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Abstract—The proliferation of AI-powered cameras in
Intelligent Transportation Systems (ITS) creates a severe
conflict between the need for rich visual data and the
fundamental right to privacy. Existing privacy-preserving
mechanisms, such as blurring or encryption, are often
insufficient, creating an undesirable trade-off where either
privacy is compromised against advanced reconstruction
attacks or data utility is critically degraded. To resolve
this impasse, we propose RL-MoE, a novel framework that
transforms sensitive visual data into privacy-preserving
textual descriptions, eliminating the need for direct image
transmission. RL-MoE uniquely combines a Mixture-of-
Experts (MoE) architecture for nuanced, multi-aspect scene
decomposition with a Reinforcement Learning (RL) agent
that optimizes the generated text for a dual objective
of semantic accuracy and privacy preservation. Extensive
experiments demonstrate that RL-MoE provides superior
privacy protection, reducing the success rate of replay
attacks to just 9.4% on the CFP-FP dataset, while simul-
taneously generating richer textual content than baseline
methods. Our work provides a practical and scalable
solution for building trustworthy AI systems in privacy-
sensitive domains, paving the way for more secure smart
city and autonomous vehicle networks.

Index Terms—Connected and Autonomous Vehicles, Pri-
vacy, Reinforcement Learning, Vision Language Model,
Mixture of Experts

I. INTRODUCTION

The growing integration of artificial intelligence (AI)
and Internet of Things (IoT) technologies in intelligent
transportation systems (ITS) has significantly enhanced
the capabilities of urban mobility management. From
traffic monitoring and congestion analysis to automated
violation detection and smart infrastructure planning,
ITS plays a pivotal role in shaping the future of trans-
portation. A key component of these systems is the
use of roadside cameras, which continuously capture
visual data to enable real-time decision-making and
improve road safety. However, this reliance on visual
data also introduces serious privacy challenges. As these
systems often record personally identifiable information
(PII), such as vehicle license plates, individual faces, or
behavioral cues, there is a growing concern about data
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misuse, unauthorized surveillance, and compliance with
privacy regulations.

Traditional privacy-preserving mechanisms, such as
image blurring, obfuscation, and masking, have been
widely adopted to mitigate the risk of exposing sensitive
information. These methods typically focus on altering
or hiding portions of the image to make it harder to
identify individuals or vehicles. However, recent studies
have shown that such approaches are often insufficient.
Sophisticated adversarial attacks and advanced image
reconstruction techniques can sometimes reverse these
modifications, leading to the recovery of sensitive details.
Furthermore, excessive obfuscation may compromise the
utility of the data, limiting its effectiveness for tasks
like traffic pattern analysis, behavior prediction, or urban
planning. Therefore, there is a critical need for more ro-
bust and intelligent methods that can maintain a delicate
balance between data utility and privacy preservation.

While these methods offer a coarse level of protection,
they represent a binary, all-or-nothing approach. They
fail to provide a mechanism to controllably filter out PII
while preserving task-critical semantic content. This lack
of granular control forces system designers into a rigid
choice between insufficient privacy and impoverished
data. The central research question we address is: how
can we abstract visual data in a way that is dynamically
tunable to the specific privacy-utility requirements of a
given task?

In response to these challenges, this paper introduces
RL-MoE, a novel framework that transforms visual data
into structured textual descriptions, thereby minimizing
the need to store or transmit raw images. The core
innovation of RL-MoE lies in its combination of two
advanced machine learning strategies: RL and a MoE
model. By leveraging these techniques, the framework
aims to ensure accurate scene interpretation while sig-
nificantly reducing privacy risks.

To do so, a MoE framework is utilized to generate
and collect textual information from captured images
based on customized prompt database. The collected data
will be refined through a RL model which evaluates
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the output by text-based evaluation metrics. The final
output will be comprehensive description of the captured
images.

The contributions of this paper are as follows:

1) We introduce a new paradigm for visual privacy
that transforms raw images into structured textual
descriptions. This approach fundamentally moves
the privacy-utility frontier beyond the limitations
of traditional obfuscation and encryption tech-
niques by replacing data perturbation with con-
trolled semantic abstraction.

2) We design and implement a novel framework that
synergistically combines a MoE model for fine-
grained scene analysis with a RL agent for policy-
based text optimization. To our knowledge, this is
the first application of such a hybrid architecture to
the problem of privacy-preserving data generation,
enabling an unprecedented level of control over the
output.

