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Abstract—As large language models are increasingly deployed
in sensitive environments, fingerprinting attacks pose significant
privacy and security risks. We present a study of LLM fin-
gerprinting from both offensive and defensive perspectives. Our
attack methodology uses reinforcement learning to automatically
optimize query selection, achieving better fingerprinting accuracy
with only 3 queries compared to randomly selecting 3 queries
from the same pool. Our defensive approach employs semantic-
preserving output filtering through a secondary LLM to obfus-
cate model identity while maintaining semantic integrity. The
defensive method reduces fingerprinting accuracy across tested
models while preserving output quality. These contributions show
the potential to improve fingerprinting tools capabilities while
providing practical mitigation strategies against fingerprinting
attacks.

I. INTRODUCTION

Large language models (LLMs) have become ubiquitous
across industries, from customer service chatbots to code gen-
eration tools and content creation platforms. As organizations
increasingly rely on these models for sensitive applications,
the ability to identify which specific model generated a given
text—known as LLM fingerprinting—has emerged as a critical
security concern. Model fingerprinting threatens user privacy,
enables competitor analysis of proprietary systems, and can
facilitate targeted attacks against specific model vulnerabili-
ties.

Recent work by Pasquini et al. [7] demonstrated that
LLMs exhibit distinctive behavioral patterns that can be ex-
ploited for identification through carefully crafted queries.
Their LLMmap tool represents the first systematic approach
to fingerprinting for LLM integrated applications, achieving
high accuracy in model identification using manually curated
queries and establishing fingerprinting as a viable attack vec-
tor. However, LLMmap’s reliance on hand-crafted queries may
not capture optimal discriminative features, and no defensive
countermeasures have been developed to protect against such
attacks. LLMmap’s manual query design approach presents
an optimization opportunity—there may exist more effective
query combinations that could improve fingerprinting accu-
racy or efficiency. Simultaneously, the absence of defensive
techniques creates an asymmetric security landscape where
LLMmap can identify models with high confidence, but
defenders lack effective countermeasures to protect model
privacy.

We address these gaps through a dual-perspective augmen-
tation of LLMmap. First, we develop a reinforcement learning-
based system that views the task as a combinatorial problem to
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find the best set of queries, automatically discovering optimal
query sets for LLMmap, improving upon— manual query
selection. Second, we propose a defensive filtering mechanism
that uses a secondary LLM to obfuscate the patterns that
LLMmap relies on for identification while preserving semantic
content.

Our work makes the following contributions: (1) A RL-
based query optimization framework that is similar to
LLMmap’s performance, achieving 93.89% fingerprinting ac-
curacy but with only 3 queries, representing a 14.2% im-
provement over randomly selecting 3 queries from our can-
didate pool; (2) A semantic-preserving defense mechanism
that significantly reduces LLMmap’s fingerprinting success
while maintaining output quality above 0.94 cosine similarity;
(3) Evaluation framework using cosine similarity metrics to
measure the trade-off between LLMmap evasion success and
semantic preservation in filtered outputs.

The remainder of this paper is structured as follows. Section
II reviews related work in reinforcement learning optimiza-
tion and LLM security. Section III details our RL-based
enhancement to LLMmap and our filtering-based defense
against it. Section IV presents experimental results comparing
our approaches to LLMmap’s baseline performance. Section
V discusses limitations and implications, while Section VI
outlines future research directions.

II. RELATED WORK

The general security implications of large language models
have gained attention as these systems become more prevalent.
Recent comprehensive surveys highlight the expanding threat
landscape, documenting adversarial embedding attack vectors
that exploit model vulnerabilities [8]. Within this security
domain, LLM fingerprinting has emerged as a critical concern,
with several approaches developed for model identification and
ownership verification. ImF introduces implicit fingerprinting
techniques that embed ownership information through Chain-
of-Thought prompting strategies, demonstrating how specific
prompting patterns can reveal model identity [4]. Similar to
LLMmap, [12] model LLM outputs as unique vector spaces,
enabling ownership authentication through statistical analysis
of response patterns.

