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Abstract—Intrusion Detection Systems (IDS) have an increas-
ingly important role in preventing exploitation of network vul-
nerabilities by malicious actors. Recent deep learning based
developments have resulted in significant improvements in the
performance of IDS systems. In this paper, we present FetFIDS,
where we explore the employment of feature embedding instead
of positional embedding to improve intrusion detection perfor-
mance of a transformer based deep learning system. Our model is
developed with the aim of deployments in edge learning scenarios,
where federated learning over multiple communication rounds
can ensure both privacy and localized performance improve-
ments. FetFIDS outperforms multiple state-of-the-art intrusion
detection systems in a federated environment and demonstrates
a high degree of suitability to federated learning. The code for
this work can be found at https://github.com/ghosh64/fetfids.

Index Terms—Network intrusion detection, Federated Learn-
ing, Feature Embedding, Transformer.

I. INTRODUCTION

The rise of Internet of Things (IoT) based systems has
created more opportunities for web attackers to exploit vulner-
abilities in a network and obtain confidential data. Intrusion
Detection Systems (IDS) have become a critical component
of networks, and have generated significant research interest.
Traditional methods such as Naive-Bayes classifiers, Random
Forest classifiers, and Support Vector Machines (SVM) have
been long instrumental in developing robust IDS algorithms
[1]. However, multiple studies show data-driven learning based
methods to outperform traditional methods [2], [3].

Recent development in the IDS domain center around deep
learning algorithms [4]–[6]. In [5], an autoencoder based intru-
sion detection system is proposed that can outperform popular
SVM approaches by a large margin. The advent of attention
based deep learning—which has been shown to perform very
well in the computer vision and natural language processing
domain—has created significant research interest and has
resulted in the application of vision transformers in intrusion
detection [7]. In [8]–[11], transformer based models have been
shown to provide superior intrusion detection performance in
diverse network environments.

Another recent advancement in Intrusion Detection Systems
is the adoption of federated learning. Federated approaches,
especially for IoT devices, demonstrate superior performance
compared to centralized machine learning-based intrusion de-
tection systems [12]. In [6] a multinomial logistic regression
(MLR) based method is shown to perform well in a federated

learning environment. In [13], a transferable federated learning
based IDS is presented.

In this paper, we develop Feature embedded transformer
based federated IDS (FetFIDS), a novel attention based deep
learning model utilizing feature embedding. we propose a
federated learning regime with the explicit aim of enhancing
intrusion detection for each deployed node and compare our
model’s performance to benchmark algorithms.

The contributions of this work are as follows:

1) We develop a novel transformer based deep learning
model aimed at focusing the attention of the model on
identifying unique features of attack data. To the best of
our knowledge, this is the first use of feature embedding
instead of positional embedding to improve intrusion
detection performance.

2) We also propose the use of sequential attention blocks
instead of a single attention block to further improve the
performance. Our algorithm outperforms multiple state-
of-the-art algorithms in a federated intrusion detection
environment.

3) Re-implementing deep learning based IDS benchmark
methods can be challenging due to the absence of pub-
licly available code for a vast majority of the published
algorithms. We have made code implementations of both
our proposed method, and the used benchmark methods
publicly available. This ensures reproducibility of the
presented results, and can be useful to future researchers
in this domain.

This paper is organized in the following manner: In Section
II, we explain our system architecture, the feature embedding
process, the classifier model, and the federated intrusion
detection environment. Finally, in Section III, we present our
experimental setup and show that our proposed algorithm
significantly improves the intrusion detection performance in
a federated environment.

II. SYSTEM ARCHITECTURE

In Fig.1, we present the setup for our federated intrusion
detection system. Then in Fig. 2, we present the complete
architecture of our proposed deep learning model, incorporat-
ing an attention based network with feature embedding, and
an multi layer perceptron based classifier. In this section, we
further discuss the different components of the setup.
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Fig. 1: A summary of the federated setup used to train models deployed on the connected IoT devices. The nodes represent
the devices chosen to participate in federated training and the local models are the models used on the devices to train with
their local, private data.

Fig. 2: Architecture of the proposed intrusion detection system.

A. Nodes

We consider a network of Internet of Things devices con-
nected to each other. Each node monitors the data packets
that are flowing through the network and detect malicious
data packets injected by attackers using a deep learning
based intrusion detection model deployed on the local devices.
The intrusion detection systems are always collecting local

data, training their models on local data and participating in
communication rounds with the central server.

