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Abstract

Endogenous security in next-generation wireless communication systems attracts increasing attentions in recent

years. A typical solution to endogenous security problems is the quantum key distribution (QKD), where unconditional

security can be achieved thanks to the inherent properties of quantum mechanics. Continuous variable-quantum key

distribution (CV-QKD) enjoys high secret key rate (SKR) and good compatibility with existing optical communication

infrastructure. Traditional CV-QKD usually employ coherent receivers to detect coherent states, whose detection

performance is restricted to the standard quantum limit. In this paper, we employ a generalized Kennedy receiver

called CD-Kennedy receiver to enhance the detection performance of coherent states in turbulent channels, where

equal-gain combining (EGC) method is used to combine the output of CD-Kennedy receivers. Besides, we derive

the SKR of a post-selection based CV-QKD protocol using both CD-Kennedy receiver and homodyne receiver with

EGC in turbulent channels. We further propose an equivalent transmittance method to facilitate the calculation of

both the bit-error rate (BER) and SKR. Numerical results show that the CD-Kennedy receiver can outperform the

homodyne receiver in turbulent channels in terms of both BER and SKR performance. We find that BER and SKR

performance advantage of CD-Kennedy receiver over homodyne receiver demonstrate opposite trends as the average

transmittance increases, which indicates that two separate system settings should be employed for communication

and key distribution purposes. Besides, we also demonstrate that the SKR performance of a CD-Kennedy receiver is

much robust than that of a homodyne receiver in turbulent channels.
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I. INTRODUCTION

A. Background and motivation

Endogenous security plays a crucial role in space-air-ground integrated network and attracts increasing attentions

in next-generation wireless communication systems [1]–[4]. A typical solution to endogenous security problems is

the quantum key distribution (QKD), which provides unconditional security to physical layer communication links

thanks to the inherent properties of quantum mechanics [5]–[8]. QKD protocols can be divided into two categories

according to the types of employed information carriers, i.e., the discrete variable-quantum key distribution (DV-

QKD) based on individual photons and the continuous variable-quantum key distribution (CV-QKD) based on

Gaussian states. Compared with DV-QKD [9], [10], CV-QKD [11]–[14] enjoys higher secret key rate and better

compatibility with current optical communication infrastructure, and therefore, attracted large attentions in recent

years [15]–[21].

Current CV-QKD protocols mainly employ coherent detections to recover the transmitted bits [11]–[15], whose

performance is restricted by the standard quantum limit (SQL) [22]. A type of quantum receiver, generalized

Kennedy receiver, was applied to the post-selection based CV-QKD to surpass the SQL and improve the secret key

rate (SKR) [22]. It was demonstrated that the generalized Kennedy receiver can increase the SKR in either individual

attacks or collective attacks compared with coherent receivers [22]–[25]. However, these quantum receiver enhanced

CV-QKD protocols are restricted in lossy channel only. In space-air-ground integrated network, the most important

and also vulnerable links are the satellite-to-ground links due to the presence of atmospheric turbulence [26]. To the

best knowledge of the authors, the study of generalized Kennedy receiver enhanced CV-QKD in turbulent channels

is still absent.

B. Related works

The CV-QKD protocol using coherent states was proposed by Grosshans and Grangier [11], where the secret

key rate (SKR) was guaranteed by the no-cloning theorem. However, this protocol suffers from the “3dB limit”,

i.e., the channel loss cannot be larger than 50%, and thus cannot be applied in practical implementations. To beat

the “3dB limit”, post-selection strategy was combined with the coherent state based CV-QKD protocols [12]. In a

post-selection strategy, the legitimate users Alice and Bob can always keep those bits with high effective information

and discard the rest. Therefore, Bob can enjoy advantages over potential eavesdropper Eve even in a high path loss

channel. Because no entanglement or squeezing was needed, coherent states based CV-QKD protocols enjoy good

compatibility with existing optical communication infrastructure and thus have attracted increasing attentions [11].

The coherent receivers are usually used in post-selection based CV-QKD protocols [11]–[15]. However, the

detection performance of classical coherent receivers is restricted by the SQL and can only be outperformed by

using quantum receivers. Quantum receivers employ quantum detection theory to enhance the error rate performance

of discriminating quantum states [27]. The closed-form solution for the optimal quantum detection of distinguishing

any two quantum state was obtained by Helstrom [28], [29]. The first realizable quantum receiver for discriminating

two binary phase shift keying (BPSK) modulated coherent states {|−α⟩ , |α⟩} is the Kennedy receiver proposed by
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Kennedy [30], which consists of a displacement operation D̂(β) with β = α and an on/off photodetector. We called

the quantum receivers based on Kennedy receiver’s structure the generalized Kennedy receivers. In 1973, Dolinar

proposed the Dolinar receiver by controlling the displacement value in a real-time way with a feedback loop [31],

which was proved to be an optimal quantum receiving structure for discriminating coherent states.