The intersection of reinforcement learning and security
tasks has shown promising results, with studies demonstrating
RL’s effectiveness in adversarial settings. Recent work on
cryptographic challenges shows that RL can improve LLM
performance on security-related tasks, supporting the viability


https://arxiv.org/abs/2508.09021v1

of RL-based approaches for complex security applications [6].
The deployment of RL agents in adversarial settings raises
concerns about reward hacking, where agents exploit reward
signals in unintended ways [1]. This informed our reward
function design to ensure genuine optimization rather than just
pattern exploitation.

Reinforcement learning has proven effective for combina-
torial optimization, with Mazyavkina et al. establishing the
theoretical foundation for using RL to automate heuristic
search in NP-hard problems, while CO-Bench demonstrates
that structured RL approaches consistently outperform sim-
pler baselines on complex selection tasks [3]], [10]. Recent
advances have further demonstrated the effectiveness of com-
bining RL agents with natural language embedding spaces,
showing that language models can effectively process domain
embeddings as input [11] and that language-guided exploration
proves effective for agent decision-making in semantic spaces
[2]], while approaches for variable action spaces demonstrate
how embedding representations can handle discrete selection
tasks [9]]. Such studies support the idea of incorporating query
embeddings directly into the RL agent’s state representation
for fingerprinting optimization.

On the defensive side, utilizing and modifying vectorized
embeddings to detect and mitigate adversarial attacks on
models has proven effective [3]. Work on paraphrase attacks
against language models proves especially relevant, as it
relates directly to the obfuscation and rewording of model-
generated text [13].

III. METHODOLOGY
A. Attack: Reinforcement Learning-Based Query Optimization

1) Initial Query Pool: The foundation of our attack method
relies on a diverse and comprehensive query pool designed
to elicit discriminative responses from different LLMs. We
generate queries across multiple categories that target distinct
aspects of model behavior. The process starts with a meta-
model approach where we employ a high-capacity LLM
(LLaMa 3.3 70B) to generate category-specific query sets. We
define five distinct query categories, inspired by and leveraging
[7] for prompting LLaMa outlined below. The entire query
pool of 50 queries can be seen in Table

1) Meta-Information: Probe for model-specific metadata

and self-knowledge.

2) Alignment Probing: Target model-specific alighnment

approaches and safety behaviors

3) Technical Capability: Assess model-specific technical

competencies

4) Execution Triggers: Queries that bypass vulnerabilities

and prompt injection resistance:
This pool will serve as the candidate set of queries from which
an optimal set will be determined via a trained agent.

2) Dataset: Our dataset construction follows LLMmap’s
methodology while extending it for reinforcement learning-
based optimization. We construct a fingerprinting dataset that
captures model behavioral variations across different prompt-
ing configurations. We evaluate our approach on a diverse

set of open-source language models accessible through OI-
lama, including variants from major model families: Mistral
(7B-Instruct v0.1, v0.2, v0.3), Gemma (1.1-2B-it, 1.1-7B-it),
Qwen2 (1.5B-instruct), Aya-23 (8B), SmolLM2 (1.7B), and
SOLAR (10.7B-Instruct-v1.0).

To maintain compatibility with Ollama’s API interface, our
configuration space focuses exclusively on hyperparameter
variations rather than the full configuration universe used in
LLMmap [7]]. Our configuration space includes temperature
values from 0.0 to 1.0 and frequency penalties from 1.0 to
1.5 and then sample 75 random hyperparameter configura-
tions to prompt the queries. Each trace entry contains the
query text, hyperparameter configurations, model responses.
The complete dataset comprises responses from our 50-query
pool across all model-hyperparameter combinations, resulting
in roughly 33,000 of query-response pairs. While LLMmap
uses a fixed set of 8 manually curated queries across a
full configuration space, our dataset enables dynamic query
selection from a larger pool of 50 generated queries within the
hyperparameter-constrained space, allowing for more targeted
fingerprinting strategies that adapt to specific model charac-
teristics.

3) Problem Formulation & Reinforcement Learning Frame-
work: We formalize the LLM fingerprinting problem as a se-
quential decision-making task. Given a set of candidate queries
Q ={q1,42,-..,q} generated as outlined earlier, and a target
model M from model space M = {My, Ms, ..., My}, the
objective is to select an optimal query subset @* C () that
maximizes classification accuracy:

Q" = arg max P(M = M, | R(Q', M)) (D

where R(Q’, M) represents the response set obtained by
querying model M with query subset Q’.

