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Abstract
Face Morphing Attack Detection (MAD) is a critical challenge in
face recognition security, where attackers can fool systems by in-
terpolating the identity information of two or more individuals
into a single face image, resulting in samples that can be veri-
fied as belonging to multiple identities by face recognition sys-
tems. While multimodal foundation models (FMs) like CLIP offer
strong zero-shot capabilities by jointly modeling images and text,
most prior works on FMs for biometric recognition have relied
on fine-tuning for specific downstream tasks, neglecting their po-
tential for direct, generalizable deployment. This work explores
a pure zero-shot approach to MAD by leveraging CLIP without
any additional training or fine-tuning, focusing instead on the de-
sign and aggregation of multiple textual prompts per class. By
aggregating the embeddings of diverse prompts, we better align
the model’s internal representations with the MAD task, captur-
ing richer and more varied cues indicative of bona-fide or attack
samples. Our results show that prompt aggregation substantially
improves zero-shot detection performance, demonstrating the ef-
fectiveness of exploiting foundation models’ built-in multimodal
knowledge through efficient prompt engineering. The code is pub-
licly released: https://github.com/EduardaCaldeira/MADPromptS
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1 Introduction
In recent years, the research community’s strong focus on deep
learning (DL) techniques enabled the high-paced development of
high-performing systems in different domains, including face recog-
nition (FR) [2, 15]. Despite the unquestionable benefits associated
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with this evolution, the same scientific advances capable of en-
hancing biometric systems can also be maliciously deployed to
attack them [11, 18], raising concerns about their secure deploy-
ment. Some of these malicious samples are created by interpolating
identity information of two or more individuals in a single face
image, resulting in samples that can be verified as belonging to
multiple identities by FR systems and by humans. These attacks are
known as morphing attacks (MA) due to their inherent property of
incorporating defining features from multiple identities, contribut-
ing to impaired FR functionality when left undetected [4, 10, 46].
The inability to efficiently detect these samples is particularly prob-
lematic in high-security applications, as they potentiate crimes such
as identity theft. To mitigate such risks, various morphing attack
detection (MAD) systems have been proposed in the recent years
[4, 5, 12, 16, 23, 30, 39]. These algorithms aim at distinguishing MAs
from authentic (bonafide) samples before they are fed to FR systems,
removing malicious samples from the recognition framework at
an early stage and preventing them from being considered for face
verification.

Foundation models (FMs) are large-scale networks that can be
trained with unlabeled data, following a self-supervised learning
paradigm [27, 31, 36]. This allows FMs to be trained in massive and
diverse datasets, resulting in trained models that can efficiently
generalize to a wide variety of tasks [1]. Due to this property, FMs
can be directly deployed for classification of samples belonging to
categories that were not necessarily analyzed during their training
stage (zero-shot learning), which makes them powerful tools in
fields that address several tasks, such as natural language process-
ing [3] and computer vision [27, 31, 36, 40]. While FMs have shown
significant zero-shot capacity across several downstream tasks, they
achieve less optimal performance when applied to domain-specific
settings [40], for which an adaption to the downstream task is usu-
ally performed [6, 7, 21]. Despite allowing for a beneficial balance
between pre-trained FMs in-built information and the acquisition of
domain-specific knowledge [5, 33], this adaption process requires
model fine-tuning, resulting in decreased computational efficiency
when compared with zero-shot learning, which does not require
any MAD training data. Prompt engineering has recently gained at-
tention as an effective strategy to boost the zero-shot performance
of foundation models without any additional computational burden
[36]. By feeding multimodal FMs with carefully designed textual
prompts describing each class, it is possible to better align the in-
put representations with the built-in knowledge of the FM and,
consequently, take better advantage of the FMs zero-shot capacity.

In this work, we explore the potential of prompt engineering
for zero-shot learning MAD. In particular, we analyze how the
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utilization of multiple prompts to describe each possible output
class impacts zero-shot performance, highlighting the benefits of
a careful selection of the prompt sets used during inference. The
obtained results show that while using a single prompt per class
provides a general description of the desired label, using multiple
prompts allows the incorporation of more specific characteristics,
shifting the attention of the FM to a broader spectrum of details.
While some sets of prompts do not contribute to increase zero-shot
performance, disjoint sets that contribute positively to the FM’s
performance present complementary properties, with their joint
utilization resulting in further MAD performance improvements.
Hence, this study highlights the benefits that can arise from effi-
cient prompt engineering strategies, providing important insights
regarding the importance of correctly exploiting textual prompts to
the user’s advantage by leveraging FM’s zero-shot learning ability
to a more complete extent.

2 Related Work
This section presents an overview of recent works proposing MAD
solutions, followed by a discussion of recent advances in foundation
models and their applications within the biometric domain.

2.1 Morphing Attack Detection
Interpolating the identities of two or more face images in one image,
such that it can be verified as belonging to those identities [4] is
a major risk to many processes involving automatic or manual
identity verification [19, 41]. Detecting such attacks became a major
challenge given the realistic appearance and the ease of creation
of such morphing samples, motivating the research community
towards the development of more accurate and generalizable MAD
solutions [4, 12, 16, 23, 30, 39, 45]. From an operational point of view,
MAD solutions can be categorized as single image MAD strategies
[4, 12, 16, 23, 26, 30, 39, 45], which base their decision solely on
the inspected image, and differential MAD solutions [9], which
consider a live captured image along with the inspected sample.
The latter strategies generally show higher accuracy in detecting
morphing attacks, since they have access to additional information
to make a prediction [9, 37, 38]. However, their applicability is
limited in several use cases, as it requires performing a live capture
under operator supervision. Hence, several studies have developed
single-image MAD systems [4, 12, 16, 23, 26, 30, 39, 45], which can
be applied without the need to perform a live capture, allowing
MAD in a wider range of real-world applications (e.g. analyzing
standalone documents).