3) We propose and formulate a composite RL reward
function that explicitly encodes the dual objectives
of semantic relevance (via BERTScore), coverage
(via ROUGE), and conciseness. This mechanism
allows the system’s output to be dynamically tuned
for different operational contexts, from high-utility
evidence gathering to high-privacy traffic monitor-
ing.

4) We provide a comprehensive evaluation on four
distinct transportation-related datasets (TRAN-
COS, RoRFD, Pedestrian, and a general object
dataset) and two face-privacy benchmarks (CFP-
FP, AgeDB-30). Our results demonstrate that
RL-MOoE significantly outperforms state-of-the-art
baselines in both quantitative privacy metrics (e.g.,
reducing attack success rates by over 27% com-
pared to the next-best method) and textual quality.

II. RELATED WORK

This section surveys the three core research areas
that inform our work: privacy-preserving visual data
processing, the use of reinforcement learning for con-
trollable text generation, and the application of Mixture-
of-Experts architectures in generative models.

A. Privacy-Preserving Visual Data Processing

The challenge of protecting privacy in visual data has
been approached from several distinct paradigms. Tradi-
tional methods often involve direct image manipulation,
such as face masking, blurring, or obfuscation [1]. While
simple to implement, these techniques are often insuffi-
cient, as they can be vulnerable to reconstruction attacks
and may still leak identifying information through other
features. More advanced approaches can be categorized
into three main groups.

The first paradigm is based on encryption. These
methods apply cryptographic operations directly to im-
age data before processing. A prominent technique is
Double Random Phase Encoding (DRPE), which trans-
forms an image into stationary white noise, allowing
for tasks like classification or captioning to be per-
formed on the encrypted data without decryption [2],
[3]. Some variants propose partial encryption, where
only sensitive regions of an image are encrypted, leaving
the rest intact to provide context for the model [4].
While offering strong, mathematically-grounded privacy,
encryption-based methods can be computationally ex-
pensive and may degrade semantic information to a
degree that hinders complex scene understanding [2], [4].

A second paradigm involves adversarial and obfus-
cation techniques. These methods aim to modify data
to confuse a specific observer, either human or ma-
chine. For instance, the IPPARNet framework generates
adversarial images that are visually coherent but are
designed to be misclassified by recognition models, with
a restoration network available for authorized users [5].
Another novel approach fundamentally alters the data
representation itself, such as lifting a 3D point cloud into
a “3D line cloud,” which obfuscates the precise geometry
of a scene while retaining enough information for tasks
like camera localization [6]. These methods are often
highly creative but are typically designed to defeat a
specific analysis technique and may lack generalizability
or formal privacy guarantees.

The third and most relevant paradigm is generative
and synthetic methods, which focus on replacing sen-
sitive data with new, privacy-safe content. This includes
image-to-image replacement [5] and, more aligned with
our work, image-to-text transformation. A key work in
this area is “Synthesis via Private Textual Intermediaries
(SPTI),” which first generates a textual description from
an image and then applies formal Differential Privacy
(DP) to the text generation process to create a private
synthetic dataset [7]. Another related approach by Rezaei
et al. uses a feedback-based reinforcement learning strat-
egy to iteratively refine text generated from images,
but does not employ a structured decomposition of the
scene [1].

In summary, while these paradigms have advanced
the field, a gap remains for a framework that offers
fine-grained, semantic control over the privacy-utility
trade-off, rather than applying a uniform, one-size-fits-
all mechanism like encryption or noise. This conclusion
directly motivates our work.

To provide a clear overview, the following table com-
pares these dominant paradigms:



TABLE I

COMPARATIVE ANALYSIS OF PRIVACY-PRESERVING TECHNIQUES

Technique

Methodology

Privacy Guarantee

Control Granularity

Key Limitation

Encryption-based [2], [4]

Adversarial/
Obfuscation [5], [6]

Generative (DP-Text) [7]

Apply cryptographic oper-
ations (e.g., DRPE) to im-
age pixels.

Modify data to confuse a
specific observer or hide
geometry.

Generate text from image,
then apply DP to the text.

Cryptographic (provable
if keys are secure).

Heuristic (empirical, not
formal).

Formal (Differential Pri-
vacy).

Empirical (measured via
attack success rate).