However, due to the lack of fast processing devices and high-performance photodetectors, the first quantum

receiver beating the SQL has not been realized until 2008 by Cook et al [32]. After then, the study of generalized

Kennedy receiver has attracted increasing attention in recent decades. For example, in 2008, Takeoka et al proposed

the optimized displacement receiver (ODR) [33], [34], where the displacement value β of D̂(β) was optimized

to achieve a better performance compared with the Kennedy receiver. In 2010, Wittmann et al demonstrated a

generalized Kennedy receiver by replacing the on/off photodetector with a photon-number-resolving detector (a

type of photon counter) [22]. In 2014, Becerra et al demonstrated that by decreasing the phase mismatch error

of the displacement operation, the detecting signal strength of generalized Kennedy receiver can be extended to

practical optical communication scenarios with large photon numbers [35]. In 2018, DiMario et al experimentally

demonstrated that the generalized Kennedy receiver can enjoy a robust performance in a noisy environment by

combining a high-performance displacement operation and photon-number-resolving detector. In 2020, Yuan et al

proposed the optimally displaced threshold detection (ODTD) based generalized Kennedy receiver, where both the

displacement and the detection threshold are optimized to improve the detection performance, and theoretically

quantified the influence of various types of noise and device imperfection on the ODTD receiver [36], [37]. Later in

2020, Yuan et al extended the ODTD to turbulent channels and proposed the conditionally-dynamic based Kennedy

(CD-Kennedy) receiver to mitigate the influence of turbulence on the detection performance [38]. In 2023, Zhao et

al extended the ODTD receiver to the ternary phase shift keying (TPSK) modulation [39] and future extended the

ODTD receiver to the quadrature phase shift keying (QPSK) in 2024 [25].

The combination of generalized Kennedy receiver and the CV-QKD was first proposed in [22], where a photon-

number-resolving detector was used to improve the performance of Kennedy receiver and the detector was applied

in a post-selection based CV-QKD protocol. Based on this protocol, Zhao et al studied the secret key rate (SKR)

performance of using the generalized Kennedy receiver when a thermal noise channel was considered [23], [24].

Besides, the SKR performance of the post-selection based CV-QKD protocol using a generalized Kennedy receiver

for QPSK modulation was also studied in [25]. However, current studies [22]–[25] on CV-QKD with generalized

Kennedy receiver are focusing on lossy channels without turbulence. As we know, the most important and also

vulnerable links in space-air-ground integrated network are the satellite-to-ground links, where the atmospheric

turbulence cannot be ignored. Therefore, it is meaningful to study the performance of CV-QKD protocol with

generalized Kennedy receiver in turbulent channels.

C. Contributions

In this paper, we focused on the performance of post-selection based CV-QKD enhanced by using CD-Kennedy

receivers in the presence of atmospheric turbulence. We first derive the bit-error rate (BER) expression of CD-

Kennedy receiver with BPSK modulation in turbulent channels, where a 1× N configuration using equal-gain



4

combining (EGC) method is employed. Then we drive the SKR expression of the binary modulated CV-QKD

protocol by using CD-Kennedy receiver with a post-selection on both the detected number of photons and the

measured channel transmittance. For comparison, we also derived the corresponding BER expression of homodyne

receiver with EGC and the SKR expression of binary modulated CV-QKD protocol by using homodye receiver

with a post-selection on both the detected amplitude and the measured channel transmittance. Numerical results

demonstrate the BER performance of CD-Kennedy receiver is better than that of homodyne receiver when the

average transmittance is large; while the SKR performance of CD-Kennedy receiver is better than that of homodyne

receiver when the average transmittance is small. Besides, we also demonstrate that the SKR performance of CD-

Kennedy receiver is much robust compared with that of homodyne receiver to the atmospheric turbulence. The

major contribution of this work can be summarized as follows:

• We established the channel model and derived the BER of CD-Kennedy receiver under a 1×N configuration

with EGC method in turbulent channels.

• We proposed the first post-selection based CV-QKD protocol with CD-Kennedy receiver for turbulent channels

and derived the SKR expression.

• We proposed an equivalent transmittance method to simplify the calculation of both the BER and SKR for the

CD-Kennedy receivers with EGC method.

• We demonstrate for the first time that the SKR performance advantage of using CD-Kennedy receiver over

homodyne receiver becomes larger as the average transmittance decreases. Besides, the SKR performance of

CD-Kennedy receiver is much robust than that of homodyne receiver in turbulent channels.

• We also find that BER and SKR performance advantage of CD-Kennedy receiver over homodyne receiver

demonstrate opposite trends as the average transmittance increases, which indicates that two separate system

settings should be employed for communication and key distribution purposes.

The rest of this paper is organized as follows: we first derive the BER of both the CD-Kennedy receiver and

the homodyne receiver with EGC method for a 1 × N configuration under turbulent channels in Section II; then

we derive the SKR of a post-selection based CV-QKD protocol by using both the CD-Kennedy receiver and the

homodyne receiver under turbulent channels in Section III; some numerical results on both the BER and SKR

performance are presented in Section IV and we conclude our work in Section V.

II. CD-KENNEDY RECEIVERS WITH EQUAL-GAIN COMBINING IN TURBULENT CHANNEL

We consider a BPSK modulated communication system with N CD-Kennedy receivers in this paper, as shown

in Fig. 1. The transmitted bit Al ∈ {0, 1} of the lth bit is encoded by a coherent state |βl⟩ with βl = −β for bit

Al = 0 and βl = β for bit Al = 1. Without loss of generality, we adopt β as real number. After passing through a

turbulent channel, the transmitted state is received by N receiving branches and the density operator of the signal

arriving at the ith receiving branch is denoted by ρ̂li with i = 1, 2, · · · , N . We use N CD-Kennedy receivers, whose

displacement value γi is dynamically conditioned on the average turbulent strength of the ith branch, to detect the

received signals and the output numbers of photons at the ith photon counter (PCi) is denoted by ni. Then an
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Fig. 1. Generalized Kennedy receivers with EGC in turbulent channel

EGC method is used to combine the output number of photons and the combined signal n is decided by a threshold

detection to recover the transmitted bit Âl.