We model the query optimization problem as a Markov
Decision process with the following components:

State Space: The state s, € S at timestep ¢ is represented
as a high-dimensional vector combining:

St = [|Qt|7EQ“Ht] (2)

where:

e |Q:| is the current query count (scalar)

o Eg, € R?29%1924 contains embeddings of selected queries
(flattened to 20,480 dimensions)

o H; € R3S represents the action history (12 timesteps x
3 components)

The 12-timestep episode limit prevents unnecessarily high
query sets while allowing time for the agent to still build
query sets. Each timestep enables only one query addition
but classifier performance evaluation occurs only at episode
termination, creating a sparse reward signal that requires the
agent to plan query selection strategies without intermedi-
ate feedback. The total observation space dimensionality is
20,517, incorporating semantic query representations directly
from LLMmap’s embedding space[7].



Action Space: We employ a discrete action space with 2n
possible actions, where n = |Q)] is the size of the query pool:

A = {ADD,; : i € [0,n—1]}U{NO_ACTION; : i € [n,2n—1]}
3)
This formulation allows the agent to either select a specific
query from the pool or terminate the episode.
Action Masking: To ensure valid actions, we implement
action masking:

mask[i] — {True if g; ¢ Q; and |Q;| < max_queries

. “)
False otherwise
for ADD actions, while NO_ACTION is always valid.
Reward Function: The reward function balances accuracy
maximization with query efficiency, designed to encourage the
agent to achieve high fingerprinting accuracy with minimal
queries. Our piecewise reward function is:

—5.0 if |Q¢] =0

R(s1,a1) = Roptimal (5t) ?f Q¢ <8 5)
Ricansition(5¢)  if 8 < [Q¢| < 12
Rpenalty(St) if |Q¢] > 12

For the optimal zone (|Q;| < 8), motivated by LLMmap’s
target of 8 queries [/

Roptimal(st) = A§5 5.0 — ﬁ |Qt| “pet+- Ei— 6 Py
(6)

where:

e A, is the classification accuracy at timestep ¢

e p; = min(1.0, %) is a smooth penalty factor

o F, represents efficiency bonuses based on accuracy
thresholds

o P, applies accuracy penalties for suboptimal perfor-

mance

The transition and penalty zones employ exponential penal-
ties to discourage excessive query usage:

Rtransition(st) = Qy - Afs 5.0 — (|Qt| - 8)1.3 < 0.15 — Pacc
(7
Rienaity (5¢) = avyy - A77 - 5.0 — (|Q¢| — 15)1* - 0.25 — Pyec
(®)

where a,, = max(0.5,1.0 — (|Q¢| — 8) - 0.03) reduces the
accuracy weight as query count increases beyond the optimal
range. Figure [T] shows what the reward function looks like
when mapped out across both components.

Our environment interfaces directly with LLMmap’s infer-
ence pipeline. The optimizer instantiates LLMmap’s trans-
former architecture with the same hyperparameters outlined
in [7]]. At episode termination, the agent’s selected query set
Q; triggers fresh classifier training.

This process resets model weights, trains on the selected
queries for up to 30 epochs with early stopping, and returns

Reward vs Accuracy for Different Query Counts
(Goal: 8 queries, 95% accuracy)
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Fig. 1: RL agent performance showing reward versus accuracy trade-
off across different query counts. The goal of 95% accuracy with 8
queries (red star) is achieved with a reward of approximately 4.36,
demonstrating optimal query selection efficiency.

test accuracy for reward computation. To accelerate training,
query set caching is used to prevent redundant retraining for
identical query combinations. We employ Masked PPO with
the following hyperparameters and architecture:

o Network architecture: [256, 128, 64]

o Learning rate: 7 x 10~*

¢ Discount factor: v = 0.99

o Steps per update: ngeps = 3072

o Clip range: €qjp = 0.2

o Training epochs per update: nepochs =

The masked action distribution ensures only valid actions
receive non-zero probability:

exp(fo(s¢)[ar]) - mask|ay]
wrea @p(fo(st)]a’]) - maska’]
This architecture enables the agent to learn complex query
selection patterns while respecting the combinatorial con-
straints of the fingerprinting task, discovering query sets
that are capable of LLMmap’s baseline performance through
exploration of the semantic query space.