Coarse (pixel-level).

Medium  (feature-level
or representation-level).

Coarse (adds noise to the
overall generation pro-
cess).

Fine (word/concept-level
via RL policy).

High computational over-
head; can destroy semantic
context.

Often threat-model specific;
may lack generalizability.

Lacks fine-grained control
over the content of the gen-
erated text.

Lacks a formal privacy guar-
antee like DP.

RL-MoE (Proposed) Decompose scene  with
MoE; optimize text with
RL.

B. Reinforcement Learning for Controllable Text Gener-
ation

Reinforcement Learning (RL) has emerged as a pow-
erful technique for text generation, primarily because it
can optimize for complex, non-differentiable sequence-
level metrics that are difficult to handle with standard
supervised learning. Early work in applying RL to image
captioning demonstrated its potential but also highlighted
challenges such as learning bias from shaped rewards
and slow, unstable training due to the large action
space [8]. Policy-gradient algorithms like REINFORCE,
which we employ in our framework, are commonly
used to directly optimize text generation policies against
custom reward functions.

A key challenge in RL-based text generation is the
design of the reward function. Traditional approaches
often rely on coarse, sentence-level feedback, which
provides a sparse and noisy learning signal. To address
this, recent research has shifted toward designing more
fine-grained, token-level rewards that provide a denser
signal to the agent. For example, the FIRE and TOLE al-
gorithms propose novel methods for deriving token-level
rewards, demonstrating superior controllability and faster
convergence compared to methods using sentence-level
feedback [9]. Our composite reward function, which
balances relevance, coverage, and conciseness, is aligned
with this modern trend toward more nuanced reward
engineering.

Furthermore, the intersection of RL and formal pri-
vacy is a burgeoning research area. A prime example
is the work by Fung et al. (2021), which successfully
integrated Differential Privacy (DP) with RL for the
task of authorship anonymization [10]. Their framework
uses a REINFORCE training reward function to gen-
erate text that preserves the original semantics while
removing identifiable writing styles, thus providing a
formal privacy guarantee for the author’s identity. This

approach of using RL to optimize for a dual objective of
utility and privacy is highly aligned with our work and
demonstrates that it is feasible to train text generation
models with policy-gradient methods while providing
mathematical privacy guarantees. This establishes a clear
and promising path for future work to integrate formal
privacy guarantees into our framework.

C. Mixture-of-Experts (MoE) in Generative Models

The Mixture-of-Experts (MoE) architecture is an en-
semble learning technique where a “gating network”
dynamically routes inputs to a set of specialized “expert”
sub-networks [11]. In the context of modern large lan-
guage models (LLMs), MoE has been primarily adopted
as a strategy for computational efficiency. By activating
only a fraction of the model’s total parameters for any
given input, MoE models can scale to trillions of pa-
rameters while maintaining manageable inference costs.
This has led to the development of powerful open-source
MOoE models like Qwen3 and Phi-3 [12], [13].

However, our work proposes a novel application of
the MoE architecture. While the community has focused
on MoE for scaling and efficiency, we repurpose it for
structured semantic decomposition. In our framework,
the experts are not general-purpose language models but
are specialized for distinct, privacy-relevant aspects of a
visual scene (e.g., Traffic, Pedestrians, Signs). The gating
network learns to weigh the importance of each aspect
based on the input image. To our knowledge, RL-MoE
is the first framework to use an MoE architecture for the
specific purpose of dividing a visual scene for controlled,
privacy-aware generative abstraction, demonstrating a
new utility for this powerful architecture beyond com-
putational scaling.

III. PROBLEM STATEMENT

Roadside cameras are widely used in ITS, and they
capture a high number of images every day. They assist



with data collection for different purposes such as viola-
tion detection, safety, and control, etc. Despite the wide
range of applications by these devices, privacy concerns
have been very discussed along their applications [14],
[15]. The captured raw images may include personal
details like vehicle information, location history, and
even pedestrian biometric data.

It is shown in [16] how the privacy of captured images
in a violation detection project in Queensland is under
question. A similar project is being conducted in the
state of California and Maryland. They utilize cameras
to record traffic violations [17]. These cameras try to
blur faces, but it does not always work. However, they
might blur the wrong areas or miss important parts that
should be hidden [18], [19].