A. Coherent states and P -representation

The quantum state of a laser signal can be expressed in a coherent state |α⟩ with α ∈ C and C is the field of

complex number. By using the Fock basis of the Hilbert space, which consists of all number states (or Fock states)

{|n⟩ , n = 0, 1, 2, ...}, we can expand the coherent |α⟩ as [40]

|α⟩ =
∞∑

n=0

e−
1
2 |α|

2 αn

√
n!

|n⟩ , (1)

where |α|2 is the average number of photons contained in the coherent state |α⟩.

According to Glauber’s theory, all the coherent states {|α⟩ , α ∈ C} form an overcomplete basis of Hilbert space;

and therefore, any quantum state with a density operator ρ̂ in this Hilbert space could be decomposed by coherent

states as [40]

ρ̂ =

∫
α

P (α) |α⟩ ⟨α|d2α, (2)

where d2α = dRe(α)dIm(α) and P (α) is the P -function of the density operator ρ̂. This representation of density

operator is called the P -representation [41]. Specifically, the P -function of a coherent state |βl⟩ can be expressed

as a Dirac delta function

δ2(α− βl) ≜ δ (Re(α)−Re(βl)) δ (Im(α)− Im(βl)) . (3)

Considering the configuration in Fig. 1, the transmitted signal |βl⟩ for the lth bit are directed to N separated

receivers. Then the input state of the turbulent channel can be regarded as an N -mode coherent state with equal

complex value α1 = α2 = · · · = αN ≜ βl√
N

. Then the P -function of the input state of the turbulent channel can

be expressed by

Pin(α1, ..., αN ) =

N∏
i=1

δ2
(
αi −

βl√
N

)
. (4)
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B. Relation between input and output P -functions in turbulent channel

The relation between the input and output P -functions of turbulent channel for a 1 × 1 configuration was first

derived by Semenov [42], [43], and was later extend to a 1×N configuration by Yuan [38] as

Pout(α1, ..., αN ) =

∫
η

p(η)

η1...ηN
Pin(

α1√
η1

, ...,
αN√
ηN

)dη, (5)

where ηi is the transmittance of the ith branch; p(η) is the joint probability density function (PDF) of all

transmittance η ≜ [η1, η2, · · · , ηN ]T; Pin(α1, α2, · · · , αN ) is the input P -function and Pout(α1, α2, · · · , αN ) is

the output P -function of the turbulent channel.

We adopt a log-normal distributed turbulent channel in this paper, where the PDF of the transmittance η satisfies

the following joint log-normal PDF:

p(η) =
exp

(
− 1

2 (lnη − µ)TΣ−1(lnη − µ)
)∏N

i=1 ηi
√
(2π)N det(Σ)

, (6)

where µ = [µ1, µ1, · · · , µN ]T is the expectation of lnη; Σ is the covariance matrix of lnη. Without loss of

generality, we set µ1 = µ2 = · · · = µN ≜ µ0 and assume that the correlation between arbitrary two branches are

the same. Then the covariance matrix Σ can be expressed as

Σ = σ2
0


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

 , (7)

where σ2
0 is the variance of ηi for i = 1, 2, · · · , N and ρ is the correlation coefficient between ln(ηi) and ln(ηj)

for i ̸= j, i.e.,

ρ ≜
E[ln(ηi) ln(ηj)]− E[ln(ηi)]E[ln(ηj)]√

Var[ln(ηi)]Var[ln(ηj)]
. (8)

Therefore, the average transmittances of all branches are the same with each other, i.e., E[η1] = E[η2] = · · · =

E[ηN ] ≜ η0, where η0 can be obtained as

η0 = exp
(
µ0 + 0.5σ2

0

)
. (9)

Substituting (4) into (5), we can obtain the output P -function of the turbulent channel as [38]

Pout(α1, ..., αN ) =(2N)N
N∏
i=1

[
αi

βl
δ(Im(αi)Re(βl)−Re(αi)Im(βl))

]
× ptur

(
N |α1

βl
|2, N |α2

βl
|2, · · · , N |αN

βl
|2
)
.

(10)

Consider the ith branch, the P -function can be obtained as

Pout(αi) =

∫
αj ̸=αi

Pout(α1, ..., αN )

N∏
j ̸=i

d2αj

=

∫
ηi

ptur(ηi)

ηi
δ2
(

αi√
ηi

− βl√
N

)
dηi,

(11)

where ptur(ηi) is the marginal PDF of ηi obtained from ptur(ηi) =
∫
ηj ̸=ηi

ptur(η)
∏N

j ̸=i dηj .
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Fig. 2. Displacement operator in practical implementation

C. CD-Kennedy receivers with EGC in turbulent channels

1) CD-Kennedy receivers with EGC: We adopt the CD-Kennedy receiver structure proposed in [38] to mitigate

the influence of turbulence, where the displacement value γi of the ith branch is dynamically conditioned on the

transmittance ηi and the latter is estimated by pilot bits under slow-varying turbulent channels [26], [38]. Under

this context, for a given time period, the transmittance on the ith branch can be regarded as a fixing value ηi. Then

the P -function of the ith branch given transmittance ηi and transmitted signal |βl⟩ can be obtained as

Pout(αi|ηi, βl) =
1

ηi
δ2
(

αi√
ηi

− βl√
N

)
= δ2

(
αi −

√
ηiβl√
N

)
,

(12)

which corresponds to a coherent state |
√
ηiβl√
N

⟩.

Then according to principle of generalized Kennedy receiver, we can use a displacement operator D̂(γi) with

γi =
√
ηiβ√
N

to displace the input state |
√
ηiβl√
N

⟩ and use a photon-number resolving detector to detect the number of

photons of the ith displaced state.