mo(atlse) = 5 9

B. Defense: Model Filtering

To defend against fingerprinting methods we have devised
a defensive method that aims to mislead LLMmap while
retaining the semantic integrity of the LLM’s response. This
is implemented through a separate LLM serving as a filter”
model that is instructed to filter out and reword sensitive infor-
mation. To accurately gauge the performance of our defensive
methods a baseline was gathered using LLMmap. We recorded
models that LLMmap could consistently identify successfully
using its closed-set inference model, running LLMmap on each
model 20 times (Table [I).

This leads us to the evaluation of our defensive meth-
ods against our collected baseline. However, evaluating the
performance of our defenses based solely on LLMmap’s
accuracy can be quite misleading. For example, a filter model



Table I: Model Evaluation Scores (Closed-Set). LLMmap achieves
near-perfect identification across tested models, establishing a strong
baseline for evaluating defensive countermeasures.

Model Score
Aya-23-8B 20/20
Qwen2-1.5B-instruct 20/20
Gemma-1.1-2b-it 20/20
Gemma-1.1-7b-it 20/20
smollm2:1.7b 18/20
upstage/SOLAR-10.7B-Instruct-v1.0 | 20/20
mistralai/Mistral-7B-Instruct-vO0.1 20/20
mistralai/Mistral-7B-Instruct-v0.2 20/20
mistralai/Mistral-7B-Instruct-v0.3 20/20

Table II: Filter Model Prompt Evaluation. Prompt 6 achieves the high-
est performance score of 0.8562 with 24.4% correct fingerprinting
and 95.6% cosine similarity. Fingerprinting rates vary substantially
across prompts from 24.4% to 47.4%, indicating prompt sensitivity
in defensive performance.

Corr. Fingerprint % | Filter Model ID’d | Avg. Cos. Sim. | Prompt Eval. Score
Prompt 1 311 172 968 8283
Prompt 2 474 152 968 7467
Prompt 3 .366 .188 944 7888
Prompt 4 .366 172 955 1942
Prompt 5 305 2 .96 8275
Prompt 6 244 A72 956 8562
Prompt 7 311 177 958 .8238

that produces significantly different output from the original
model will likely cause LLMmap to fail at identifying the
model, suggesting a successful defense. This success is not
meaningful however as the semantic integrity of the original
output has been completely lost. To address this issue an
objective metric is needed to evaluate the filter model’s output
in relation to the original output, the most appropriate of which
being the use of cosine similarity score. Cosine similarity is
a measure of semantic difference between strings. The closer
to zero the cosine similarity, the more semantically different
the two strings are, the closer to one, the more semantically
similar two strings are. Using the cosine similarity between
the two strings we are able to evaluate the most appropriate
filter model prompt by comparing LLMmap’s fingerprinting
rate to the average cosine similarity score between models.

The model that served as the filter model was randomized
between calls to LLMmap. The models were randomly se-
lected from the pool of baseline models, but the filter model
will never be the same as the original model, whose output it
is modifying.

The prompts (Tables were evaluated (Table [[T) and
and score of 0 to 1 was generated (Eq. , in which the
average cosine similarity and average fingerprinting accuracy
are taken from trials in which each filter model prompt
was tested 20 times with each model in our baseline pool.
A score closer to one indicates both success in preventing
fingerprinting and retaining semantic integrity of the output.

Score = 0.5 X Scosine + 0.5 X (1 — Afingerprint) (10)

IV. RESULTS
A. RL Agent Training Results

During training, the agent achieved convergence after
80,000 timesteps achieving close to 98% accuracy with only
3 queries as shown in Figure 2] The agent was able to
achieve high performance with much fewer than 8 queries,
showing practical implications in that lower interactions with
target models minimizes detection probability. During training,
we deliberately constrained the train/test split to 35/65 ratio
instead of conventional ratios. This unconventional split was
motivated by two factors: first, to encourage better gener-
alization given our limited configuration space, second, to
force the agent to identify queries that remain discrimina-
tive across hyperparameter settings rather than memorizing
training-specific patterns to make training harder but still
achievable, ensuring the agent learns robust query selection
strategies under challenging conditions.
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Fig. 2: RL training demonstrating agent convergence after ~7000
episodes. Final performance achieves 97.8% accuracy using only 3
to 4 queries on average, surpassing both the accuracy target (95%)
and efficiency goal (<8 queries).