Although various methods are utilized to protect the
privacy of captured images such as masking, obfusca-
tion, and blurring, many current methods do not protect
privacy well. For example, Jian et al. [20] show that these
methods can be attacked using Al tools like adversarial
attacks. These attacks can sometimes reveal a person’s
identity, or [21] also show that hiding visual information
is not always safe.

IV. PROPOSED APPROACH: RL-MOE

To address the challenge of preserving privacy while
maintaining data utility in ITS, we introduce RL-MOoE,
a novel framework that transforms raw visual data
into optimized, privacy-aware textual descriptions. Our
approach avoids the direct transmission and storage
of sensitive images, fundamentally shifting the privacy
mechanism from data obfuscation to controlled seman-
tic abstraction. The framework operates in three main
stages: (1) a Vision-Language MoE model performs a
multi-faceted analysis of the scene; (2) a feed-forward
neural network computes relevance weights for each
expert’s output; and (3) a RL agent aggregates and re-
fines the generated text to produce a final, coherent, and
privacy-preserving description. The overall architecture
is depicted in Figure 1.

Let Z be an input image from an ITS camera. Our
objective is to learn a generative policy, my, param-
eterized by 6, which maps the image Z to a textual
description W = (w1, wsa, ..., wr). The policy is trained
to maximize an expected reward J(0) = Ew ry(|7)»
where the reward function R is a composite metric
designed to balance data utility and privacy preservation.

A. Vision-Language MoE for Scene Understanding

The first stage of our framework employs a Mixture-
of-Experts (MoE) architecture to decompose the com-
plex task of scene understanding into specialized, man-
ageable sub-tasks.[2, 1] This decomposition allows for a
more nuanced and comprehensive analysis than a single

monolithic model. Each expert is a specialized Vision-
Language Model (VLM), specifically Llama 3.2, tasked
with analyzing a distinct aspect of the traffic scene.
A Retrieval-Augmented Generation (RAG) mechanism
is used to select the most relevant prompts for each
expert from a dedicated prompt list, ensuring targeted
and context-aware analysis. Our framework consists of
four experts:

o Traffic Assessment Expert: Analyzes vehicle dy-
namics, including movement, congestion levels, and
traffic flow. It leverages optical flow algorithms to
estimate vehicle trajectories and extracts insights on
vehicle density and speed.

o Road Signs Detection Expert: Identifies and in-
terprets critical road signage and traffic control
elements by integrating specialized text extraction
techniques for regulatory signs.

o Pedestrian Detection Expert: Focuses on identify-
ing and tracking pedestrians using the YOLO-Pose
model. This enables accurate pose estimation and
movement tracking to infer pedestrian behavior and
intent.

« Environmental Analysis Expert: Extracts contex-
tual information about the scene, such as weather
patterns, road surface conditions, and visibility lev-
els (e.g., fog density, rain intensity).

Each expert generates a textual description, and these are
aggregated to form a rich, multi-faceted initial represen-
tation of the scene, denoted as W, k.

B. Expert Weight Computation via Feed-Forward Neural
Network

To prioritize the most relevant information from the
experts, a Feed-Forward Neural Network (FFNN) dy-
namically assigns a relevance weight, a.,,, to each ex-
pert’s output based on the global features of the input
image. The FFNN takes a holistic image embedding as
input and processes it through its hidden layers. The
final layer uses a softmax activation function to produce
a normalized probability distribution over the experts,
ensuring that Zn]\le a,y, = 1. The weight for the m-th
expert is calculated as:

esm

U, = S 1
where z,, is the logit output of the FFNN for expert
m and M is the total number of experts. This adaptive
weighting allows the framework to prioritize, for exam-
ple, the Traffic Assessment Expert in a congested scene
or the Pedestrian Detection Expert in an area with high
foot traffic.

C. Reinforcement Learning for Text Optimization

The final and most critical stage of our framework
uses a RL agent to merge, refine, and optimize the
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Fig. 1. Proposed Model Architecture: The model has four main components. Each one is an expert in a specific domain. They receive scores
that show how much they contribute to the final generated text description. The calculated score is obtained from the FFNN which receives it
directly from the input. Considering the generated textual descriptions from each expert and obtained scores, the RL component will combine
descriptions based on computed scores using three metrics (BLEU, ROUGE, BERTScore).

aggregated textual descriptions from the MOoE stage.
The goal is to synthesize a single, comprehensive, and
contextually coherent output that maximizes utility while
minimizing redundancy and privacy risks. We formalize
this as a Markov Decision Process (MDP) and use the
REINFORCE algorithm for policy optimization.

