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Abstract—As digital data transmission continues to scale,
concerns about privacy grow increasingly urgent —yet privacy
remains a socially constructed and ambiguously defined con-
cept, lacking a universally accepted quantitative measure. This
work examines information leakage in image data, a domain
where information-theoretic guarantees are still underexplored.
At the intersection of deep learning, information theory, and
cryptography, we investigate the use of mutual information (MI)
estimators — in particular, the empirical estimator and the
MINE framework — to detect leakage from selectively encrypted
images. Motivated by the intuition that a robust estimator would
require a probabilistic frameworks that can capture spatial
dependencies and residual structures — even within encrypted
representations - our work represent a promising direction for
image information leakage estimation.

Index Terms—Information leakage, privacy, selective-
encryption, information theory, mutual information.

I. INTRODUCTION

Images are among the most common forms of data shared
online, and with the widespread use of cloud storage, users
frequently upload images to the web. Regardless of content
sensitivity, image privacy remains a critical concern.

This issue extends to machine learning and deep learning
applications involving visual data. As these models become
more powerful, industries such as healthcare, finance, and
law increasingly rely on them for automated, robust, and
efficient decision-making. However, when models are trained
on sensitive data, there is a risk of information leakage [1].

In response to this risk, recent research has focused on
privacy-preserving deep learning, particularly for sensitive
visual data like medical images [2]. Given the importance of
this topic, various methods have been proposed to assess image
privacy, such as in [3].

While Differential Privacy [4]–[6] has become the gold
standard for protecting individual data through randomized
mechanisms, more recently, information-theoretic approaches
have been proposed to quantify privacy and data leakage
in machine learning systems [7]. In this context, Mutual
Information (MI) emerges as a natural candidate for privacy
quantification, given its foundational role in communication
theory, its operational meaning, and its connections to cryp-
tography [8].

Despite its promise, little work has explored mutual in-
formation specifically for encrypted image data. Motivated
by the long-term goal of integrating privacy-preserving and
cryptographic techniques, we build on the approach of [9]

Fig. 1: Progressive encryption of pixels according to the
number of encrypted s leading bits for an 8-bits encoded
grayscale image.

to provide an initial attempt at quantifying image leakage in
cryptographic systems using mutual information.

To provide dynamic access control and protect against pro-
gressive leakage, we explore selective encryption schemes [10]
and evaluate different mutual information metrics between
original and encrypted images.

Traditionally, mutual information for images is estimated
empirically via histograms, which neglect spatial relationships
in higher-dimensional data [11]. Our work addresses this
gap by investigating mutual information in the context of
images—arguably one of the first to do so.

In fact, since empirical methods often fail to capture spatial
structure, we implement the MINE framework [12] for esti-
mating mutual information in images. Furthermore, consider-
ing the proven effectiveness of convolutional neural networks
(CNNs) in tasks like object detection and segmentation [13],
[14] or image quality assessment [15], we enhance the MINE
estimation by working on the CNN’s embedding of images.

II. IMAGE SELECTIVE ENCRYPTION

Information leakage can occur when an encryption scheme
leaves portions of data unencrypted — a method known as se-
lective encryption. Its purpose varies depending on which parts
of the data are encrypted and to what extent. For example, one
can apply selective encryption with the expectation that the
entire stream will be unusable without decrypting the protected
portion [16]. On the contrary, selective encryption can be used
to mask sensitive content while allowing some processing. For
instance, in [10], authors apply selective encryption on images
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in order to visually mask the content while allowing integrity
checking i.e. to verify whether the image has been manipulated
or not.

In this paper, as we want to investigate information leakage,
we follow the use case proposed in [10]. We note that, since
many different selective encryption methods exist, we believe
our analysis can be extended to other approaches and it would
be an interesting line of future research.