B. Attention Based Deep Learning Model

The deep learning model is an attention based model,
presented in Fig. 3. The input is a 1D vector that contains
the features of the network traffic data. Attention models
are typically aimed at drawing the focus of the model on
the contextually important parts of an input. The multihead
attention function consists of several attention heads that focus
the attention of the model on different aspects or different
features of the data. The computed attention matrix tells the
model which part of the input is important in relation to
itself. This is called self-attention. Multiple attention heads
(MA-Head) generate multiple attention matrices that enable
the model to learn which aspects are important and which
are not meaningful for model learning. The attention function
itself takes three inputs: Query, Key. and Value. The query
corresponds to what we are looking for, the key corresponds
to what we can offer and the value corresponds to what we
have. The input is broken down into these three vectors before
it serves as inputs to the attention function.

A(Q,K, V ) = Softmax(
QKT

√
dk

)V (1)

where dk is the dimension of the Query and Key vectors.
This process is repeated for each attention head. The softmax
term is responsible for generating the actual attention matrix



Fig. 3: Attention encoder.

Fig. 4: Feature embedding architecture.

that tells the model which features most closely relate to which
other features from the input. The matrix V then generates
more contextually aware vectors that are the same shape as
the input. Although the dimensions of the input and output
are the same, the output vector is now a new value vector that
contains more context about the inputs, related features and
focuses on features that are important for model learning. We
feed this vector into a learnable linear layer to consolidate the
information and this is the output of the encoder model.

To ensure our model actually learns, we design the archi-
tecture of the model to have sequential multiheaded atten-
tion layers. This enables the contextually rich vector from
each attention model to be further enriched by sequential
computation of attention. This gives the model consolidated
information about several aspects of the input. In addition,
we use BatchNorm as our normalization method instead of
LayerNorm which is usually used in attention based encoders.
BatchNorm normalizes each feature independently depending
on the batch statistics. This has been empirically shown to
help our model perform with a higher accuracy of detection.
The computation can be given as:

x̂i ←
xi − µB√
σ2
B + ϵ

(2)

and
yi ← γx̂i + β (3)

where µB ← 1
m

∑m
i=1 xi and σ2

B ← 1
m

∑m
i=1(xi − µB)

2 and
m is the batch size. We use 8 attention heads and 3 attention
blocks in our implementation.

C. Feature Embedding

Attention models are typically aimed at drawing the focus
of model learning towards a particular feature in a dataset.
For a computer vision task, particular regions of an image
could require model attention. Positional embeddings of the
patches also tell the model about the location of those features.

Similarly, for a language model, the position of a word in a
sentence gives models information about positional context.
However, for a network dataset, positional embeddings would
not give the model very much contextual information because
they typically have only one entry in the sequence, not a series
of flows that are sequential and tell about the progression of
the attack. Therefore, instead of using a positional embedding,
we use what we term as a feature embedding. The deep neural
network used for feature embedding is presented in Fig. 4. We
use a Convolutional Neural Network (CNN) to generate the
feature embedding. The model consists of sequential convolu-
tion layers and ReLU non linear activation. This enables the
model to obtain high level features from the input.

yj = bj +

nc−1∑
c=0

p∑
k=−p

xc,j−kwc,k (4)

where x is the input and w are the weights corresponding
to the kernel. This feature embedding is combined with the
original 1D input vector before they are both passed into the
attention-based encoder layer.

D. MLP Classifier

The MLP Classifier is a shallow classifier in which each
layer performs the following computation:

FFN(x) = max(0, xW + b) (5)

where W, b are the weights and biases of that layer. This is
followed by a Batch Normalization layer to provide stability to
model training. The final output of the layer is converted into a
probability distribution using the softmax activation function.
This can be given as:

Softmax(zi) =
ezi∑J
j e(zj)

(6)

where J is the number of classes and zi corresponds to the
layer output without activation. The output from this layer is
used to compute the loss of the model. For our multiclass
classification problem, we use Negative Log Likelihood loss
and that can be given as:

θML = argmin
θ

− EX,Y∼Pdata
log(Pmodel(Y |X, θ)) (7)

where Pdata is the distribution of the data, Pmodel accounts
for uncertainities in the model.