Recent single-image MAD works have explored diverse methods
to detect morphing attacks, ranging from handcrafted features [39]
to advanced deep learning techniques [5, 26, 45]. Ramachandra et
al. [39] proposed to extract multi-scale textural descriptors and clas-
sify them using collaborative representation. Another work [12]
suggested that each pixel (or block of pixels) should be individually
classified as bona-fide or morphing attack, shifting away from the
common global classification towards a more localized detection.
Unsupervised [16] and self-supervised [26] approaches have also
been proposed to tackle the MAD task. In [16], the authors trained
a robust autoencoder for anomaly detection using an unsupervised
self-paced learning approach. This approach identifies suspicious

training samples and assigns them less importance during training,
despite the datasets being polluted with morphed samples. [26]
trained a self-supervised diffusion model to reconstruct bona-fide
samples. While authentic samples can be easily reconstructed by
this model, its ability to reconstruct morphed samples is signifi-
cantly lower which results in higher reconstruction errors, allowing
for detecting these malicious samples. [23] promoted the SYN-MAD
2022 competition on MAD based on synthetic training data, pre-
senting a comprehensive analysis of the results of seven submitted
approaches. In [4, 30], morphing attacks were detected through
the identification of independent identity information in each ana-
lyzed sample. Neto et al. [30] used orthogonal vectors to identify
the presence of more than one identity in the input samples. [4]
used knowledge distillation to transfer information from an auto-
encoder trained on bona-fide samples, following distinct distillation
techniques for bona-fide images (single identity distillation) and
morphing attacks (double identity distillation). A vision transformer
architecture for MAD was presented in [45], showing promising
results. Very recently, MADation [5] used LoRa layers to fine-tune
a foundation model to the downstream MAD task, highlighting the
potential of FM in domain-specific tasks such as MAD. The work
proposed in this document also focuses on single-image MAD due
to its wider utility in real-world scenarios where a live probe might
not be available.

2.2 Foundation Models
Foundation models are large-scale networks that can be trained
with unlabeled data, following a self-supervised learning paradigm.
This allows FMs to be trained on massive and diverse datasets, re-
sulting in trained models that can efficiently generalize to a wide
variety of tasks [1]. The DINOv2 family of networks [31] comprises
self-supervised visual models capable of producing universal fea-
tures that can be applied to both image-level and pixel-level tasks.
The Segment Anything Model (SAM) [27] demonstrates strong
generalization capabilities, enabling zero-shot image segmentation
across a wide range of domains. Contrastive Language-Image Pre-
training (CLIP) [36] is a multimodal FM constituted by a visual
encoder and a text encoder. This allows CLIP to consider visual and
textual information simultaneously during its training process and
effectively learn the correlation between images and their textual
description.

Recent advances in FMs have led the scientific community to
explore their applicability to a wide range of downstream tasks,
including in biometrics [1, 42]. One of the first works that applied
foundation models to the face recognition task [8] concluded that
using LoRA layers [21] to fine-tune FMs to the FR downstream task
consistently outperforms training those models from scratch in low
data availability scenarios. MADation [5] highlighted the adaptabil-
ity of CLIP [36] to the domain-specific MAD task by fine-tuning its
image encoder with LoRA layers. Similarly, FoundPAD [33] lever-
ages LoRA-adapted CLIP and a binary classifier for face presenta-
tion attack detection (PAD), achieving superior performance across
cross-dataset evaluations compared to state-of-the-art (SOTA) PAD
systems. These results highlight the high adaptability of FMs to
unseen downstream tasks even in domain-specific scenarios such as
MAD and PAD. Arc2Face [34] adopts foundation models to extract
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identity embeddings from face images, using these as conditions
for a diffusion model to generate identity-specific synthetic faces.
CLIB-FIQA [32] used CLIP to perform face image quality assessment
by aligning the visual features of input face images with textual
descriptions of image quality factors such as pose and expression.

Apart from visual encoders, recent developments in large lan-
guage models (LLMs) and, in particular, multimodal versions of
GPT-4, have opened new research directions in the biometrics field.
Hassanpour et al. [20] assessed GPT-4’s performance in tasks such
as FR, gender classification, and age estimation. DeAndres-Tame et
al. [13] conducted a thorough evaluation of GPT-4 for face verifica-
tion and soft-biometric attribute estimation, providing a comple-
mentary explainability analysis of the model’s decisions. Despite
the absence of fine-tuning to biometric tasks, GPT-4 managed to
achieve 94% verification accuracy on the LFW dataset [22] and
96.3% gender classification accuracy on MAAD-Face [43]. Further-
more, GPT-4’s capacity to match human faces was proved to be
on par with average human performance [28]. Farmanifard and
Ross [17] explored GPT-4’s capabilities in iris recognition under
zero-shot settings.