The displacement operation D̂(γ) can displace any coherent state |α⟩ to another coherent state D̂(γ) |α⟩ =

|α+ γ⟩. In practical implementation, the displacement operator can be achieved by combining the input coherent

state with an local oscillator (LO) using a high transmittance beamsplitter (BS), as shown in Fig. 2. By using a BS

with transmittance τ → 1 to combine the input coherent state |αin⟩ = |α⟩ and an LO state |αLO⟩ = |
√

τ
1−τ γ⟩, we

can obtain the output coherent state |αout⟩ according to the property of the BS as

|αout⟩ = |
√
ταin +

√
1− ταLO⟩

= |
√
τ(α+ γ)⟩ ,

(13)

which will become the coherent state |α+ γ⟩ as τ → 1.

Under this context, the detection probability of ni photons at the ith branch given ηi and transmitted signal |βl⟩

can be obtained as a Poisson distribution:

p(ni|ηi, βl) =

exp

(
−
∣∣∣√ηi(βl+β)√

N

∣∣∣2)
ni!

∣∣∣∣√ηi(βl + β)
√
N

∣∣∣∣2ni

. (14)
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The output photon numbers are combined using the EGC combining with total output photon numbers given by

n =

N∑
i=1

ni. (15)

Because ni satisfies Poisson distribution and the detection on each branches are independent with each other, the

total output photon numbers n given transmittance η and transmitted signal |βl⟩ also satisfies a Poisson distribution

with probability density given by

p(n|η, βl) =

exp

(
−
∑N

i=1

∣∣∣√ηi(βl+β)√
N

∣∣∣2)
n!

(
N∑
i=1

∣∣∣∣√ηi(βl + β)
√
N

∣∣∣∣2
)n

. (16)

A maximum a posteriori (MAP) decision rule is used to decide the received bit as

Âl =

0, p0p(n|η,−β) ≥ p1p(n|η, β),

1, p0p(n|η,−β) < p1p(n|η, β),
(17)

where p0 and p1 are the prior probabilities for transmitting bit 0 and 1, respectively. We consider equal prior

probabilities in this work; then the above MAP decision rule will reduced to the following threshold detection as

Âl =

0, n = 0,

1, n > 0.

(18)

From (18) we can see that the detection can be achieved by simple on/off photodetectors instead of expensive

photon counters. Then the error probability of the CD-Kennedy receiver given transmittance η can be obtained as

Pe(η) =
1

2
exp

(
−4β2

N

N∑
i=1

ηi

)
. (19)

Finally, the unconditional error probability over the turbulent channel can be expressed as

Pe =
1

2

∫
η

p(η) exp

(
−4β2

N

N∑
i=1

ηi

)
dη, (20)

where dη ≜ dη1dη2 · · · dηN .

It is challenging to calculate (20) because it contains a N -tuple integral. However, by observing the expression

of Pe in (20), we can see that ηi appears as an integrated term
∑N

i=1 ηi. Therefore, we can define an equivalent

transmittance variable ηeq ≜
∑N

i=1 ηi and rewrite (20) as

Pe =
1

2

∫
ηeq

p(ηeq) exp

(
−4β2

N
ηeq

)
dηeq, (21)

where p(ηeq) is the PDF of ηeq .

Since ηeq is a summation of N correlated log-normal random variables, we can approximate ηeq as another

log-normal random variable by using the Fenton-Wilkinson method [44]. Specifically, ηeq can be approximated as

a log-normal variable, i.e., ηeq ∼ LN(µeq, σ
2
eq), where the parameters µeq and σ2

eq subject to the following two

constrains: 
∫
ηeq

ηeqp(ηeq)dηeq =
∫
η
(
∑N

i=1 ηi)p(η)dη∫
ηeq

η2eqp(ηeq)dηeq =
∫
η
(
∑N

i=1 ηi)
2p(η)dη.

(22)
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After some algebra (see A), we can obtain µeq and σ2
eq asµeq = 1.5 lnN + µ0 − 0.5 ln
(
1 + (N − 1) exp

(
(ρ− 1)σ2

0

))
,

σ2
eq = − lnN + σ2

0 + ln
(
1 + (N − 1) exp

(
(ρ− 1)σ2

0

))
.

(23)

2) Homodyne receivers with EGC: We use the homodyne receivers as the comparison. Then the output xi of the

ith branch given transmittance ηi and transmitted signal |βl⟩ can be equivalently modeled as a Gaussian distributed

random variable with PDF given by

p(xi|ηi, βl) =

√
2

π
exp

(
−2

(
xi −

√
ηiβl√
N

)2
)
. (24)

After EGC combining, the total output x =
∑N

i=1 xi given transmittance η and transmitted signal |βl⟩ also

satisfies a Gaussian distribution with PDF given by

p(x|η, βl) =

√
2

Nπ
exp

− 2

N

(
x−

N∑
i=1

√
ηiβl√
N

)2
 . (25)

Similar to the CD-Kennedy receiver, when an MAP decision rule is adopted, the decision is equivalent to the

following threshold detection as

Âl =

0, x ≤ 0,

1, x > 0.

(26)

Similarly, the unconditional error probability of homodyne receiver over turbulent channel can be obtained as

Phd
e =

∫
η

p(η)Q


√√√√4β2

N2

(
N∑
i=1

√
ηi

)2
 dη, (27)

where Q(x) is the Q-function defined as Q(x) ≜ 1√
2π

∫ x

0
exp

(
−0.5t2

)
dt.