In our chosen approach, varying levels of visual masking for
confidentiality are achieved by encrypting the first significant
s bits of each pixel in an 8-bit encoded image, as illustrated
in Figure 1. The method encrypts only the Most Significant
Bits (MBS), i.e. the bits whose corresponding pixel’s binary
representation has the greatest impact on its visual appearance
(low frequencies) and perceived brightness. More precisely, for
a m× n grayscale 8-bits image, a pixel is defined as:

p(i, j) =

7∑
k=0

pk(i, j)× 2k with 0 ≤ i ≤ m and 0 ≤ j ≤ n,

(1)
where pk(i, j) is the bit of the pixel p(i, j) at index k. Selective
encryption is applied by using a bitwise XOR between pixels
binary representation and a pseudo-random uniform generated
sequence, denoted b, of size s× n×m, such as:

pkE (i, j) = pk(i, j)⊕ bk(i, j). (2)

Moreover, according to Kerckhoff’s principle, one can as-
sume that the number of encrypted bits is known. Therefore,
in this work, the information leakage is investigating on the
clear portion pC(i, j) of the pixel pE(i, j) i.e. by bit-shifting
encrypted pixels:

pC = (pE ≪ s) ≫ s. (3)

Furthermore, although we have restricted our explanation to
black and white pictures, the extension to color images is
straightforward.

III. MUTUAL INFORMATION ESTIMATION

Mutual information’s role in cryptography dates back to
Shannon’s cipher system, and for two random variables X
and Y it is defined as

I(X;Y ) = H(Y )−H(Y |X)

= DKL(PXY ∥ PXPY ), (4)

where the latter is the Kullback-Leiber divergence.
While mutual information (MI) is a natural measure of

correlation between random variables, its practical use depends
heavily on accurately estimating the joint distribution PXY

and its marginals. In the absence of better tools, histograms
are typically used to approximate the joint distribution.

This useful yet imprecise tool becomes even less reliable
when applied to the context of pictures. When target variables
are a pair composed of an image and its encrypted version,
this leads to a natural question about the applicability of MI
as a scalable measure in higher dimensions. The answer is not

trivial, since the histogram does not take correlation between
neighbouring pixels into account.

A notable work, referred to as MINE [12], has proposed
to estimate MI in high dimensions, where traditional methods
struggle, through leveraging neural networks to approximate
MI efficiently.

The neural network approximates MI by parameterizing the
variational lower bound of the KL-divergence with a neural
network. Specifically, it maximizes the Donsker-Varadhan
representation of the KL divergence [12] which is given by
the following:

DKL(P ∥ Q) = sup
T∈F

[
EP[T ]− EQ[e

T−1]
]
, (5)

where F is any class of functions. Hence, from (4) and (5),
the parametrized MI can approximated as:

IΘ(X,Y ) = sup
θ∈Θ

[
EPXY

[Tθ]− log
(
EPX⊗PY

[eTθ ]
)]

, (6)

where Tθ is a parametrized neural network known as the T
statistic network. The formulation in (5) turns KL divergence
estimation into an optimization problem across all possible
functions T .

The MINE framework has proved to be a valuable tool for
crypto-analysis in the context of 1D variables [9]. It has not,
however, been extensively studied for the 2D picture problem.
In this context, the challenge is to derive a leakage estimation
that can capture any pattern or structure in the image using
MINE.

IV. MAIN CONTRIBUTION

Building on the challenges discussed previously, this work
evaluates information leakage in selectively encrypted images.

Before analyzing more sophisticated metrics, we first exper-
imented with empirical mutual information to assess leakage
between a plain image and its encrypted version. We start
by observing that with the method presented in Eq. (3),
information theory gives us the following upper bound on
the mutual information between the original image X and its
encrypted version Y :

I(X;Y )
(a)
= H(f(X))−H(f(X)|X)

(b)
= H(f(X))

(c)

≤ log|f(X )| = log|Y|, (7)

where (a) follows from the fact that the encryption is a
deterministic function f : X 7→ Y . Further, (b) follows from
the definition of relative entropy and the deterministic nature
of f , that is H(f(X)|X) is equal to

−
∑
x∈X

∑
f(x)∈f(X )

P(X,f(X))(x, f(x)) logPf(X)|X(f(x)|x)︸ ︷︷ ︸
=1︸ ︷︷ ︸

=0

,

(8)

and (c) comes from the properties of entropy, and it is an
equality for uniform random distributions.