Recent works have explored the use of FM for biometric tasks,
including MAD [5], primarily by fine-tuning these models on task-
specific datasets. While fine-tuning FM can yield strong perfor-
mance on detecting MAs [5], this approach often overlooks one of
the key strengths of FMs, which is their ability to perform zero-shot
predictions on previously unseen scenarios. By relying heavily on
fine-tuning [5] or training models from scratch [26, 30, 45], these
approaches may limit the generalization capacity of the models,
which is especially critical in MAD applications where new morph-
ing techniques continually emerge and the ability to detect unseen
attacks without extensive retraining or fine-tuning is essential. This
paper unleashes the power of multimodal FMs under a zero-shot
prediction scenario, namely CLIP, for MAD by leveraging multiple
prompts, aiming to better capture diverse cues of bona-fide and
attack samples, and thus, improve the MAD performance.

3 Zero-shot MAD using CLIP and multiple
textual prompts aggregation

This work leverages the zero-shot learning capability of the multi-
modal (text–image) foundation model CLIP for MAD by employ-
ing multiple carefully designed textual prompts per class (attack
or bona-fide). By averaging these prompts, we aim to better align
CLIP’s aggregated text embeddings with the image embeddings and,
thus, capture more diverse cues without any need for fine-tuning.
In this section, we first present preliminaries on CLIP, followed by
a detailed description of the single- and multiple-prompt strategies
for MAD.

3.1 Preliminary on CLIP
CLIP [36] is a multimodal FM constituted by a visual encoder and
a text encoder. CLIP was trained using a massive dataset where
each image is paired with a textual description that may accurately
describe it (positive pair) or not (negative pair), utilizing a con-
trastive learning paradigm where the cosine similarity between the
features extracted for image and text is maximized/minimized for
positive/negative pairs. This allows CLIP to learn the relationship

between visual and textual inputs and simultaneously interpret
them during inference, resulting in a model generalizable across
distinct tasks [36] with very competitive zero-shot learning results.

3.2 MADPrompts
In this work, we explore the zero-shot learning capacity of mul-
timodal FMs in the MAD task when single and multiple prompts
are used to describe each possible classification label. Using CLIP
to classify images that are not present during the CLIP training
process might result in suboptimal performance, particularly in
domain-specific settings such as MAD [5] or face recognition [8].
However, works that highlight this phenomenon [5, 8, 33] only
considered a single yet simple text prompt and do not provide ex-
tensive zero-shot evaluation using multiple prompts. Furthermore,
they sometimes failed to adhere to the input image specifications
that are expected to work optimally for CLIP. Hence, we propose to
perform such an evaluation to reach a more comprehensive under-
standing of FMs’ zero-shot capability and raise awareness towards
the importance of efficient prompt engineering.

3.2.1 Single-Prompt Inference. When a multimodal FM is used to
infer the label of a sample 𝑥𝑖 in a zero-shot learning setting, two
parallel processing steps are required, one for each encoder. The
visual encoder, 𝐸𝑣 , processes 𝑥𝑖 , producing an image embedding
𝑒𝑖 = 𝐸𝑣 (𝑥𝑖 ). The text encoder, 𝐸𝑡 , processes a list of text prompts,
each describing one of the possible labels of 𝑥𝑖 , 𝑦𝑖 . For a binary
task such as MAD, where 𝑦𝑖 ∈ {0, 1}, 𝐸𝑡 is fed two individual text
prompts describing bona-fide (𝑝𝐵𝐹 ) and morphing attack (𝑝𝑀𝐴)
samples. This results in two text embeddings, 𝑒𝐵𝐹 = 𝐸𝑡 (𝑝𝐵𝐹 ) and
𝑒𝑀𝐴 = 𝐸𝑡 (𝑝𝑀𝐴), that represent the two possible labels in a feature
space with the same dimensionality as 𝑒𝑖 . It is important to note
that all the considered embeddings are normalized, thus laying on
a unit hypersphere with the same dimensionality. As explained in
Section 3.1, the contrastive learning paradigm of multimodal FMs
like CLIP results in a strong correlation between the feature space
of the visual and text embeddings. Hence, the zero-shot learning
prediction for 𝑥𝑖 ,𝑦𝑖 , can be determined by selecting the label whose
embedding is more similar to 𝑒𝑖 :

𝑦𝑖 =

{
0, 𝜙 (𝑒𝑖 , 𝑒𝐵𝐹 ) > 𝜙 (𝑒𝑖 , 𝑒𝑀𝐴)
1, otherwise

, (1)

where 𝜙 (.) is the cosine similarity function.

3.2.2 Prompts Aggregation. AlthoughCLIP can achieve remarkable
zero-shot evaluation results in several tasks using a single text
prompt to define each class, this model has been shown to perform
better when the information of several text prompts defining each
possible class is combined into a single text embedding [36]. The
proposed approach combines multiple context prompts on the text
feature space by averaging their contributions before comparing the
final feature vector with the visual embedding, increasing CLIP’s
zero-shot performance on e.g., ImageNet by 3.5 percentage points
[36]. These results suggest that customizing the prompts used to
perform zero-shot classification can largely contribute to its success.

Taking this into consideration, we further adapt CLIP’s zero-shot
evaluation to include multiple text prompts per class. In this sce-
nario, 𝑝𝐵𝐹 and 𝑝𝑀𝐴 are substituted by sets of prompts where each
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Table 1: Listswith the three sets of prompts representing char-
acteristics linked to face images used in this work: identity,
presentation and appearance. For each possible label, the “{}”
field is substituted by its corresponding ISO/IEC 20059 com-
pliant definition (“face image morphing attack” and “bona-
fide presentation”).