Similarly, by observing the expression of Shd
kr (β) in (49), we can see that ηi always appears as an integrated

term
∑N

i=1

√
ηi. Therefore, we can define an equivalent transmittance variable ηhdeq ≜

∑N
i=1

√
ηi and rewrite Phd

e

as

Phd
e =

∫
ηhd
eq

p(ηhdeq )Q

(√
4β2

N2

(
ηhdeq
)2)

dηhdeq , (28)

where p(ηhdeq ) is the PDF of ηhdeq .

Since ηhdeq is a summation of N correlated log-normal random variables {√η1,
√
η2, · · · ,

√
ηN}, we can also

approximate ηhdeq as another log-normal random variable by using the Fenton-Wilkinson method. Similar to the

derivation for the ηeq , we can obtain the parameters µeq,hd and σ2
eq,hd as (see B)µeq,hd = 1.5 lnN + 0.5µ0 − 0.5 ln

(
1 + (N − 1) exp

(
0.25(ρ− 1)σ2

0

))
,

σ2
eq,hd = − lnN + 0.25σ2

0 + ln
(
1 + (N − 1) exp

(
0.25(ρ− 1)σ2

0

))
.

(29)
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III. POST-SELECTION BASED CV-QKD WITH CD-KENNEDY RECEIVER IN TURBULENT CHANNEL

The coherent states are widely used in CV-QKD protols, where two legitimate users Alice and Bob use the

coherent states to distribute secure keys over a public channel in the presence of potential eavesdropper Eve. In this

section, we study the binary modulated CV-QKD protocol based on post-selection strategy by using CD-Kennedy

receiver in turbulent channels.

A. Binary modulated CV-QKD

A typical binary modulated CV-QKD protocol consists of the following steps:

• Step 1: Alice randomly sends |−β⟩ (bit 0) or |β⟩ (bit 1) to Bob over a public channel;

• Step 2: Bob measures the received state and decides the transmitted bit;

• Step 3: Alice and Bob compare part of their bit strings and estimate the mutual information IAB between

them and the mutual information IAE between Alice and Eve;

• Step 4: Alice and Bob perform the information reconciliation using error correction methods;

• Step 5: Alice and Bob perform the privacy amplification to extract at most ∆I = IAB − IAE bits of secret

key.

The crucial step of the protocol is the estimate the mutual information IAB and IAE . In the following we derive

IAB and IAE over a turbulent channel when a CD-Kennedy receiver is used by Bob.

B. Mutual information IAB between Alice and Bob

1) IAB with CD-Kennedy receivers: We follow the procedure developed in [12] to derive the mutual information

IAB for a transmitted signal amplitude β, where the channel is divided into many effective information channels

characterized by the parameters (n,η, β) with

IAB(β) =

∫
η

∞∑
n=0

p(η)p(n|η)IAB(n,η, β)dη, (30)

where IAB(n,η, β) is the effective information given the detected number of photons n, the measured transmittance

η, and the transmitted signal amplitude β; p(n|η) is the probability of detecting n photons given transmittance η

at the receiver, which can be obtained by

p(n|η) = 1

2
p(n|η,−β) +

1

2
p(n|η, β)

=
1

2
0n +

1

2

exp
(
−4β2

∑N
i=1 ηi/N

)
n!

(
4β2

N∑
i=1

ηi/N

)n

.

(31)

For every detected number of photons n, Bob make a decision on the transmitted bit according to the decision

rule given in (18); then the error rate of this decision can be obtained as

pe(n,η, β) =


p(n|η,β)

p(n|η,β)+p(n|η,−β) , n = 0,

p(n|η,−β)
p(n|η,β)+p(n|η,−β) , n > 0,

(32)
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where p(n|η, βl) is given in (16). Then the effective information IAB(n,η, β) can be obtained as

IAB(n,η, β) = 1−H(pe(n,η, β))

= 1−H

 0n

exp
(
−4β2

∑N
i=1 ηi/N

)(
4β2

∑N
i=1 ηi/N

)n
/n! + 0n

 ,
(33)

where H(pe) ≜ −pe log2 pe − (1− pe) log2(1− pe) is the entropy of the effective information channel.

2) IAB with homodyne receivers: For comparison, here we give the mutual information between Alice and Bob

when a homodyne receiver is employed, i.e.,

IhdAB(β) =

∫
η

∫
x

p(η)p(x|η)IhdAB(x,η, β)dηdx, (34)

where p(x|η) is the probability of output x given transmittance η and IhdAB(x,η, β) is the effective information

given output x, transmittance η, and signal amplitude β.

By using eq. (25), we can obtain p(x|η) as

p(x|η) = 1

2
p(x|η,−β) +

1

2
p(x|η, β)

=
1

2

√
2

Nπ

exp
− 2

N

(
x+

β√
N

N∑
i=1

√
ηi

)2


+exp

− 2

N

(
x− β√

N

N∑
i=1

√
ηi

)2
 .

(35)

Similar to the CD-Kennedy receiver, the error probability when an output x is measured given transmittance η

and signal amplitude β can be obtained as

pe(x,η, β) =


p(x|η,β)

p(n|η,β)+p(x|η,−β) , x ≤ 0,

p(x|η,−β)
p(n|η,β)+p(x|η,−β) , x > 0.