1) MDP Formulation: The text optimization task is

defined by the tuple (S, A, P, R,~):

o State Space (S): A state s; at timestep ¢ consists of
the sequence of tokens generated so far, W;,_; =
(w1, ...,wi—1), along with the initial aggregated
text from the MoE, Wj,r, and the expert weight
vector, «.

« Action Space (A): The agent performs text editing
operations. The action space includes ‘Insert(w)°,
‘Delete(w)*, ‘Substitute(w, w’)‘, and ‘Reorder(w,
w’)‘ to manipulate the text fragments.

« Policy (my): The agent’s policy mg(a¢|s;) is param-
eterized by a neural network with parameters 6. It
maps the current state s; to a probability distribution
over the action space A.

¢ Reward Function (R): A key contribution of our
work is the composite reward function designed
to balance the privacy-utility trade-off. The final
reward for a generated text W is a weighted sum
of three scores:

R(W’Y) = )‘1 . Jrel(WW) + /\2 . Jcon(W7>
+ A3 Jeon (W) 2)

where \; are hyperparameters. The components
are a Relevance Score (J,.) that measures se-
mantic similarity between the generated text W7
and a ground-truth reference description W,y us-
ing BERT-based cosine similarity ; a Conciseness

Score (J.,,) that penalizes redundancy and en-
courages brevity ; and a Coverage Score (J..,)
that ensures key insights from all relevant experts
are retained, evaluated using BLEU and ROUGE
metrics against the aggregated expert text Wy,p.

2) Policy Optimization: We use the REINFORCE
algorithm to update the policy parameters 6. The policy
gradient is estimated by sampling trajectories and is
given by:

N

VoI(0) ~ >

i=1

T
> Valogmg(aiylsizs) | (Gi —b)

t=1

3)
where N is the number of trajectories, GG; is the total
reward for trajectory ¢, and b is a baseline (e.g., a running
average of rewards) used to reduce variance. To encour-
age exploration and prevent premature convergence to a
suboptimal policy, we add an entropy regularization term
to the objective function. The final optimized text is then
transmitted for downstream tasks such as real-time traffic
monitoring or smart city analytics.

V. EXPERIMENTAL SETUP

To validate the effectiveness of our proposed RL-MoE
framework, we conduct a series of experiments designed
to evaluate its privacy-preserving capabilities and the
quality of the generated textual descriptions. This section
details the datasets, evaluation metrics, baselines, and
implementation specifics.

A. Datasets

We utilize a diverse set of public datasets to ensure
a comprehensive evaluation across various scenarios
relevant to ITSs.



« TRANCOS: This dataset contains images of real-
world traffic scenes with varying vehicle densities,
making it ideal for evaluating the performance
of our Traffic Assessment expert and the overall
framework under realistic conditions.

+ RoRFD (Road Signs in Far-field and Day-light):
We use this dataset to specifically test the Road
Signs Detection expert and the model’s ability to
correctly identify and interpret regulatory informa-
tion from images.

« Public Pedestrian Datasets: To evaluate the Pedes-
trian Detection expert and the model’s performance
in privacy-sensitive scenarios involving people, we
use a combination of publicly available pedestrian
datasets.

e CFP-FP and AgeDB-30: These are standard
benchmarks for face-privacy evaluation. We use
them exclusively for our quantitative privacy met-
rics (SSIM, PSNR, MSE, and SRRA) to measure
the framework’s resilience against identity recon-
struction and replay attacks.

B. Evaluation Metrics

Our evaluation is twofold, focusing on both the
strength of the privacy protection and the utility of the
generated text.

1) Privacy Metrics: We quantify the privacy-
preserving capabilities of our framework using four
metrics:

o Structural Similarity Index (SSIM), Peak Signal-
to-Noise Ratio (PSNR), and Mean Squared Er-
ror (MSE): These metrics are used to measure
the fidelity of a hypothetically reconstructed image
against the original. Lower SSIM and PSNR values,
and higher MSE values, indicate lower similarity
and thus stronger privacy protection.

o Success Rate of Replay Attacks (SRRA): This
metric evaluates the risk of re-identification. We
simulate a replay attack by attempting to match
features extracted from the generated text against
a database of original images. A lower SRRA
indicates that the textual description has more ef-
fectively anonymized identity-bearing information.