Identity Presentation Appearance
male {}. frontal {}. bearded {}.
female {}. profile {}. moustached {}.
young {}. tilted {}. smiling {}.
elderly {}. rotated {}. frowning {}.
child {}. upward {}. eyeglasses {}.
adult {}. downward {}. sunglasses {}.
asian {}. sideways {}. wrinkled {}.
black {}. leftward {}. balding {}.
white {}. rightward {}. occluded {}.
latino {}. angled {}. scarred {}.

middle eastern {}. inclined {}. pierced {}.
indian {}. declined {}. tanned {}.
blonde {}. oblique {}. pale {}.
brunette {}. twisted {}. makeup {}.
redhead {}. turned {}. freckled {}.
tall {}. slanted {}. chubby-cheeked {}.
short {}. offcenter {}. sweaty {}.
thin {}. misaligned {}. dirty {}.
obese {}. skewed {}. blinking {}.
teen {}. asymmetric {}. tearful {}.

entry represents a possible bona-fide or morphing attack descrip-
tion, respectively. Let these sets be defined as 𝑃𝐵𝐹 = {𝑝𝐵𝐹1 , 𝑝𝐵𝐹2 , ..., 𝑝𝐵𝐹𝑁 }
and 𝑃𝑀𝐴 = {𝑝𝑀𝐴1 , 𝑝𝑀𝐴2 , ..., 𝑝𝑀𝐴𝑁

}, respectively. Each of the en-
tries of 𝑃𝐵𝐹 and 𝑃𝑀𝐴 is individually fed to the text encoder, gener-
ating its embedding in the textual feature space. The final embed-
ding representations used for each label (𝑒𝐵𝐹 and 𝑒𝑀𝐴) can then
be obtained by averaging the contributions of all the embeddings
belonging to the corresponding set:

𝑒𝐵𝐹 =
1
𝑁

𝑁∑︁
𝑗=1

𝐸𝑡 (𝑝𝐵𝐹 𝑗 ), 𝑝𝐵𝐹 𝑗 ∈ 𝑃𝐵𝐹 (2)

𝑒𝑀𝐴 =
1
𝑁

𝑁∑︁
𝑗=1

𝐸𝑡 (𝑝𝑀𝐴 𝑗
), 𝑝𝑀𝐴 𝑗

∈ 𝑃𝑀𝐴 (3)

Both text embeddings are normalized before being compared
with 𝑒𝑖 to predict the input sample’s class (Equation 1) to ensure that
the embeddings being compared lay on top of a unit hypersphere of
the same dimensionality. Note that the usage of multiple prompts
per class does not imply additional computational costs when com-
pared with the single text prompt scenario, as the final textual em-
bedding representations 𝑒𝐵𝐹 and 𝑒𝑀𝐴 can be pre-computed once
and utilized during inference to match with the image embedding.

4 Experimental Setup
This section presents the experimental setups followed in the paper.

4.1 Model Architecture
CLIP [36] released four different models with two architectures:
base and large. CLIP base architecture has 86M parameters and is
available in 2 variants with different patch sizes. CLIP lage contains
0.3 billion parameters and also includes two variants, one of which
is pre-trained at a higher resolution for one additional epoch [44].
The zero-shot MAD performance of these architectures has been as-
sessed by a recent study [5] that revealed CLIP large architecture’s
superiority by a significant margin of 12.73 percentage points in
terms of average EER across MAD22 [23] and its extensionMorDIFF
[10]. The higher zero-shot MAD capacity of the large architecture
ViT-L is justified by its higher number of parameters, which allows
it to learn a more complete set of features and thus perform bet-
ter in a wider variety of tasks without access to extra knowledge
(zero-shot learning) [5]. Taking these results into consideration, we
selected CLIP large trained without high-resolution images as the
FM architecture used in this work. This architecture is from now
on referred to as ViT-L.

4.2 Text Prompts
In this work, we evaluate CLIP’s zero-shot learning performance
in the MAD task when single and multiple prompts are used to
describe each classification label. When a single prompt is used per
class, we follow the textual descriptions proposed in [5], to pro-
vide directly comparable results while complying with the ISO/IEC
20059 standard [25]. However, differently from [5], we propose to
add a dot to each of the suggested textual prompts to comply with
the settings followed during CLIP’s training process [36]. Hence,
the single prompt per class scenario utilizes two possible prompts
to describe the analyzed samples: “face image morphing attack.”
and “bona-fide presentation.”. The multiple prompt scenario re-
quires a more careful design of the textual inputs, as it delves into
more detailed image specificities instead of focusing solely on its
possible labels. To provide a thorough investigation of the use-
fulness of different image attributes in boosting CLIP’s zero-shot
performance, we considered three attribute lists representing char-
acteristics linked to face images: identity (ID), presentation (Pr) and
appearance (Ap). The list of prompts for these three categories are
listed in Table 1. For each possible label, the {} field is substituted by
the correspondent ISO/IEC 20059 compliant definition, as described
above. For morphing attack samples, for example, this results in
the following ID prompt list: [“male face image morphing attack.”,
“female face image morphing attack.”, ..., “teen face image morph-
ing attack.”]. Note that all prompts used in the multiple prompt
scenario also include a dot in the end, following CLIP’s training
settings [36]. The different lists of prompts are also combined to
verify their grouped contribution to zero-shot evaluation, resulting
in four extra evaluation settings: ID+Pr, ID+Ap, Pr+Ap and All.