(36)

Then the effective information IhdAB(x,η, β) for homodyne receiver can be obtained as

IhdAB(x,η, β) = 1−H(pe(x,η, β))

= 1−H

 1

exp
(
−8xβ

∑N
i=1

√
ηi/N3/2

)
+ 1

 .
(37)

C. Mutual information IAE between Alice and Eve

The mutual information between Alice and Eve depends on the attack methods of Eve. For a channel with

negligible excess noise, the best eavesdropping strategy of Eve is the passive beamsplitter attack [45], [46]. In a

turbulent channel, we further assume that Eve can split the beam near the transmitter and thus Eve can safely split

(1− η̄) quantity of the beam energy without being discovered, where η̄ = Nη0 is the average beam energy detected

by the receiver. Then Eve has to discriminate two coherent states{
|−
√
1− η̄β⟩ , |

√
1− η̄β⟩

}
. (38)
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For an individual attack, Eve decides each bit individually, then the minimum error rate of Eve is obtained by

the Helstrom’s theory as [28], [29]

pe(β) =
1

2

(
1−

√
1− |f |2

)
, (39)

where f ≜ ⟨−
√
1− η̄β|

√
1− η̄β⟩ = e−2(1−Nη0)β

2

.

Then the mutual information IAE under individual attack can be obtained by

IAE(β) = 1−H(pe(β))

=
1

2
(1−

√
1− f2) log2(1−

√
1− f2)

+
1

2
(1 +

√
1− f2) log2(1 +

√
1− f2).

(40)

For a collective attack, Eve can collect the splitted bits and make decision over all collected bits. Then the mutual

information IAE is given by the Holevo bound as

IAE(β) = 1− 1

2
(1− f) log2(1− f)− 1

2
(1 + f) log2(1 + f). (41)

D. Post-selection strategy in turbulent channel

1) Post-selection strategy for CD-Kennedy receivers: Because Bob can only access to η̄ quantity of the transmitted

beam energy, as long as η̄ < 0.5, Eve can always access more knowledge of the transmitted bits, which lead to the

“3dB loss limit” of the binary modulated CV-QKD protocol [11]. To achieve an advantage over Eve, Bob can only

save those bits with higher effective information IAB(n,η, β) than IAE and discard those bits with lower effective

information. This is the so called post-selection strategy for beating the 3dB loss limit, which is first proposed in

[12].

For a turbulent channel, Bob can save those bits with IAB(n,η, β) ≥ IAE(β), which corresponds to a post-

selection area Aps defined as

Aps = {(n,η)|IAB(n,η, β) ≥ IAE(β)}. (42)

Then the secret key rate for a given transmitted signal amplitude β can be obtained as

Skr(β) =

∫
Aps

p(n|η)p(η)(IAB(n,η, β)− IAE(β))dη. (43)

It is challenging to find the post-selection area Aps directly because Aps is a (N+1)-dimensional area. However,

by observing the expression of Skr(β) in (43), we can see that ηi always appears as an integrated term
∑N

i=1 ηi.

Therefore, similar to the calculation of the error probability, we can define an equivalent transmittance variable

ηeq ≜
∑N

i=1 ηi and rewrite Skr(β) as

Skr(β) =

∫
Aps,eq

p(ηeq)p(n|ηeq)(IAB(n, ηeq, β)− IAE(β))dηeq, (44)

where p(n|ηeq) and IAB(n, ηeq, β) are defined as
p(n|ηeq) ≜ 1

2

[
0n + exp

(
− 4β2

N ηeq

)(
4β2

N ηeq

)n
/n!
]

IAB(n, ηeq, β) ≜ 1−H

(
0n

exp
(
− 4β2

N ηeq

)(
4β2

N ηeq

)n
/n!+0n

)
.

(45)
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Then the post-selection area Aps becomes an equivalent post-selection area Aps,eq with only two dimensions n

and ηeq:

Aps,eq = {(n, ηeq)|IAB(n, ηeq, β) ≥ IAE(β)} . (46)

Substituting eqs. (45) and (23) into (44), we can obtain the secret key rate as

Skr(β) =
1

2

∫
Aps,eq

p(ηeq)

0n +
exp

(
− 4β2

N ηeq

)(
4β2

N ηeq

)
n!

n
×

1−H

 0n

exp
(
− 4β2

N ηeq

)(
4β2

N ηeq

)n

n! + 0n

− IAE(β)

dηeq.

(47)

2) Post-selection strategy for homodyne receivers: Here we present the post-selection strategy for homodyne

receivers with EGC in turbulent channel. Similar to the CD-Kennedy receivers, Bob can save those bits with

IhdAB(x,η, β) ≥ IAE(β), which corresponds to a post-selection area Ahd
ps defined as

Ahd
ps = {(x,η)|IhdAB(x,η, β) ≥ IAE(β)}. (48)

Then the secret key rate for a given transmitted signal amplitude β can be obtained as

Shd
kr (β) =

∫
Ahd

ps

p(x|η)p(η)(IhdAB(x,η, β)− IAE(β))dηdx. (49)

Similarly, by observing the expression of Shd
kr (β) in (49), we can see that ηi always appears as an integrated term∑N

i=1

√
ηi. Therefore, we can define an equivalent transmittance variable ηhdeq ≜

∑N
i=1

√
ηi and rewrite Shd

kr (β) as

Shd
kr (β) =

∫
Ahd

ps,eq

p(ηhdeq )p(x|ηhdeq )(IhdAB(x, η
hd
eq , β)− IAE(β))dη

hd
eq dx., (50)

where p(x|ηhdeq ) and IhdAB(x, η
hd
eq , β) are defined as

p(x|ηhdeq ) ≜ 1
2

√
2

Nπ

[
exp

(
− 2

N

(
x+ β√

N
ηhdeq

)2)
+exp

(
− 2

N

(
x− β√

N
ηhdeq

)2)]
.