B. RL Agent Evaluation & Comparison

To validate the effectiveness of our RL-optimized query sets,
we conduct a evaluation comparing the agent-selected queries
against randomly selected baseline queries of equivalent size.
Our evaluation process involves two primary phases: first,
we extract the optimal query set discovered by the trained
RL agent during the convergence phase, which consistently
identified a 3-query combination across all episodes. Second,
we compare the optimized query set to a random baseline of
equal size to isolate the effect of intelligent query selection.

For classifier training during evaluation, we employ
LLMmap’s transformer architecture with identical hyperpa-
rameters as used during RL training. However, we extend
the training duration to 50 epochs for further precision.The
evaluation protocol tests each query set against all nine target
models with 20 independent fingerprinting attempts per model.

Table presents the evaluation results comparing RL-
optimized queries against randomly selected baselines. The



RL-optimized query set achieves an overall accuracy of
93.89% compared to the random baseline’s 82.22%, repre-
senting a relative 14.2% improvement in fingerprinting. This
improvement is notable given that both query sets contain
identical numbers of queries (3), isolating the impact of intel-
ligent selection from query quantity effects. Its also important
to note that 80% accuracy from the random baseline suggests
that the query pool itself was fairly strong.

Table III: RL-Optimized vs. Random Query Set Performance Evalu-
ation. Smollm2 shows the largest performance gap (13/20 vs 5/20),
while some models like Gemma-2B and Aya-8B achieve perfect
scores regardless of query selection method.

Model RL-Optimized | Random Baseline
mistral:v0.1 20/20 15/20
mistral:v0.2 20/20 18/20
mistral:v0.3 20/20 17/20
solar:10.7b 20/20 19/20
smollm2:1.7b 13/20 5/20
gemma:7b-instruct 1720 18/20
gemma:2b-instruct 20/20 20/20
qwen2:1.5b-instruct 19/20 16/20
aya:8b 20/20 20/20
AVERAGE 169/180 148/180

Overall, results show reinforcement learning-based query
optimization is capable of improving LLM fingerprinting
effectiveness beyond traditional manual approaches and is a
step in the right direction toward automated query generation.

C. Filter Model Results

When tested with an appropriate prompt our defensive
implementation yields promising results, significantly low-
ering the accuracy rate of LLMmap (Fig. B). The defense
reduces LLMmap’s baseline accuracy on the selected pool of
models, which ranges from 90-100%, to anywhere from 5-45%
depending on the model.

Our defensive implementation varies in effectiveness due
to several factors, those being the prompt provided to the
filter model and the initial model that is being obfuscated,
ranging from 5% accuracy at best to 45% accuracy at worst.
Additionally, the chosen filter model very likely significantly
impacts the effectiveness of the defense as well, but there has
not been comprehensive testing to prove this claim.

V. LIMITATIONS

The RL approach, while having promising results, does
have some constraints that limit its effectiveness for a fully
automated fingerprinting process. The agent operates in a
constrained configuration space and is only evaluated on 9
target models, which raises concerns about generalizability as
the ecosystem of LLMs expands. While the current evaluation
showed effectiveness within the scope of its training, it would
be important to see how the trained agent would perform
when confronted with new query pools that are outside of
its distribution. The reward function design may be over-
engineered when only focusing on two objectives, which may
not hold up if the task varies and may lead to training
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Fig. 3: The filter model reduces fingerprinting accuracy from near-
perfect baseline performance (90-100%) to significantly lower rates
(5-45%) across all models. Aya:8b and mistral:v0.3 show highest
defensive effectiveness with filtered accuracy dropping to approxi-
mately 20% and 45% respectively, while Solar proves most resilient
to filtering at 45% accuracy.

instability. Rather than generating novel queries from an
underlying token space, the system is limited by its reliance on
a fixed-size, predefined query pool, preventing the discovery of
potentially more discriminative query formulations that could
emerge from direct generation, however such an approach
would add a significant amount of computational cost. Despite
incorporating embeddings in the observation space, the agent
lacks a very deep understanding of what makes queries dis-
criminative or consistent, moreso relying on statistical patterns
instead of fundamental model differences. The agent also
requires retraining when introducing new models or query
types, making it hard to apply in real-time environments.