E. Federated Setup for Intrusion Detection

Each node trains a local model using only locally available
data. Only the local model weights are then sent for aggrega-
tion to the central server. The central server employs a FedAvg
aggregation algorithm [14] to generate parameter weights for
a global model. This averaged global model is then sent back
to all the nodes. The nodes then train this global model further
using local training data. This process is repeated for multiple
communication rounds.

The operation to calculate global model weights from local
model weights can be represented by the following equation:

∀k,wk
t+1 ← wt − ηgk;wt+1 ←

K∑
k=1

nk

n
wk

t+1 (8)

where wt are the model weights after communication round
t, nk is the number of local samples in the training data,
assuming we have K total nodes.

III. EXPERIMENTAL RESULTS

A. Dataset

In this study, we use the NSLKDD dataset [15], which is a
popular standardized network traffic dataset, generated using
traffic monitoring software to log and monitor network traffic
packets. This dataset has 41 features and 5 different kinds of
attack classes broadly classified into Benign, DoS, U2R, R2L,
and Probing. We divide the training data among 5 devices
with the same distribution of data in each device. This leads
to class imbalance for some of the classes of data, however, we
do not augment the data to address the imbalance. This is to
emulate a more realistic scenario where we cannot guarantee
the number of data packets seen at each device, and a model
may not see many data packets belonging to a certain class.
We use 85% of the data for training, 7.5% for validation, and
7.5% for testing.

B. Experimental Setup

The main aim of this paper is to improve the accuracy of
detection of malicious data packets. During training, each node
sees all classes of data for classification. There is also no
overlap between the benign or attack data present in different
nodes during training. Each node only sees a fraction of the
training data, effectively making the the number of samples
in the local datasets much lower than a centralized system.
We employ the AdamW [16] optimizer with a learning rate
of 0.001, weight decay of 1e-2 and the loss function is
Categorical Crossentropy. We use a learning rate scheduler that
follows an exponential decay. For the federated model, we run
20 rounds of federated model aggregation with 20 epochs of
local training. We test the performance of intrusion detection
algorithms after each communication round using a separate
test set that has no overlap with the training or validation set.

Benchmark Algorithms: In this study, we inspect and
compare intrusion detection performance for the proposed
method with multiple state-of-the-art algorithms. Firstly, we
implement the autoencoder based method presented in [5]. In

Fig. 5: Comparison of performance between the Proposed
method, Autoencoder, TransFIDS, and MLR over 20 federated
communication rounds.

TABLE I: Performance Characteristics for Different Models.

Accuracy Precision Recall F1 Score
FetFIDS 77.00 97.47 64.66 77.73
Autoencoder 73.84 96.68 60.06 74.06
TransFIDS 71.74 97.05 56.91 71.68
MLR 74.01 96.36 60.34 71.17

this approach, an autoencoder is trained to learn the important
features of the input data. The important features are then
extracted from the autoencoder and fed into a MLP classifica-
tion head to perform multiclass classification. This method was
shown to outperform traditional SVM and Robust Covariance
based classifiers by a significant margin in a centralized
learning environment. The second benchmark implementation
is TransIDS, a transformer based model similar to [9] which
has been shown to perform well in a centralized IoT en-
vironment. Finally, we also compare against a multinomial
logistic regression (MLR) based method from [6] that used
the SGD classifier, and was shown to achieve state-of-the-art
performance in a federated learning environment.

C. Performance Comparisons

In Fig. 5 we present the accuracy of FetFIDS and the three
benchmark methods over the 20 training rounds. In Table I,
we present the final values of the four performance metrics
after 20 communication rounds. Then in Figs. 6, 7, and 8 we
track the precision, recall and F1 score for the same setups.

From Figs. 5, 6, 7, and 8, we can see that FetFIDS
outperforms the competing methods on all four metrics -
accuracy, precision, recall, and F1 score. From Fig. 5, we see
that in terms of intrusion detection accuracy, there is a visible
difference between FetFIDS and the autoencoder, TransIDS,
and MLR based methods. Among the compared methods, our
method beats the best performing method (MLR) by 3% and
the lowest performing method (TransFIDS) by 7%. FetFIDS
shows an increase in accuracy with increase in communication
rounds which is the desired behaviour of the model, indicating
that the model learns new information over communication



Fig. 6: Comparison of precision values over 20 federated
communication rounds.

Fig. 7: Comparison of recall values over 20 federated com-
munication rounds.

rounds. Our proposed model exhibits stable testing accuracies
and less fluctuations over the communication rounds, beating
the other methods in every communication round.