IhdAB(x, η
hd
eq , β) ≜ 1−H

(
1

exp(−8xβηhd
eq /N3/2)+1

)
;

(51)

and p(ηhdeq ) is the PDF of ηhdeq . Then the post-selection area Aps becomes an equivalent post-selection area Ahd
ps,eq

with only two dimensions x and ηhdeq :

Ahd
ps,eq =

{
(x, ηhdeq )|IhdAB(x, η

hd
eq , β) ≥ IAE(β)

}
. (52)

Substituting eqs. (51) and (29) into (50), we can obtain the secret key rate of homodyne receivers as

Shd
kr (β)

=
1

2

√
2

Nπ

∫
Ahd

ps,eq

p(ηhdeq )

[
1−H

(
1

exp
(
−8xβηhdeq /N

3/2
)
+ 1

)]

×

[
exp

(
− 2

N

(
x+

β√
N

ηhdeq

)2
)

+ exp

(
− 2

N

(
x− β√

N
ηhdeq

)2
)]

dηhdeq dx.

(53)
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Fig. 3. PDF comparison between the definition and approximation of equivalent transmittance: (a) PDF of ηeq ; (b) PDF of ηhdeq

IV. NUMERICAL RESULTS

In this section we present some numerical results to explore both the BER and the SKR performance of CD-

Kennedy receiver with EGC in turbulent channels. The homodyne receiver is employed as the comparison scheme.

Unless otherwise specified, we set the average signal photons |β|2 = 2, number of branches N = 4, turbulent

strength σ2
0 = 0.1, and turbulent correlation coefficient ρ = 0.

We first verify the feasibility of using approximated equivalent transmittances ηeq and ηhdeq by Fenton-Wilkinson

method. Figs. 3(a) and 3(b) present the PDF of ηeq and ηhdeq under different number of branches with N = 1, 2, 4,

respectively. From Figs. 3(a) and 3(b), we can observe that the PDF approximations of both ηeq and ηhdeq by using

Fenton-Wilkinson method can well match those of the definitions. Besides, the results in Figs. 3(a) and 3(b) also

verify the correctness of our derivation in (23) and (29).
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Fig. 4. BER comparison between CD-Kennedy receiver and homodyne receiver in turbulent channels under different transmitting signal strength

|β|2

A. Bit-error rate comparison

We then present the BER comparison between CD-Kennedy receiver and homodyne receiver in turbulent channels

at different transmitting signal strength |β|2 in Fig. 4. From Fig. 4, we can see that the BER performance of CD-

Kennedy receiver with EGC is better than that of homodyne receiver in turbulent channels when the signal strength

|β|2 is large. Besides, for a given signal strength, e.g., when |β|2 > 1, the performance advantage of CD-Kennedy

receiver over homodyne receiver increases as average transmittance η̄ increases.

Then we present the BER comparison between CD-Kennedy receiver and homodyne receiver in turbulent channels

at different turbulent conditions, where Figs. 5(a) and 5(b) show the BER comparison under different turbulent

strength σ2
0 and different correlation coefficient ρ, respectively. From Figs. 5(a) and 5(b) we can see that the BER

performance of CD-Kennedy receiver with EGC is better than that of homodyne receiver in turbulent channels when

the average transmittance η̄ is large. Besides, the advantage of CD-Kennedy receiver with EGC over homodyne

receiver becomes large as the average transmittance η̄ increases.

Then we present the BER comparison between CD-Kennedy receiver and homodyne receiver in turbulent channels

at different number of receivers N in Fig. 6. From Fig. 6, we can see that the BER performance of CD-Kennedy

receiver is better than that of homodyne receiver. Besides, we can also see that the BER performance of both

CD-Kennedy receiver and homodyne receiver improves as the number of branches increases, which indicates a

receiving diversity gain is achieved.

B. Secret key rate comparison

Then we present the SKR comparison between CD-Kennedy receiver and homodyne receiver in turbulent channels

at different transmitting signal strength |β|2 in Fig. 7. From Fig. 7, we can observe that for a given channel average

transmittance, different transmitting signal strength |β|2 can result in different SKR, which indicates there exits an

optimum transmitting signal strength for a given average transmittance.
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Fig. 5. BER comparison between CD-Kennedy receiver and homodyne receiver in turbulent channels: (a) Different turbulent strength σ2
0 ; (b)

Different correlation coefficient ρ

Then we present the SKR comparison between CD-Kennedy receiver and homodyne receiver in turbulent channels

at different turbulent conditions in Fig. 8, where Figs. 8(a) and 8(b) show the SKR comparison under different

turbulent strength σ2
0 and different correlation coefficient ρ, respectively. From Figs. 8(a) and 8(b), we can see that

the SKR performance of CD-Kennedy receiver is much robust than the homodyne receiver in turbulent channels.

Besides, we can also see that, the SKR performance advantage of CD-Kennedy receiver over homodyne receiver

increases as the average transmittance decreases, which demonstrate an opposite trend compared with the BER

performance cases. This is because in a post-selection strategy, the more uncertainty of the channel, the more

chance a better effective information can be achieved.

Then we present the SKR comparison between CD-Kennedy receiver and homodyne receiver in turbulent channels

at different number of receivers N in Fig. 9. From 9 we can see that the SKR performance of post-selection based
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CD-QKD protocol with homodyne receiver deteriorates as the number of branches increases, which also demonstrate

an opposite trend compared with the BER performance cases. This observation suggests that two separate system

setting should be adopted for communication and key distribution purposes.