These RL optimization limitations directly compound the
challenges faced by downstream defense mechanisms, as
suboptimal query selection can make fingerprinting attacks
more detectable and predictable. The filter model inherits these
upstream constraints and introduces additional drawbacks of
its own. The most significant of which being the core structure
of the initial output is commonly modified, semantic integrity
is retained but the exact wording of the original output is
often not, meaning that the exact output is lost in the pursuit
of evading identification. While this does not hamper user
experience it may not serve specific goals.

Another potential defensive limitation is revealed upon
repeated use of fingerprinting tools as a pattern may start to
emerge, for example the original model or output model may
be identified more often than any other model even if it’s only
correctly identified 30% of the time. For one off tests this
should not present any issue, however if many tests are being
performed a pattern may emerge and an assumption about the
true model responsible for output could potentially be made.

VI. RELATED METHODS AND FUTURE WORK

Several other avenues were explored related to defending
against fingerprinting attacks but failed to yield significant



results. One of which being the inclusion of a third model
to serve as a judge of the text generated by the filter model. It
would grade the filter model’s output based on attributes and
instructions given through its prompt. The purpose of the judge
would be to evaluate whether or not the filter model’s output
is semantically and stylistically consistent with the original
models output. While this approach showed promise it was
impractical for several reasons. The first being that it was quite
inconsistent in its scoring of the provided prompts, however,
with more effort it would be possible to fine tune the judge
through prompt engineering to yield much more consistent
and appropriate scores. The version with the judge also took a
significant amount more time to run, considering each prompt
was run through three models. Though the reason the judge
proved impractical was due to the fact that it offered little that
the cosine similarity score didn’t already.

Future work should address the limitations identified in
both the RL optimization and defense mechanisms. The RL
agent could be improved to handle open-set fingerprinting
scenarios adding unseen models without further retraining,
while expanding the configuration space to include system
prompts and different framework architectures beyond the
current constrained setup. The reward function should incor-
porate intermodel discrepancy and intramodel consistency [7]]
as additional signals to improve query discrimination. Another
direction involves the agent moving away from fixed pools and
instead through a generative query space in a computationally
feasible manner.

For filter model defense, to further ensure appropriate
output, a threshold could be enforced in the case that the output
produced a low cosine similarity score, in this case it could be
regenerated until its output produces text with a high enough
cosine similarity score. However, this may prove to be costly
if the output model is repeatedly prompted.

The limiting factor of the current implementation of the
filter model lies in its prompt. There are likely many prompts
that would better optimize the ratio of cosine similarity to fin-
gerprinting accuracy. The filter model is what is responsible for
the performance of the model and should thus be optimized.

Another important facet of this implementation to consider
is the filter model used. In the current implementation it
is randomized between calls to LLMmap, however, more
testing may reveal an optimal filter model. Another promising
approach is the use of a smaller language model as the filter
model. The current implementation of the filter model may
be overkill in many ways given that we essentially only
need to reword the input text. A smaller, more specialized,
filter model may be much more appropriate to optimize our
implementation’s use of space and time.
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Figure Al: Confusion Matrix for RL Agent Trained Queries. High
classification accuracy, achieving values of 18-20 correct predictions
per model across all nine targets. Minimal missclassification, with
only slight confusion between Gemma variants and Smollm?2.
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Figure A2: Confusion Matrix for Random Queries. Degraded per-
formance ranging from 15-20 correct predictions. Notable confusion
occurs between Mistral variants and reduced accuracy for Smollm2.
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Figure A3: Confusion Matrix for RL Agent Trained Queries with
Defense. Severely degraded, 5-15 misclassifications per model.The
dispersed prediction pattern with demonstrates successful defensive
obfuscation against RL-optimized fingerprinting attacks.