The upper bound in Eq. (7) represents a worst case scenario,
since intrinsically pictures have structure, and their distribution



should be very different from the uniform one. However, we
observe that by calculating the empirical mutual information
on pictures, we observe the same behavior as if we were in
the random uniform case.

Note that, if the pixel were to be uniformly dis-
tributed, Eq. (7) would take the simpler formulation of
I(X;Y ) = log|Y|. Then, by combining it with (1) and (3),
it is easy to see that the mutual information in this case scales
with the number of selectively encrypted pixels s.

While theoretically this result would only serve as a bound
for real images, Fig. 2 shows that empirical mutual information
of real pictures scales linearly with the number of encrypted
pixels s, mirroring what one would expect if, instead of a
database of images, the pixels were uniformly distributed.

Fig. 2: On 100 images from the COCO dataset [17], average
scores in terms of Mutual Information estimated on pixels
histogram, as a function of the number of encrypted bits s.

Motivated by this observation, we seek a different mutual in-
formation estimator whose behavior with respect to s deviates
from that observed with uniformly distributed random pixels,
by accounting for the structure inherent in the image itself. In
particular, we are interested in estimators whose response is
not linear with respect to s.

We emphasize that our work is interested in comparing the
behavior of different MI estimators — such as the empirical
method and MINE — rather than to evaluate the absolute value
of mutual information. While MI values naturally vary across
different estimators, our focus was on how they respond to
increasing numbers of encrypted bits.

Specifically, we sought an MI estimator whose values de-
crease consistently but not linearly as more bits are encrypted,
reflecting the progressive loss of structure illustrated in Fig. 1.

As anticipated, the first candidate in this research has been
the MINE algorithm, and more specifically, our investigation
has involved the following two steps:

• We examine how the existing deep-learning-based MI
estimator, MINE [12], performs when applied to images
encrypted using the selective encryption approach of [10].

• We propose a convolution-based approach to better
capture the inherent spatial dependencies in high-

dimensional image data to some level, thereby mitigating
MINE’s structural limitations.

We also note that the proposed approaches target partially
encrypted images, since we consider in this paper that con-
fidentiality is linked to determining the content of the image.

A. MINE on Selectively Encrypted Images

To further question the leakage measure for images, first we
have started by reproducing the Mutual Information Neural
Estimator model (MINE) as described in [12]. According to
our needs, we have used a simplified neural network for the
estimation of the function T , as introduced in Eq. (6). In our
implementation, both the original image and its selectively
encrypted version are treated as one-dimensional arrays, an
operation we sometimes refer to as flattening.

As shown in Section V, MINE’s behavior is not linear
with respect to the number of encrypted bits, making it a
more appealing metric than empirical MI. However, flattening
the pixel into one array dismantles some of the structure of
their joint distribution, which leads us to propose an enhanced
version of the method, as explained in the next section.

B. Convolution-Based Mutual Information Estimation

Recognizing that existing information-theoretic approaches
do not explicitly model spatial dependencies, we explored a
convolution-based framework for MI estimation tailored to
image data. Given the demonstrated success of Convolutional
Neural Networks (CNN) in capturing spatial structure [18],
[19], the proposed approach divides the image into patches
under the premise that critical information is often localized
within specific regions. By learning to capture the relationships
among neighboring patches, this method aims to incorporate
local spatial dependencies into the MI estimation process by
encoding the relationship into several feature maps. Although
it does not fully address the overall pixel distribution, it pro-
vides an avenue to address limitations of traditional empirical
MI estimation. We shall also note that convolution in this
context is used as a pre-processing framework for the MINE
estimator.

We recall that a convolutional neural network (CNN) [20]
is an Artificial Neural Network architecture that uses the
convolution operator in one of its layers. That is, convolution
combines two functions to produce a third, capturing how the
shape of one is influenced or altered by the other. Commonly,
this is used as an encoding of some input space (e.g. images),
with regularized linear activations and uses several layers
of the same encoding (i.e. convolutional filters) and pooling
layers (e.g. max pooling) to define an information hierarchy.
In practice, convolutional layers are also used to reduce the
number of connections compared to fully connected layers,
which can become impractically large for high-dimensional
inputs.