For TransIDS, the performance deteriorates with communi-
cation rounds, which is surprising as it is also an attention-
based method. Our implementation of multi headed attention
blocks follows closely the architecture of the encoder in a
transformer block, however, the difference is that we use a
feature embedding module instead of a positional encoding
model, and utilize sequential attention blocks. This goes to
show that the vector being enriched with sequential feature-
based information is more meaningful to the model than
positional or contextual information.

The performance of TransIDS highlights the risks associated
with blindly employing models developed for a centralized
learning environment to a federated environment. On the other
hand, despite also being developed for a centralized system,
the autoencoder performs almost at par with MLR, which was
developed for a federated system.

From Fig. 6, we can see that FetFIDS is very good at
avoiding false positives. Recall, which is the most challenging
of the four metrics, shows good performance improvements for
the proposed method over federated communication rounds
in Fig. 7. The other algorithm specifically developed for
a federated setup, MLR, shows instability in performance,
where it fails to maintain performance improvements over
communication rounds. Finally, from Fig. 8, the F1 score

Fig. 8: Comparison of F1 values over 20 federated communi-
cation rounds.

Fig. 9: Intrusion detection accuracy for all 5 nodes over 100
federated communication rounds.

shows a similar trend to the accuracy plot, but the improvement
in the performance of FetFIDS over multiple communication
rounds is more evident here.

D. Node Performance

Next, in Fig. 9, we present the per node accuracies for
FetFIDS for a simulation run where we let the system train
for 100 communication rounds, and provide the intrusion
detection performance on the test set after each communication
round. We can see that the proposed method provides stable
learning improvements for all the nodes. There is some differ-
ence between the accuracies of different nodes, with Node 3
showing consistently better performance and Node 5 showing
consistently worse performance compared to the average.
Overall we can see that there are clear phases of rapid learning
followed by somewhat stable results. This indicates that for
resource constrained training setups, reducing the number
of federated communication rounds can be a good trade-off
between performance and computational requirements.

E. Hyperparameter Tuning

In Fig. 10, we present the empirical evidence behind some
of the hyperparameter choices in this work. Firstly, we explore
the effect of tuning the learning rate. For FetFIDS, we use
exponential learning rate decay with gamma of 0.7 and cate-
gorical crossentropy loss, selected via empirical experiments.
We present another case with a fixed learning rate of 0.0001



Fig. 10: Effect of hyperparameter tuning.

TABLE II: Number of Parameters, Flops, and Inference
Time for Different Algorithms.

FetFIDS Autoenc. TransFIDS MLR
Flops 1.07M 0.94M 0.16M -
Parameters 116.64k 66.51k 121.70k -
Time 19.10µs 4.67µs 14.90µs 0.24µs

without exponential decay (labeled ’Without Tuned LR’ in
Fig. 10). This has worse performance and also demonstrates
learning instability between communication rounds. Next, we
investigate the use of focal loss [17] instead of categorical
crossentropy, as this is supposed to be advantageous in a
federated dataset with in-node class imbalance. However, focal
loss fails to bring performance improvements.

F. Computational Complexity

In Table II, we present the Floating Point Operations Per
Second (Flops) and number of parameters for the three deep
learning based models and the inference time for a single
test packet for the four algorithms. Firstly, in terms of local
processing power, the FetFIDS model needs more computing
power compared to the Autoencoder or TransFIDS. This is
due to the employment of multiple attention blocks, and
the feature embedding pipeline. However, TransFIDS has the
highest number of model parameters, which means that it
requires the most bandwidth for federated model aggregation.
Finally, in terms of inference time, MLR is the fastest one,
which is expected as it is a simple logistic regression based
method. All of the methods are very fast, processing a single
packet in a matter of microseconds. This shows that the
performance improvements provided by the feature embedding
based approach have some trade-offs in terms of inference
speed and computational complexity.

IV. CONCLUSION

In this paper, we develop an intrusion detection system
for a federated learning environment. The proposed sequential
transformer attention block based deep learning model incor-
porates feature embedding to generate more meaningful inputs
to the intrusion detection classifier. The proposed algorithm,

FetFIDS, outperforms benchmark intrusion detection systems
while also demonstrating learning stability over federated
learning communication rounds. Our model as well as our im-
plementations of benchmark algorithms are publicly available
for reproduction. In the future, we aim to focus on further
developing the model to reduce its computational footprint
and inference time, while maintaining state-of-the-art intrusion
detection performance.
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