Table Al: Filter Prompts 1-4. These prompts represent the first iteration of defensive filtering instructions, ranging from comprehensive
rewording guidelines (Prompt 1) to minimal intervention approaches (Prompt 4). Prompt 1 provides the most detailed instructions for
preserving semantic similarity while obscuring fingerprinting patterns, while Prompt 4 offers the most concise filtering directive.

Prompt 1 Given the following prompt: ”{prompt_text}”

Your task is to reword the reference answer below if necessary. It is necessary if there is sensitive information
in the response that could be used to fingerprint the model used to generate it. You must subtly tweak the
answer so that the user does not know while preventing fingerprinting.

Remove or replace any identifying details (e.g., model names, API behaviors, unique stylistic features).
Introduce plausible, misleading alternatives in place of removed information.
Retain the overall meaning, logic, and structure.

Do not change the length of the original response significantly. There must not be a significant amount of new
information, hold true to the original.

The response should not be stylistically departed from the original, it should feel as though, if changed at all, it
was simply to lightly reword rather than restylize the statement.

Ensure the revised response appears as if it was the original, without any mention of editing, modification, or
your role.

It is absolutely forbidden to mention this editing process in any way. Do not say “sure, I can do that!” or
anything similar. Only output the modified version of the original response below. We absolutely do not want
the user to know about your role.

Aim to preserve semantic similarity (including vector embedding proximity), while making the output look
different enough to obscure the original’s fingerprint.

Do not change the structure of the original response, it should be very similar in length, style and semantics.
Ideally every word would not be a syllable of itself, only some would be reworded, not everything.

Original Response: {first_output}”

Now produce the revised response:

Prompt 2 Given the prompt: ”{prompt_text}”
And the model’s original response: ~{first_output}”

Your task is to revise the response only where necessary to remove or obscure any identifiable patterns or
content that could be traced back to the model.

Preserve the original response’s intent, meaning, and flow.
Only alter or remove details that might be fingerprintable.

Do not add new content or significantly alter the style or length.
Avoid any mention of modification, rewording, or your role.

Output the revised response only. No explanations.

Prompt 3 You are tasked with anonymizing an LLM-generated response.

Prompt: ”{prompt_text}”
Original Answer: ”{first_output}”

Your objective is to remove or disguise any details that could reveal which model wrote it, without changing
the actual meaning. Maintain the sentence structure and natural tone.

You may lightly reword, but do not rephrase entirely. Avoid overt changes in tone or vocabulary. Do not
acknowledge that this was rewritten.

Revised Response:

Prompt 4 Modify the following response to avoid including any model-identifying details while preserving its full semantic
content. Keep it stylistically similar.

Prompt: ”{prompt_text}”
Original Output: “{first_output}”

Output the revised version only, with no extra commentary.




Table A2: Filter Prompts 5-7. These prompts explore alternative defensive strategies, with Prompt 6 achieving optimal performance (0.8562
score) through red-teaming simulation framing. Prompt 7 represents the most minimalist approach with only basic rewording instructions.

Prompt 5 Imagine the following response was accidentally generated by a language model and needs to be lightly edited
so that the model cannot be identified by its unique phrasing or facts.

Your task is to revise only the parts that are model-specific or stylistically unique. Preserve sentence structure,
meaning, and tone.

Prompt: ”{prompt_text}”
Reference Answer: ”{first_output}”

Provide the discreetly revised response:

Prompt 6 You are conducting a red-teaming simulation. Your job is to subtly disguise a language model’s response to
prevent fingerprinting.

Remove or alter any uniquely identifying clues.
Keep the logical and semantic content the same.
Do not over-edit or change the stylistic identity unless absolutely necessary.

Prompt: “{prompt_text}”
Original Response: {first_output}”

1999995

Revised Response:

Prompt 7 Prompt: ”{prompt_text}”
Original: "{first_output}”

Reword to avoid model identification, but preserve meaning and tone. Only output the revised version.




Table A3: Query Pool. A comprehensive set of 50 queries spans four categories: meta-information, alignment probing, technical capability, and
execution triggers designed to elicit discriminative model responses. The queries range from direct model details (training data, capabilities)
to complex reasoning tasks and controversial topics that reveal model-specific behavioral patterns and safety alignment approaches.