Notably, some of the most popular object segmentation
model [20], [21] and other breakthroughs such as VG-
GNet [21], ResNet [22] rely heavily on the power of CNNs.



The seminal contributions of these latter underscore the capa-
bility of CNNs to extract meaningful structural information,
motivating our exploration of convolution for mutual informa-
tion estimation.

By leveraging CNNs, this work aims to better capture local-
ized structural patterns between plain and encrypted images in
an attempt to gain insights to further comprehend information
leakage in high dimensional data.

For this study, we focus on the usage of CLIP [23] with the
aim of assessing whether incorporating semantic information
about the image content can improve leakage quantification
within the MINE framework. The motivation behind this is to
experiment with representations that capture not only spatial
but also semantic context, with the hypothesis that such high-
level understanding of image content might provide a more
accurate estimation of the underlying information leakage.
Prior work has demonstrated that CLIP captures high-level
semantic representations of image content [24], [25].

We also evaluate the performance against a hierarchical
visual feature extractor. We chose Resnet [22] to assess the
performance when relying solely on visual features and to
compare with a different CNN architecture.

Note that CNN embedding usually requires small input size
and one would prefer to estimated the MI not on small resized
version of images but on the original distributions. Therefore,
we propose to sample the original distributions using image
patches without any preprocessing such as resizing.

V. EXPERIMENTS

For our experiments, we have selected the 100 largest
images (by resolution) from the COCO dataset [17]. These
images are encrypted using the method presented in Section II
with s ∈ [0, 8]. Note that in our experiment, we can replace
Eq. (3) by: pC = pE ≪ s. Indeed, this choice does not affect
MI estimation but scales the clear part to larger values, which
may be more natural for image embeddings.

The baseline experiment is the empirical estimation of the
MI between an image and its encrypted version as a function
of the number of encrypted bits s, and this result is illustrated
in Fig. 2. We here recall that both MINE and the empirical
method require large image size to produce significant results,
since increasing the size allows a better approximation of the
real pixel distribution. We observe the linear behavior expected
for random variable, described in Section IV, which confirms
that empirical MI estimation on pixel histogram does not
capture the specificity of images and it is clearly not correlated
with human perception, see Fig. 1.

As a second step, we wanted to verify if using CNN may
help to capture dependencies between pixels. Therefore, we
used CLIP image embedding to compare an image and its
encrypted counterpart in a most well-suited space. Note that
images are resized to 224 × 224. This aligns with CLIP’s
initial training size and ensures consistent feature extraction to
avoid any random internal downsampling [23]. Using a natural
metric in this space, such as the cosine similarity, leads to

results presented in Fig. 3a. We conclude this metric is not
interesting in our use case.

Nevertheless, we can estimate empirically the MI between
the CLIP features, this is done by discretizing the features
using naive rounding. Results, presented in Fig. 3b, show that
this method seems to capture more the non linearity of the
expected MI estimation.

(a) Cosine Similarity CLIP (b) MI CLIP

Fig. 3: On 100 images from the COCO dataset [17], average
scores in terms of a) Cosine Similarity on the CLIP features,
b) Mutual Information on the CLIP features, as a function of
the number of encrypted bits s.

Now, in a new experiment we compare these results with
the estimation of the MI using MINE. We estimate mutual
information (MI) using MINE under two settings: (i) directly
on flattened pixel values and (ii) on latent representations
extracted via pretrained feature encoders CLIP ViT-B and
Resnet respectfully [22], [23]. In both cases, images were
partially encrypted by masking a fixed number of bits s,
and MI was tracked over 100 epochs. MINE using CLIP,and
Resnet features, is done by embedding patches of images. We
have extracted an experimentally fixed N = 50 number of
patches of size 224×224. This choice aligns with the standard
input size used during the pretraining of models such as CLIP
ViT-B on ImageNet, where images are typically resized and
center-cropped to 224× 224 [20]. Both the pixel-level, CLIP-
based and Resnet estimations were conducted over the same
number of training epochs to ensure comparability. For each
estimator, we plot the relative distance to the maximum MI
— defined as the absolute difference from the highest value
across all s levels — to better highlight subtle differences,
particularly at lower s values where the curves are closely
packed. This transformation allows a more detailed inspection
of how intermediate encryption levels behave during training.
Results are presented, respectively, in Fig. 4, 5, 6, 7 and 8.