2) Textual Quality Metrics: To assess the utility and
quality of the generated descriptions, we use a combi-
nation of standard NLP metrics and custom evaluations:

« BLEU, ROUGE, METEOR, and CIDEr: These
are standard, widely-recognized metrics for evalu-
ating the quality of machine-generated text, partic-
ularly in image captioning. They measure fluency,
recall, precision, and consensus against reference
descriptions [2].

o Named Entity Recognition (NER) and Modifiers:
We count the number of named entities and de-

scriptive modifiers in the generated text. Higher
counts suggest a more detailed and semantically
rich description.

e Word Count and Unique Word Count: These
metrics measure the length and lexical diversity of
the generated text, providing insight into the level
of detail.

C. Baselines and Ablation Study

To demonstrate the superiority of our approach, we
compare RL-MoE against two state-of-the-art external
baselines and two internal ablation variants.

o AdvFace: As a representative of adversarial ob-
fuscation techniques, this baseline modifies image
features to confuse recognition models while at-
tempting to preserve visual quality.

o Feedback-based RL: This model from Rezaei et al.
[1] represents the closest architectural alternative, as
it also uses reinforcement learning to generate text
from images but lacks our proposed Mixture-of-
Experts decomposition and structured reward mech-
anism [3].

o MoE-only (Ablation): This variant consists of the
aggregated, unrefined text generated by the four
experts without the RL optimization stage. It al-
lows us to measure the contribution of the scene
decomposition alone.

o RL-only (Ablation): This variant uses a single,
general-purpose VLM (without the MoE structure)
whose output is then refined by our RL agent.
This measures the impact of the RL optimization
in isolation.

D. Implementation Details

All experiments were conducted on a system equipped
with an NVIDIA GeForce RTX 4050 GPU and 16
GB of RAM, using Python 3.11. The core framework
is implemented using PyTorch and the Hugging Face
Transformers library. The key hyperparameters for the
RL agent, determined through empirical tuning, are
detailed in Table II.

TABLE 11
KEY HYPERPARAMETERS FOR THE RL AGENT

Hyperparameter Value

Policy Network Architecture

Learning Rate () le-4
Discount Factor () 0.99
Reward Weights (A1, A2, A3) [0.2, 0.4, 0.4]
Entropy Regularization (/3) 0.01
Batch Size 32
Optimizer Adam

Transformer Decoder (2 layers, 4 heads)




VI. RESULTS AND DISCUSSION

Our experiments were designed to validate the core
claims of our RL-MoE framework: that it provides su-
perior privacy protection while generating high-quality,
useful textual descriptions. This section presents and
interprets the results from our empirical evaluation,
including a detailed ablation study to demonstrate the
synergy of our framework’s components.

A. Privacy Protection Performance

A primary objective of RL-MOoE is to provide ro-
bust privacy protection against reconstruction and re-
identification attacks. We evaluated this using the CFP-
FP and AgeDB-30 datasets, with the results summarized
in Table III and Table IV.

TABLE III
PRIVACY METRICS EVALUATION ON THE CFP-FP DATASET

Method SSIM| PSNR| MSE| SRRA (%) |

AdvFace 0.89 23.54 314.7 13.01

Feedback-based 0.85 22.18 365.2 11.25

RL-MOoE (Ours) 0.78 20.15 410.6 9.40
TABLE IV

PRIVACY METRICS EVALUATION ON THE AGEDB-30 DATASET

Method SSIM| PSNR| MSE/| SRRA (%) /|
AdvFace 0.87 22.91 347.8 14.12
Feedback-based 0.83 21.88 389.1 12.63
RL-MoE (Ours) 0.75 19.98 435.5 10.10

The results clearly demonstrate that RL-MoE provides
significantly stronger privacy guarantees than both base-
lines. On the CFP-FP dataset, our framework achieves a
Success Rate of Replay Attacks (SRRA) of just 9.4%, a
marked improvement over the 13.01% achieved by Ad-
vFace and 11.25% by the feedback-based model . This
indicates a substantial reduction in the risk of successful
re-identification from the generated text. Furthermore,
the consistently lower SSIM and PSNR scores, along
with a higher MSE, show that any hypothetical recon-
struction from the text would be of significantly lower
fidelity, thus protecting visual privacy more effectively.

