful ransomware attack on eLLMs could signif-

icantly damage the educational institution’s reputation

among students, employees, parents, and wider internal

and external stakeholders, resulting in the loss of public

trust. This attack negatively impacts enrollments, aca-

demics, funding opportunities, partnerships, exchange

programs, and campus operations.

Educational Operational Disruption: A successful

attack on LLMs could disrupt learning activities or aca-

demic operations. For example, access to the learner-

facing LLMs- educational interactive resources like vir-

tual tutors or agents, learning management systems

(Moodle, Blackboard), virtual classrooms, and library

chatbots become restricted due to the encryption, re-

sulting in the cancellation of classes, exams, delayed

feedback or results, and access to research materials

and directly impact students’ futures.

Similarly, the unavailability of educator-facing LLMs,

which could support the teachers in providing writing

analytics, smart content or assessment generation, per-

sonalized assessments, and automated grading and eval-

uation of exams, results in academic interruptions.

Regarding unresponsiveness of institutional support

LLMs disrupt the fundamental academic operations such

as student engagement, academic integrity, improve-

ments in student retentions, teachers’ evaluations, di-

agnosing strengths or gaps in student knowledge. Ran-

somware could target LLMs used in research by cor-

rupting the datasets or publicly available information.

Data Breach of Affected Users: Many LLMs inte-

grated into education infrastructure such as databases,

servers hold critical and sensitive data, such as grades,

personal information, financial information or even be-

havioral patterns. Ransomware attacks compromise the

confidentiality and integrity of the data being encrypted.

Similarly, these attacks result in intellectual property

loss, either through theft or encryption, by targeting

research papers, lesson plans, and private educational

content.

Financial Losses: Educational institutions hit by ran-

somware may be forced to pay ransom to decrypt the

data or resume access to the LLMs. Even if the ransom

is not paid, institutions must incur the recovery cost

for data restoration or system reconfiguration. Besides

that, institutions have to pay penalties in case of data

breaches.

4.2.2 Content Manipulation Attack: A high risk in the

education sector

A content manipulation attack is the sub-type of ma-

nipulation attack discussed in Section. 3.1. In an edu-

cational environment, accurate and unbiased informa-
tion is significant to maintain the trust of students, re-

searchers and the academic staff. Therefore, this attack

possesses a high risk in education.

Misinformation- Misleading, Incorrect or Biased

Output and Disinformation: An attacker (disgrun-

tled student or staff member, script kiddie (novice hacker

to gain recognition, and hacktivist) could manipulate

educational content like self-learning materials, course

content, course planners, research papers, e-books, or

even exam material, spreading incorrect or fake infor-

mation to students and deteriorating the quality of ed-

ucation. For example, institutions use eLLMs as an

intelligent tutoring system or virtual tutors to guide

the students’ online learning and to answer students’

questions [115]; manipulated content could mislead stu-

dents, causing confusion and substandard student per-

formance. Similarly, an attacker could craft eLLM’s in-

put with biased data to produce biased outputs, so

there could be a discrepancy in student’s knowledge

with the market requirements. Also, eLLMs used for
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generating research findings or insights could result in

false or biased research outputs or poor research qual-

ity due to content manipulation impacting scientific or

academic progress.

Also, within the context of administration, attack-

ers could alter the LLM’s use for examination purposes.

For instance, attackers could change exam paper con-

tent or manipulate grading criteria, or exam planners,

resulting in unfair examinations and loss of academic

integrity. Similarly, eLLMs involved in student recruit-

ment could impact the financial sustainability if the

tuition fee pricing being varied by the attacker.

In addition, the educator relies on third-party LLM,

which an attacker compromises to produce biased out-

put, to create content according to the approved course

outline. The biased output in the teaching content could

mislead the students and indirectly impact teacher’s

creditability.

Exploitation/Risk of Overreliance on Technol-

ogy: Educators, learners, and administrations depend

on LLMs systems for educational content generation

and decision-making without checking their facts (check-

ing process in educational environments). Attackers can

exploit this ignorance and launch content manipula-

tion attacks to integrate incorrect data into the model,

which could impact critical decisions or processes, re-

sult into internal risks to ensure the high-level quality

educational services, and public embarrassment for the

institution.

4.2.3 Token Smuggling Attack: A critical risk in the

education sector

Token smuggling attacks can be launched on eLLMs for

the creation of harmful or inappropriate learning mate-

rials or contents, gaining an access to block or restricted

contents, evading the cheating and plagiarism. Table 11

shows that token smuggling attack has critical severity.

The following are the reasons to emphasise that token

smuggling is a critical risk for an educational institu-

tion, which should be mitigated proactively.

Harmful or Inappropriate Content Creation: At-

tackers could use carefully selected words and phrases

to generate harmful content on cyberbullying, trolling

or even creating unsafe chemical experiments or violent

scenarios on prohibited topics like improvising weapons,

hacking networks, or accessing the dark web.

Evasion of Plagiarism or Cheating: Various LLMs

tools have emerged rapidly and have been utilized in

educational institutions. However, token smuggling at-

tacks enable the students to craft the responses by the

instructions encoded in a manner that increases the risk

that the educator may be unable to distinguish whether

a student’s writing is their work, resulting in unfair as-

sessments.