First, as shown in Fig. 4, we observe that MINE’s estimation
of mutual information between the original image and the clear
portion of the encrypted one does not follow a linear trend and
requires a large number of epochs to converge.

In contrast, when applied to CLIP latent representations
(Fig. 5), MINE demonstrates significantly faster convergence
compared to the pixel-based setting.

While the reason behind the accelerated convergence on
feature maps is less clear, it may be attributed to the inductive



Fig. 4: Relative distance to the maximum MI over 100 epochs
on pixel distribution using the MINE framework.

Fig. 5: Relative distance to the maximum MI, computed via the
MINE framework, over 100 epochs using CLIP latent features.
Subtracting the max MI highlights the behavior with respect
to different s values.

biases or pretraining of the encoder, which produces smoother
or more separable representations, even in the presence of
structured noise.

Perhaps more interestingly, in Fig. 6 we notice, for in-
termediate encryption levels s = 6 and s = 7, higher MI
estimations compared to the pixel distribution (Fig. 6b and 6a
respectively), hinting to CLIP’s ability to capture the semantic
underlying structure of neighboring pixels. More to this point,
we observe in Fig. 5 that for higher encryption levels, the MI
curves remain more distinct and granular when using latent
features. We hypothesize that this behavior stems from CLIP’s
capacity to seize residual structure or patterns even in heavily
perturbed inputs.

Additionally to CLIP, we have conducted some experiments
with Resnet, in order to investigate other approaches. From
Fig. 7 we can see that estimation on Resnet features shows an
accelerated convergence compared to the initial pixel distri-
bution. Furthermore, as depicted in Fig. 8, we observe that
Resnet, with slightly perturbed inputs, manages to capture
structure on early s levels, whereas it produces lower MI
values as s increases.

Comparing the results of Fig. 7 with the ones of Fig. 5, we
see that there is a different decrease in MI as s changes, and
the encrypted images loose structure. We hypothesize that this

(a) Pixel distribution (b) CLIP latent features

Fig. 6: On 100 images from the COCO dataset [17], MI
computed with MINE framework on a) Pixel distribution and
b) CLIP latent features for different s levels.

Fig. 7: Relative distance to the maximum MI, on Resnet latent
features via the MINE framework for different s levels over
100 epochs.

difference between CLIP and Resnet’s MI estimations could
be caused by both CLIP’s ability to capture semantics in the
encoding, and Resnet’s sensitivity to noise.

This leaves both encoders candidates for further investiga-
tion.

VI. CONCLUSION AND PERSPECTIVES

In this work, we have evaluated information leakage in
selectively encrypted images using Mutual Information Neural
Estimation (MINE), addressing structural limitations by in-
corporating convolutional processing to better capture spatial
dependencies.

Our investigation suggests that feature extractors may pre-
serve structured signals even in partially encrypted data,
therefore opening new opportunities for measuring information
leakage in compressed or transformed domains.

However, this direction raises open questions regarding
the quality, dimensionality of the latent representations and
inclusivity of semantics. It also raises questions about noise
sensitivity for visual feature encoders, which leaves the room
to investigate visual feature encoders trained on partially noisy
images. The effectiveness of MI estimation in this space also
appears to be sensitive to several hyperparameters, including
the choice of feature extractor, training schedule, and number
of epochs. While this work lays the groundwork for latent-
space MI analysis, we believe that further investigation —
through careful tuning and ablation studies — could provide



Fig. 8: Relative distance to the maximum MI, computed via
the MINE framework, using Resnet latent features for different
s levels.

deeper insights into the robustness and limitations of this
approach.

Moreover, while this work represents an initial step from
the cryptographic perspective, a compelling and challenging
direction for future research lies in leveraging encryption
paradigms themselves to further inform and enhance mutual
information-based leakage analysis.
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