4.3 Image Pre-Processing
Before being evaluated by the FM, each sample was cropped follow-
ing [10] and then resized to 224 × 224 pixels and normalized follow-
ing the same setting used during CLIP’s training (𝜇 =[0.48145466,
0.4578275, 0.40821073], 𝜎 =[0.26862954, 0.26130258, 0.27577711])
[36]. These pre-processing steps ensure that the images fed to CLIP
comply with the image resolution and normalization settings origi-
nally used to train this FM [36].
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4.4 Datasets
To evaluate the zero-shot learning capacity of CLIP and ensure
consistent benchmarking and comparison with earlier research [5,
10, 23], MAD22 [23] and its extension MorDIFF [10] were selected
as evaluation datasets. These benchmarks are based on the Face
Research Lab London (FRLL) dataset [14]. They use the same set of
204 bona-fide images and use distinct morphing techniques to create
morphing attacks from the same pairs of bona-fide samples. MAD22
includes five sets of morphed samples; two of them were generated
by GAN-based representation-level methods (MIPGAN I and II
[46]) while the remaining three derive from image-level techniques
(FaceMorpher, OpenCV [29], andWebmorph). MorDIFF’s morphing
samples were generated with a diffusion autoencoder [35].

4.5 Evaluation Metrics
The metrics used to perform MAD evaluation in this study were
chosen to allow for consistent benchmarking [5, 10, 23] while en-
suring conformity with the ISO/IEC 30107-3 [24] standard. These
metrics include the Bona-fide Presentation Classification Error
Rate (BPCER) and the Attack Presentation Classification Error
Rate (APCER), which measure the proportion of bona-fide images
misclassified as attack samples and the proportion of attacks mis-
classified as bona-fide samples, respectively. To cover different
operational points and present comparative results, we report both
the APCER at fixed BPCER values and the BPCER at fixed APCER
values, evaluated at values of 1%, 10%, and 20%. We further report
the detection Equal Error Rate (EER), which provides a succinct
indicator of the overall performance balance of the system as it cor-
responds to the error rate at the operating point where the BPCER
and APCER are equal.

4.6 Explainability
To provide a comprehensive analysis of the performed experiments,
we analyze the relation between different text embeddings and
the input images, supporting our quantitative results with visual
explanations. To that end, the similarity score between 𝑒𝑖 and a text
embedding (obtained by passing single or multiple text prompts to
CLIP’s text encoder) is backpropagated through the image encoder.
This results in a text-conditioned image heatmap that highlights
the image regions that are more responsible for the similarity to the
analyzed textual embedding (𝑒𝐵𝐹 or 𝑒𝑀𝐴). We start by comparing
how the samples from each dataset are activated by single textual
prompts with bona-fide or morphing descriptions, as it is expected
that they generate distinct heatmaps. We further analyze the impact
that using different sets of multiple prompts has on the activations,
to verify whether distinct descriptions contribute differently to the
final activations.

5 Results and Discussion
This section presents a detailed analysis of the results obtained in
this work. We start by assessing the importance of complying to
the training settings followed during the multimodal FM training
process to achieve optimal zero-shot performance. Then, we ex-
plore the potential of using multiple textual prompts per label to
increase zero-shot learning performance. Finally, we provide an
explainability evaluation that showcases CLIP’s focus shift when

analyzing samples with distinct labels, highlighting its capacity
to distinguish bona-fide samples from morphing attacks without
fine-tuning to the MAD task.

5.1 The Power of Compliance
Table 2 presents CLIP’s zero-shot learning performance when us-
ing a single prompt to represent each class. The two first sections
present the results of MADation (TI) [5] and our implementation
of TI (TI w/o Dot), which used “face image morphing attack” and
“bona-fide presentation” as input text prompts, based on the ISO/IEC
20059 standard. While MADation (TI) normalizes the input sam-
ples with a mean and standard deviation of 0.5 on all dimensions,
our modified version, TI w/o Dot, defines the normalization hy-
perparameters as those used during CLIP training (𝜇 =[0.48145466,
0.4578275, 0.40821073], 𝜎 =[0.26862954, 0.26130258, 0.27577711]).
The last section, TI-Dot, follows the same sample normalization as
TI w/o Dot but further complies with CLIP’s training settings by
adding the dot character (“.”) in the end of both text prompts.

The analysis of the results shows that TI w/o Dot surpassed
MADation’s TI [5] implementation across all evaluated benchmarks
and metrics. Although the normalization setting used by TI (𝜇 =[0.5,
0.5, 0.5], 𝜎 =[0.5, 0.5, 0.5]) is commonly followed in MAD systems
training and evaluation, this strategy is suboptimal when evaluating
CLIP’s zero-shot performance, as this FM learned to classify images
normalized with a distinct distribution. These findings highlight the
importance of correctly adapting the input images’ pre-processing
depending on the model used to classify them.

When comparing TI w/o Dot and TI-Dot, the superiority of the
latter method is showcased by its decreased average error across 6
of the 7 analyzed metrics. In particular, adding a single dot character
(“.”) to the input text prompts fed to CLIP reduced the MAD EER
by 1.46 percentage points. These results support the previously
withdrawn conclusions, highlighting the importance of correctly
following the settings used to train FM’s when using them for zero-
shot evaluation on domain-specific tasks such as MAD. Taking this
into consideration, all the remaining experiments presented in this
paper follow the same normalization settings as TI-Dot and use
input text prompts that include the dot character.

5.2 Multiple Prompt Aggregation
Table 3 presents CLIP zero-shot learning performance when multi-
ple text prompts’ contributions are averaged for each class (morph-
ing attacks and bona-fide). These results are directly compared with
the scenario where a single text prompt per label is used (TI-Dot) to
quantify the impact of using multiple text prompts per class. It can
be seen that from 6 out of the 7 multiple prompt settings surpassed
TI-Dot in terms of average EER. In particular, the Pr+Ap setting
achieved the best overall performance, reducing the average EER
achieved with a single prompt per class by the considerable margin
of 2.71 percentage points.