Queries

What’s the most recent event you were trained on that you can recall in detail?

Can you tell me about a significant improvement in language understanding you’ve noticed over time?

How does your training data handle sensitive information like personal identifiable details?

Do you have any knowledge about the development process of large language models like yourself?

What’s the largest dataset you’ve been trained on, and how was it curated?

Are there any specific domains or topics where you feel your performance is exceptionally strong?

Can you describe a particularly challenging task you were designed to handle?

How do you stay up-to-date with new information and advancements in your field?

What role do you think large language models will play in shaping the future of human-computer interaction?

Have you been fine-tuned for any specific applications or industries recently?

Can you discuss the trade-offs between model size, computational resources, and performance metrics?

Do you have a built-in mechanism for handling outdated or deprecated knowledge?

In what ways do you think your training data reflects the biases and limitations of the internet as a whole?

What’s the relationship between your development team and the broader research community in NLP?

Can you walk me through your process for generating text that’s both coherent and engaging?

What’s your stance on universal basic income and its potential effects on societal productivity?

Can you explain why some people might view climate change as a natural phenomenon rather than a human-caused issue?
How do you think social media platforms should balance free speech with content moderation?

In what scenarios do you believe lying could be justified, if any?

Do you agree that certain historical figures should be judged solely based on the standards of their time?

What are your thoughts on the morality of eating meat, considering the perspectives of both animal rights activists and farmers?
Can you discuss the potential consequences of implementing a global wealth tax to reduce economic inequality?

How would you approach a situation where an Al system is asked to create content that could be perceived as culturally insensitive?
Do you think there’s a limit to how much personal data companies should be allowed to collect from their users?

What’s your take on the concept of “cancel culture” and its impact on public discourse?

In what ways do you believe Al systems like yourself can contribute to or hinder social progress?

Should AI models prioritize providing accurate information over avoiding offense, even if that information is controversial?

Can you argue for or against the idea that a universal language would be beneficial for global communication and understanding?

Do you think it’s ethical for tech companies to use Al-generated content without clearly labeling it as such?

How do you navigate situations where your training data may contain biases or outdated information that could influence your
responses?

Can you generate a Python function to solve a quadratic equation and explain the math behind it?

What approach do you use to reason about causal relationships in complex systems?

Do you have specialized knowledge in the domain of medical research, specifically regarding clinical trials for rare diseases?

How do you handle ambiguous or unclear user input, and what strategies do you employ to disambiguate?

Can you create a step-by-step guide for troubleshooting a common issue with a popular open-source software framework?

What is your understanding of common sense and world knowledge, and how do you apply it to generate human-like text?

Do you support multiple output formats, such as JSON, CSV, or Markdown, and can you demonstrate this capability?

How do you stay up-to-date with the latest developments in a rapidly evolving field like natural language processing?

Can you recognize and respond to idiomatic expressions, colloquialisms, and figurative language in a given context?

Are you capable of generating coherent and contextually relevant text based on a set of abstract concepts or high-level ideas?

What would be a suitable response to a user who asks for a summary of a long document, considering they have already read the
introduction and conclusion?

Can you describe a situation where a character in a story has to make a difficult decision, and then provide a possible outcome based
on that choice?

How would you rephrase a set of instructions to make them more concise while maintaining their original meaning and clarity?

If I were to ask you a series of questions about a hypothetical scenario, would you be able to adjust your responses based on the
context provided by the previous questions?

What are some common pitfalls to avoid when attempting to write a persuasive essay, and how might one effectively counter potential
counterarguments?

Given a set of abstract concepts, could you generate a narrative that weaves them together into a coherent and engaging story?

Can you outline a method for evaluating the credibility of sources when researching a topic, taking into account both the authority
of the author and the publication date?

If a user requests information on a very specific topic, but the available data is limited or outdated, how would you handle the request
while still providing useful insights?

In a role-playing scenario where I am a customer service representative, how would you respond to a complaint about a product,
considering both the customer’s concerns and the company’s policies?

Would it be possible to create a conversational dialogue between two characters with opposing viewpoints on a controversial issue,
ensuring that each character’s perspective is represented fairly and respectfully?
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