Access to Block or Restricted Content: Token

smuggling can bypass these filters that eLLMs have

configured to block or restrict content. For example,

students used smuggled tokens to trick eLLMs into ac-

cessing exam questions or final grades or attendance

records. Similarly, attacker could violate the intellec-

tual property law and able to unblock the requests to

websites to generate the content from copyright mate-

rials or retrieve the sensitive or confidential educational

information.

4.3 Safeguards for Risk Mitigation in Education Sector

The previous sections identified and characterised LLMs-

based attacks (on model directly or on infrastructure)

along with the attack vectors involved and their impacts

in general. To answer RQ2, we provide a risk assessment

criteria to evaluate the severity of identified attacks in

the education sector using DREAD model. In the liter-

ature, various technical risk mitigation strategies have

been suggested [39, 57, 116].

Within an educational environment, establishing the

safeguards to mitigate and address the risks raised due

to LLMs-based attacks is paramount to ensure that

LLMs continues to maintain the integrity of educational

experiences. Following are some strategies that should

be adopted by educational institutions for risk mitiga-

tion.

4.3.1 Enforcement of eLLMs-Usage Policy

There is a lack of comprehensive policies and guide-

lines about AI usage, including LLMs in education [17].

Therefore, educational institutions should establish clear

guidelines for using eLLMs ethically and sensibly and

enforce accountability. Auditing and monitoring are sig-

nificant for analysing log interactions and detecting un-

usual insights such as an indication of smuggling at-

tacks, content manipulations while prompting. The sen-

sitive queries should require authentication and a strict

code of conduct for the user. Also, the users should re-

port harmful, unsensible content generation by eLLMs.

The policies should be transparent and fair, consider

all the concerned educational departments, and involve

collaboration between educators, policymakers, and stu-

dent representatives.
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4.3.2 Threat Modeling and Risk Assessment

Due to the complexity and novelty of LLMs, threat

modeling is an ongoing and structured approach to iden-

tify, assess, and prioritise the threats to them [117]. In

the context of the educational system, to minimise the

harm to the learners, educators, and institutions them-

selves, eLLMs models and infrastructure should be as-

sessed regularly to identify the attack surfaces, vectors,

impacts, attacker’s motives, and model performances.

Similarly, risk assessment could help educational insti-

tutions to quantify and prioritise the risks (based on

their potential impact and likelihood) associated with

eLLMs , enabling them to determine the appropriate

risk strategies (mitigation, transfer, avoidance, or ac-

ceptance). Threat modeling and risk assessment are es-

sential for educational institutions to allocate their re-

sources and efforts effectively and efficiently, to create

a strong institutional culture and awareness, to reduce

uncertainty for the students and educators, and to help

prevent future incidents.

4.3.3 Rapid Training and Awareness

Rapid training and awareness is the most important

strategy where the educator and administrative staff

should get support and awareness regarding the mis-

use of eLLMs. Due to digital education and students’

diverse learning needs and interests, a one-size-fits-all

approach will not be sufficient. Therefore, depending

on the personalised reliance on the eLLMs, effective

integration of these tools required educators and ad-

ministrative staff to understand and identify unusual

prompts, misinform and disinform scenarios or contents,

and set strict usage policies to minimise cheating and

plagiarism issues. Students should also be made aware

about the use of eLLMs responsibly and the potential

risks associated with LLMs-based attacks.

4.3.4 Regular Security Updates, Patching and

Response Plans

The educational LLMs models and their underlying in-

frastructure should be continuously updated to address

newly discovered vulnerabilities by software providing

runtime guardrails. The cyber-security analyst person-

nel in information technology services (ITS) depart-

ment should continuously monitor and detect misuse of

eLLMs and their performances in educational environ-

ment and develop an incident response plan to follow

if some damage has been occurred due to attacks on

these eLLMs.

4.3.5 Implement Strong Access Controls

eLLMs should be secured using multi-factor authenti-

cation (MFA) and role-based access control (RBAC).

Also, educational institutions relying on LLMs should

implement secure key management protocols, least priv-

ilege principles and defense-in-depth measures.

5 Conclusion and Future Directions

LLMs have emerged as important tools in various in-

dustries, including education, and are used to perform

various language-based tasks. However, these models

are susceptible to security attacks that can impact the

model, the infrastructure, and the organisation. This

paper investigated and introduced a general taxonomy

to categorise sophisticated attacks to LLMs based on

their attack complexity, which will be useful for aca-

demic and industrial practitioners to secure the LLMs

against malicious actors. Notably, our proposed gener-

alised taxonomy could also be applied to other sectors

such as health-care, finance and industrial automation.

To show its applicability, we have applied the proposed

taxonomy in education. We also assess the severity of

these attacks in the education sector using the DREAD

risk assessment model and suggest a few risk mitigation

strategies to prevent the identified attacks.

In the future, it will be interesting to simulate attack

scenarios on existing LLMs-integrated educational tools

like Moodle to identify vulnerabilities, assess the sever-

ity, and suggest effective controls accordingly, such as

enforcing an educational LLM usage policy. We could

also incorporate other risk assessment frameworks in

future research to enhance the comprehensiveness and

robustness of the investigation. A detailed mitigation

framework that maps defensive strategies to each iden-

tified risk and attack type will be proposed, providing

actionable guidance for security practitioners and sys-

tem developers.
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