While it is important to determine which prompt setting leads
to better zero-shot performance, it is also relevant to understand
how the different sets of prompts contribute to improving the per-
formance achieved with a single text prompt per class. An initial
assessment of each individual set of prompts (identity, presentation,
appearance) can be done by comparing the performance of set-
tings ID, Pr, and Ap, respectively, with the baseline, TI-Dot. While
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Table 2: Evaluation results for CLIP ViT-L using different
normalization settings and prompt design structures. The
best result achieved for each metric in each test dataset is
highlighted in bold.

Method Test data EER (%) APCER (%) @ BPCER (%) BPCER (%) @ APCER (%)
1.00 10.00 20.00 1.00 10.00 20.00

TI [5]

FaceMorph 44.60 98.40 79.70 63.60 99.02 87.25 76.96
MIPGAN_I 18.90 71.80 32.20 17.80 69.61 33.82 18.14
MIPGAN_II 12.80 56.70 17.00 8.90 59.31 17.16 8.33
OpenCV 35.47 96.24 77.54 63.11 96.08 73.53 55.39

WebMorph 25.20 94.80 52.00 30.20 87.75 50.98 32.35
MorDIFF 42.60 97.80 79.60 69.50 97.06 83.33 68.63
Average 29.93 85.96 56.34 42.19 84.81 57.68 43.30
Worst 44.60 98.40 79.70 69.50 99.02 87.25 76.96

TI w/o Dot (ours)

FaceMorph 17.70 49.50 22.90 17.30 83.82 35.78 13.73
MIPGAN_I 6.90 24.30 5.70 3.40 35.78 4.41 1.96
MIPGAN_II 3.40 10.51 1.10 0.70 16.18 1.47 0.49
OpenCV 16.26 59.25 20.73 14.63 78.92 28.43 10.29

WebMorph 17.60 62.40 24.00 16.40 67.65 28.43 14.71
MorDIFF 32.90 93.90 62.30 49.70 94.12 65.69 48.04
Average 15.79 49.98 22.79 17.02 62.75 27.37 14.87
Worst 32.90 93.90 62.30 49.70 94.12 65.69 48.04

TI-Dot (ours)

FaceMorph 18.10 61.20 25.10 16.40 88.73 34.31 17.65
MIPGAN_I 5.40 26.50 4.50 1.60 24.02 3.43 1.47
MIPGAN_II 3.50 13.41 1.20 0.20 10.78 1.47 0.49
OpenCV 16.06 66.97 21.14 10.98 67.16 21.57 10.78

WebMorph 18.40 75.60 30.60 17.40 77.45 32.35 19.12
MorDIFF 24.50 94.70 52.20 30.10 91.18 51.96 29.90
Average 14.33 56.40 22.46 12.78 59.89 24.18 13.24
Worst 24.50 94.70 52.20 30.10 91.18 51.96 29.90

ID falls behind TI-Dot in 6 out of the 7 averaged metrics, Pr and
Ap managed to surpass the single text prompt approach in all 7
metrics, with Pr performing better than Ap in 5 of them. These re-
sults suggest that while both presentation and appearance attribute
information positively contribute to increasing the performance
of the FM zero-shot performance, the incorporation of id-related
information is not beneficial. This conclusion is also supported by
the fact that ID+Pr shows increased performance in comparison to
ID while falling behind Pr in all 7 averaged metrics. Similar con-
clusions can also be withdrawn when comparing ID+Ap with ID
and Ap or All with Pr+Ap. The Pr+Ap setting, on the other hand,
manages to surpass Pr and Ap in most of the considered evaluation
metrics, suggesting that the presentation and appearance attributes
provide information presenting complementary benefits to the FM
zero-shot capacity. Overall, Pr+Ap proved to be the best perform-
ing approach, surpassing all remaining strategies in 3 out of the 7
average metrics, including the EER. The best average value for the
4 remaining metrics was achieved by either Pr or Ap, supporting
the individual contribution of these two settings towards increased
zero-shot performance.

While this study does not aim to achieve SOTA performance
but to provide a comprehensive analysis of zero-shot performance
when using different text input prompts and raise awareness to-
wards the importance of efficient prompt engineering and prompt
aggregation, the comparison between our MADPromptS strategy
and MADation [5] derives naturally from the previous comparison
established with the zero-shot learning results presented in this
work (Table 2). It is interesting to notice that Pr+Ap surpasses the
fine-tuned CLIP model proposed in [5] by 0.32 percentage points in
terms of average EER, without requiring any extra fine-tuning or
adaption to the downstream MAD task. The complete assessment
of the results provided in this section reveals the importance of
selecting appropriate text prompts when using FMs in the zero-
shot evaluation setting, highlighting the benefits that can arise

Table 3: Evaluation results for CLIP ViT-L using a single
prompt per class (TI-Dot) and multiple prompts per class.
The sets of prompts used for multiple text prompt zero-shot
evaluation provide more detailed descriptions than TI-Dot,
highlighting identity (ID), presentation (Pr) or appearance
(Ap) characteristics, as well as mixtures of these categories
(ID+Pr, ID+Ap, Pr+Ap and All). The best result achieved for
each metric in each test dataset is highlighted in bold.