B. Textual Quality Evaluation

Beyond privacy, the generated text must be useful. We
assessed textual quality by measuring the level of detail
and semantic richness. As shown in Figure 2 and Fig-
ure 4, RL-MoE consistently produces more detailed and
lexically diverse descriptions than the baseline methods.
The higher counts of named entities and descriptive mod-
ifiers indicate that the generated text is not just longer,
but contains more meaningful and specific information
about the scene .

The progression of word count through the stages of
our model, shown in Figure 3, illustrates the framework’s
operational logic. An initial concise generation is en-
riched by the diverse perspectives of the four experts,
and this rich but potentially verbose text is then refined
by the RL agent into a final, optimized description that
is both comprehensive and coherent .
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C. Ablation Study: The Synergy of RL-MoE

To isolate the contributions of our framework’s core
components, we conducted an ablation study comparing
the full RL-MoE model against an "MoE-only” variant
(without RL refinement) and an "RL-only” variant (a
single VLM with RL refinement). The results, presented
in Table V, confirm that the hybrid architecture is syner-
gistic and essential for achieving optimal performance.

TABLE V
ABLATION STUDY RESULTS

Method SRRA (%) | CIDEr t
MokE-only 13.5 0.85
RL-only 11.8 0.92
RL-MoE (Full) 9.4 1.15

The ”"MoE-only” baseline produces detailed but unre-
fined text, leading to higher privacy risks (higher SRRA)
and lower textual quality (lower CIDEr score). Con-
versely, the "RL-only” baseline, lacking the structured
input from the experts, struggles to capture the full
breadth of the scene, resulting in less comprehensive
descriptions. Only the full RL-MoE framework achieves
the best performance on both privacy and utility metrics,
proving that both the MoE decomposition and the RL
optimization are critical, synergistic components.

D. Analysis of Semantic Refinement

An interesting and important finding is the observed
decrease in semantic similarity over iterations, as shown
in Figure 5. This indicates that the RL agent is not
merely paraphrasing or making superficial edits to the
initial text from the MoE. Instead, guided by the com-
posite reward function, the agent is performing deep
semantic refinement, actively introducing new, relevant
concepts and structuring the narrative in a more optimal
way. This divergence from the initial text demonstrates a
true generative optimization process, not simple filtering

E. Limitations and Future Work

While our framework demonstrates significant
promise, we identify three key areas for future research.
First, our current framework utilizes four manually
defined experts. Scaling to more diverse environments
may require a method for automatically discovering the
optimal set of expert domains. Second, the performance
of the RL agent is tied to the manual design of the
reward function. A compelling direction for future
work is to explore Inverse Reinforcement Learning
(IRL) to learn a reward function directly from human
preferences. Finally, while RL-MoE shows strong
empirical privacy, it lacks a formal guarantee like
Differential Privacy (DP). Integrating DP into the RL
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training loop, for instance by using techniques similar
to those explored by Fung et al. (2021) [10], is a critical
next step to create a provably private system.

VII. CONCLUSION

In this paper, we addressed the escalating conflict
between data-driven intelligent systems and personal pri-
vacy, a challenge that is particularly acute in the domain
of Intelligent Transportation Systems. We introduced
RL-MoE, a novel framework that transforms sensitive
visual data into controllable, privacy-preserving textual
descriptions. Our central finding is that by synergistically
combining a Mixture-of-Experts architecture for contex-
tual analysis with Reinforcement Learning for policy-
based optimization, it is possible to move beyond the
traditional privacy-utility trade-off, achieving both strong
empirical privacy and high data utility.

Our work champions a paradigm shift from data obfus-
cation to controlled semantic abstraction. This principle
of generating the minimal necessary information for
a task, rather than perturbing the maximal available
information, offers a more flexible and powerful path
toward building trustworthy AI. This approach is not
limited to ITS and has direct applicability to other
visually-sensitive domains such as automated retail ana-
lytics, public safety monitoring, and in-home healthcare
robotics.

Ultimately, the fusion of structured expert models
and policy-based reinforcement learning paves the way
for a new generation of context-aware, privacy-adaptive
intelligent systems—systems that can dynamically and
intelligently negotiate the complex boundary between
information and identity, earning the trust of the societies
they are designed to serve.
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