At last, we present the SKR comparison between CD-Kennedy receiver and homodyne receiver in turbulent

channels with optimized transmitting signal strength at different turbulent strength σ2
0 , correlation coefficient ρ, and

number of receivers N in Figs. 10(a), 10(b), and 10(c), respectively. From Figs. 10(a) and 10(b), we can see that

the SKR performance with optimized signal strength for CD-Kennedy receiver is much robust than the homodyne

receiver in turbulent channels. Besides, we can also see that, the SKR performance advantage of CD-Kennedy

receiver over homodyne receiver increases as the average transmittance decreases. From 10(c) we can see that

the SKR performance with optimized signal strength for post-selection based CD-QKD protocol using homodyne
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receiver deteriorates as the number of branches increases.

V. CONCLUSION

Endogenous security plays a crucial role in space-air-ground integrated network and a typical solution to endoge-

nous security problems is the QKD. Compared with DV-QKD, CV-QKD enjoys higher SKR and better compatibility

with current optical communication infrastructure. In this paper, we employed the CD-Kennedy receiver to enhance

the detection performance of coherent states in turbulent channels. An EGC method was used to combine the

output of N branches to provide the receiving diversity. Besides, we studied the SKR performance of a post-

selection based CV-QKD protocol using CD-Kennedy receiver with EGC in turbulent channels and compare the SKR

performance with the protocol using homodyne receiver. Moreover, we proposed an equivalent transmittance method

to facilitate the calculation of both the BER and SKR and used a Fenton-Wilkinson method to approximate the
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PDF of the equivalent transmittance. Numerical results demonstrated that the CD-Kennedy receiver can outperform

the homodyne receiver in turbulent channels in terms of both BER and SKR performance. However, we found

that BER and SKR performance advantage of CD-Kennedy receiver over homodyne receiver demonstrate opposite

trends as the average transmittance increases, which indicates that two separate system settings should be employed

for communication and key distribution purposes. Our work sheds a light on the development of practical CV-QKD

system over satellite-ground links with atmospheric turbulence.
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sustainable secure 6g networks,” in 2024 International Conference on Optical Network Design and Modeling (ONDM). IEEE, 2024, pp.

1–3.
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APPENDIX A

DERIVATION OF µeq AND σ2
eq

The nth order moment of a log-normal distributed variable x ∼ LN(µ, σ2) can be obtained as

E [xn] = exp
(
nµ+ n2σ2/2

)
. (54)

Then we can rewrite the two constrains of Fenton-Wilkinson method in (22) as
E[ηeq] =

∑N
i=1 E[ηi]

E[η2eq] = E
[(∑N

i=1 ηi

)2]
.

(55)

By using (54), we can rewrite the first equation in (55) as

µeq + 0.5σ2
eq = ln(N) + µ0 + 0.5σ2

0 . (56)

Besides, the second equation in (22) can be further expressed as

E[η2eq] =
N∑
i=1

E
[
η2i
]
+ 2

∑
i̸=j

E [ηiηj ] . (57)

By using (54), we can obtain E[η2eq] = exp
(
2µeq + 2σ2

eq

)
E
[
η2i
]
= exp

(
2µ0 + 2σ2

0

)
.

(58)

To calculate E [ηiηj ], we define a new random variable

ηij ≜ ηiηj (59)

for i ̸= j. It is easy to verify that ηij is also a log-normal distributed variable with ηij ∼ LN(2µ0, 2(1 + ρ)σ2
0).

Therefore, E [ηiηj ] becomes the expectation of ηij , i.e.,

E [ηiηj ] = exp
(
2µ0 + (1 + ρ)σ2

0

)
. (60)
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Then eq. (57) can be rewritten as

exp
(
2µeq + 2σ2

eq

)
= N exp

(
2µ0 + 2σ2

0

)
+N(N − 1) exp

(
2µ0 + (1 + ρ)σ2

0

)
.

(61)

Then we can easily obtain µeq and σ2
eq as (23) by combining (56) and (61).

APPENDIX B

DERIVATION OF µeq,hd AND σ2
eq,hd

Now we can define a new random variable

ηsq,i ≜
√
ηi (62)

for any i = 1, 2, · · · , N .

It is easy to verify that ηsq,i is also a log-normal distributed variable with ηsq,i ∼ LN(0.5µ0, 0.25σ
2
0). Besides,

the correlation coefficient ρij between ln(ηsq,i) = 0.5 ln(ηi) and ln(ηsq,j) = 0.5 ln(ηj) when i ̸= j can be obtained

as
ρij ≜

E[ln(ηsq,i) ln(ηsq,j)]− E[ln(ηsq,i)]E[ln(ηsq,j)]√
Var[ln(ηsq,i)]Var[ln(ηsq,j)]

=
0.25E[ln(ηi) ln(ηj)]− 0.25E[ln(ηi)]E[ln(ηj)]

0.25
√

Var[ln(ηi)]Var[ln(ηj)]

= ρ,

(63)

where the last step is directly followed from (8).

Then for ηhdeq ≜
∑N

i=1

√
ηi, the two constrains of Fenton-Wilkinson method can be expressed as

E
[
ηhdeq
]
=
∑N

i=1 E [ηsq,i]

E
[(
ηhdeq
)2]

= E
[(∑N

i=1 ηsq,i

)2]
.

(64)

By comparing (64) and (55), we can find that µeq,hd and σ2
eq,hd can be obtained by simply replacing {µ0, σ

2
0}

with {0.5µ0, 0.25σ
2
0} in (23), which results in (29).