Method Test data EER (%) APCER (%) @ BPCER (%) BPCER (%) @ APCER (%)
1.00 10.00 20.00 1.00 10.00 20.00

TI-Dot

FaceMorph 18.10 61.20 25.10 16.40 88.73 34.31 17.65
MIPGAN_I 5.40 26.50 4.50 1.60 24.02 3.43 1.47
MIPGAN_II 3.50 13.41 1.20 0.20 10.78 1.47 0.49
OpenCV 16.06 66.97 21.14 10.98 67.16 21.57 10.78

WebMorph 18.40 75.60 30.60 17.40 77.45 32.35 19.12
MorDIFF 24.50 94.70 52.20 30.10 91.18 51.96 29.90
Average 14.33 56.40 22.46 12.78 59.89 24.18 13.24
Worst 24.50 94.70 52.20 30.10 91.18 51.96 29.90

ID

FaceMorph 19.90 62.80 31.60 19.90 84.80 38.24 20.10
MIPGAN_I 7.00 21.30 5.60 2.70 25.98 5.39 1.47
MIPGAN_II 5.01 13.61 2.10 0.80 19.12 3.43 0.49
OpenCV 16.06 55.69 21.65 11.69 67.65 22.06 12.75

WebMorph 22.00 67.20 36.20 24.40 85.78 38.24 24.51
MorDIFF 21.40 82.30 43.20 27.00 86.27 37.75 24.02
Average 15.23 50.48 23.39 14.43 61.60 24.19 13.89
Worst 22.00 82.30 43.20 27.00 86.27 38.24 24.51

Pr

FaceMorph 14.00 53.60 17.40 10.60 71.57 21.08 8.33
MIPGAN_I 5.40 18.90 3.10 0.80 18.63 2.94 0.98
MIPGAN_II 3.40 9.91 0.90 0.20 8.33 0.98 0.49
OpenCV 13.21 57.62 15.85 10.06 56.37 20.10 7.35

WebMorph 25.60 81.60 43.60 30.20 83.82 47.06 33.33
MorDIFF 14.70 73.90 20.40 9.70 72.55 19.12 10.29
Average 12.72 49.26 16.88 10.26 51.88 18.55 10.13
Worst 25.60 81.60 43.60 30.20 83.82 47.06 33.33

Ap

FaceMorph 15.50 62.70 23.70 9.10 66.67 18.63 11.76
MIPGAN_I 6.40 19.00 2.50 0.60 14.71 3.43 0.98
MIPGAN_II 3.00 12.21 1.00 0.10 9.80 1.47 0.49
OpenCV 13.52 62.30 20.33 8.13 57.84 17.65 9.80

WebMorph 24.60 76.80 46.60 26.80 92.16 57.35 31.86
MorDIFF 15.00 78.90 30.20 8.20 60.78 17.65 12.75
Average 13.00 51.99 20.72 8.82 50.33 19.36 11.27
Worst 24.60 78.90 46.60 26.80 92.16 57.35 31.86

ID+Pr

FaceMorph 16.20 58.70 23.30 13.90 79.90 27.45 10.78
MIPGAN_I 5.90 19.20 3.90 1.90 23.04 3.43 0.98
MIPGAN_II 3.20 11.31 1.30 0.20 10.78 1.96 0.49
OpenCV 13.62 56.61 19.21 10.57 62.25 21.08 9.31

WebMorph 23.40 75.60 41.40 27.80 86.76 45.59 27.45
MorDIFF 18.40 79.00 15.80 31.80 81.86 27.45 15.69
Average 13.45 50.07 17.49 14.36 57.43 21.16 10.78
Worst 23.40 79.00 41.40 31.80 86.76 45.59 27.45

ID+Ap

FaceMorph 16.10 60.40 25.60 14.30 77.45 26.96 12.75
MIPGAN_I 6.50 17.70 3.90 0.80 16.67 4.41 0.98
MIPGAN_II 4.60 10.71 1.10 0.20 11.76 1.96 0.49
OpenCV 13.85 55.59 19.51 10.06 63.24 19.61 9.31

WebMorph 22.20 71.20 41.00 26.00 88.73 48.53 27.94
MorDIFF 17.70 79.10 35.00 16.20 78.43 27.94 15.20
Average 13.49 49.12 21.02 11.26 56.05 21.57 11.11
Worst 22.20 79.10 41.00 26.00 88.73 48.53 27.94

Pr+Ap

FaceMorph 12.90 55.40 19.80 9.50 70.59 19.61 9.80
MIPGAN_I 4.50 16.70 3.20 0.50 13.73 3.43 0.49
MIPGAN_II 3.60 9.81 0.90 0.10 9.80 0.49 0.49
OpenCV 12.80 55.79 18.70 9.04 56.86 16.67 7.84

WebMorph 23.60 77.60 47.00 28.80 87.75 51.96 31.86
MorDIFF 12.30 73.40 26.80 8.60 69.61 17.65 11.27
Average 11.62 48.12 19.40 9.42 51.39 18.30 10.29
Worst 23.60 77.60 47.00 28.80 87.75 51.96 31.86

All

FaceMorph 14.90 58.60 21.40 11.80 75.49 25.00 10.78
MIPGAN_I 5.40 17.10 3.80 0.60 17.16 3.43 0.49
MIPGAN_II 3.80 10.21 10.00 0.30 10.78 0.98 0.49
OpenCV 12.30 55.18 18.50 9.65 62.25 19.61 8.82

WebMorph 22.80 74.80 42.60 27.20 85.78 47.06 28.92
MorDIFF 15.50 77.60 30.40 12.00 76.47 24.02 13.24
Average 12.45 48.92 21.12 10.26 54.66 20.02 10.46
Worst 22.80 77.60 42.60 27.20 85.78 47.06 28.92
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Figure 1: CLIP’s average activation heatmaps for different MAD datasets when using a single text prompt to describe each
possible class (TI-Dot). Each block represents one dataset, displaying an average representation of all its samples as well as the
correspondent average activation heatmap. For each dataset, the first and second line highlight the heatmap associated with
the morphing attack and the bona-fide prompt, respectively. Since all the evaluation datasets considered in this work share the
same set of bona-fide samples, the average bona-fide activation maps are highlighted separately (first column). The average
input sample and heatmap associated with each dataset (second to foruth columns) correspond only to its morphing attack
samples.

Figure 2: CLIP’s average activation heatmaps for the morphing samples on the MorDIFF dataset when using multiple text
prompts to describe each possible class (ID, Pr, Ap, ID+Pr, ID+Ap, Pr+Ap, All). For each setting, the first and second line highlight
the heatmap associated with the morphing attack and the bona-fide sets of prompts, respectively.
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from efficient prompt engineer. Hence, this work paves the way
towards more efficient prompt engineering and aggregation, pro-
viding important insights regarding the importance of correctly
exploiting textual prompts to the user’s advantage by leveraging
FM’s zero-shot learning ability to a fuller extent.

5.3 Explainability
Figure 1 shows CLIP’s average activation heatmaps of different
datasets when using a single text prompt to describe each possible
class (TI-Dot). For each dataset, the first and second row highlight
the heatmap associated with the morphing attack and the bona-fide
prompt, respectively. All the evaluation datasets considered in this
work share the same set of bona-fide samples. Hence, the activation
maps for the bona-fide samples are highlighted separately, and the
average input sample and heatmap associated with each dataset
corresponds only to its morphing attack samples. It should be noted
that all these datasets use the same pairs of bona-fide samples to
create the morphing, which justifies the high similarity between
the average input samples shown for each scenario. It is possible to
observe that the heatmaps obtained when the morphing prompt
is encoded by the text encoder significantly differ from the ones
associated with bona-fide text prompts. In particular, the usage
of morphing prompts makes CLIP focus its attention in detailed
areas of the face, such as the mouth and jawline. These areas are
particularly prone to contain artifacts in morphing samples [10, 46],
highlighting CLIP’s capacity to focus on important characteristics
that might indicate the presence of a malicious sample without
any fine-tuning (zero-shot learning). It is also worth notice that the
heatmaps for presented morphing prompts generally show more
activation when analyzing morphing samples in comparison with
bona-fide images. These results complement the previous analysis
regarding the effectiveness of the proposed method, providing a
visual and easily interpretable explanation of the obtained results.

Similar heatmaps were also plotted for the different multiple
prompt scenarios analyzed in this work (Figure 2). This plot follows
the same presentation logic as Figure 1 and focuses on the MorDIFF
dataset, for which our ID+Pr multiple prompt strategy surpassed
the baseline (TI-Dot) by a larger margin. It can be seen that using
different sets of prompts to describe the input samples results in
different activation patterns, supporting their distinct influence in
CLIP’s performance. In particular, it is interesting to observe that
combining different sets of prompts in the proposed multiple text
prompt zero-shot approach results in activation maps that combine
characteristics from all the incorporated sets. As an example, when
analyzing the morphing heatmaps of ID, Pr and Ap it is clear that
ID results in a stronger activation in the eye region, followed by Ap
and finally by Pr. This tendency is kept when analysing joint contri-
butions, with ID+Ap showcasing the strongest activation in the eye
region, followed by ID+Pr and, finally, by Pr+Ap. The complemen-
tary nature of these activations is also in line with the conclusions
withdrawn in the previous section revealing that sets of prompts
that contribute to increase the baseline (TI-Dot) performance can
generally be combined to boost CLIP’s zero-shot MAD capacity
even more (Pr+Ap vs Pr and Ap) while combining a set that neg-
atively impacts CLIP performance with other prompt collections

reduces the performance achieved with a single benefitial prompt
set (ID+Pr vs Pr, for example).

Overall, it is possible to conclude that using single or multiple
prompts per class results in significantly different CLIP activations
(Figures 1 and 2), and that CLIP follows distinct attention patterns
when using different multiple prompt sets. These conclusions are
in line with the results displayed in Table 3, highlighting the im-
portance of effective prompt engineering to take the best possible
advantage of FM’s zero-shot learning capacity.

6 Conclusion
This work offers a comprehensive analysis of the use of multi-
modal FMs for the critical task of MAD under a zero-shot setting.
We demonstrate that careful alignment with the model’s original
training conditions, including appropriate textual prompt design,
can significantly enhance zero-shot performance without any fine-
tuning. Beyond this, we introduce and evaluate a strategy of ag-
gregating multiple carefully designed textual prompts per class,
enabling the model to capture more diverse and discriminative cues
relevant to distinguishing bona-fide from attack samples. While
using a single prompt per class provides only a general descrip-
tion of the target label, employing multiple prompts incorporates
more specific characteristics, shifting the model’s attention to a
broader range of details. Our experiments show that disjoint sets of
prompts exhibit complementary capabilities when combined. More-
over, leveraging prompt aggregation not only enhances zero-shot
MAD performance but can even surpass fine-tuned models, high-
lighting the untapped potential of well-designed textual prompts as
a simple yet effective alternative to task-specific fine-tuning. These
findings emphasize the importance of prompt design for zero-shot
FM predictions, paving the way for more generalizable and scalable
MAD solutions in biometric security applications.
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