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Abstract

Despite extensive alignment efforts, Large Vision-Language
Models (LVLMs) remain vulnerable to jailbreak attacks,
posing serious safety risks. Although recent detection works
have shifted to internal representations due to their rich
cross-modal information, most methods rely on heuristic
rules rather than principled objectives, resulting in subopti-
mal performance. To address these limitations, we propose
Learning to Detect (LoD), a novel unsupervised framework
that formulates jailbreak detection as anomaly detection.
LoD introduces two key components: Multi-modal Safety
Concept Activation Vectors (MSCAV), which capture layer-
wise safety-related representations across modalities, and the
Safety Pattern Auto-Encoder, which models the distribution
of MSCAV derived from safe inputs and detects anomalies
via reconstruction errors. By training the auto-encoder (AE)
solely on safe samples without attack labels, LoD naturally
identifies jailbreak inputs as distributional anomalies,
enabling accurate and unified detection of jailbreak attacks.
Comprehensive experiments on three different LVLMs and
five benchmarks demonstrate that LoD achieves state-of-the-
art performance, with an average AUROC of 0.9951 and an
improvement of up to 38.89% in the minimum AUROC over
the strongest baselines.

Introduction
In recent years, Large Vision-Language Models (LVLMs)
have advanced rapidly (Zhang et al. 2024), yet their integra-
tion of vision modules introduces significant safety risks (Gu
et al. 2024; Luo et al. 2024). Recent studies show that
LVLMs remain highly vulnerable to jailbreak attacks, with
attack success rates reaching up to 96% (Wang et al. 2024).
Unlike Large Language Models (LLMs), LVLMs accept vi-
sual inputs that form a continuous, high-dimensional attack
surface, where subtle adversarial perturbations in images can
bypass safety filters undetectably (Qi et al. 2024).

To mitigate safety vulnerabilities in LVLMs, a variety
of detection methods have emerged as promising defense
strategies aimed at identifying potential jailbreak attempts
in user inputs. Pioneer approaches primarily leverage
model inputs and outputs for attack detection (Xu et al.
2024a; Alon and Kamfonas 2023; Zhang et al. 2025).
Recently, researchers have found that the model’s internal
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representations capture complex cross-modal semantics
and enable detection performance improvement (Xie et al.
2024; Jiang et al. 2025). While these emergent methods
show the promises of internal representations in provid-
ing fine-grained information for attack detection, they
fail to achieve robust detection for all types of jailbreak
attacks (e.g., adversarial perturbation-based and prompt
manipulation-based attacks, as categorized in (Liu et al.
2024a)) due to their heuristic nature. Instead of learning
optimal parameters for distinguishing internal patterns
of attacks from safe inputs, these methods directly adopt
potentially biased heuristic rules for identifying attacks,
which do not require any additional learning or optimization
objectives. For example, HiddenDetect (Jiang et al. 2025)
considers models as attacked if their internal representations
are closer to those of refusal tokens (e.g., “sorry”) than
safe inputs w.r.t. cosine similarity. The lack of a principal
optimization goal and the potential biased understanding
of the internal representation patterns result in a suboptimal
performance. For example, the AUROC of HiddenDetect
drops to approximately 0.7 in certain attacks (see Table 1).
These methods favor heuristic rules over learning-based
strategies, since supervised learning requires attack distribu-
tions and labels, which are intentionally treated as unknown
to prevent overfitting to specific attack types.

In this paper, we address the aforementioned challenge
by proposing a method for Learning to Detect (LoD) with-
out knowing the specific attack methods, enabling accurate
and unified detection—that is, a single, consistent approach
that generalizes across diverse attacks, including those yet
to be developed. The basic idea is to detect attacks through
unsupervised learning. This is achieved by formulating at-
tack detection as an anomaly detection problem, where at-
tacks are considered anomalies whose internal patterns are
significantly different from those of the normal, safe inputs.
The key here is to learn an accurate representation of safe
activation patterns (G1) and an effective measure to sep-
arate safe activation patterns from attack ones (G2). The
former (G1) is achieved by learning Multi-modal Safety
Concept Activation Vectors (MSCAV), which extend the
Safety Concept Activation Vector (SCAV) for LLMs (Xu
et al. 2024b) to multi-modal scenarios. MSCAV accurately
estimates the probability that the model considers an input
as unsafe at all layers, through a faithful interpretation of
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the model’s internal safety mechanisms, therefore provid-
ing fine-grained layer-wise information that enables accu-
rate separation of safe inputs and attacks. The latter goal
(G2) is fulfilled through proposing a Safety Pattern Auto-
Encoder, which is learned in an unsupervised manner by
using MSCAV of merely safe inputs, without relying on
information about attacks. The reconstruction error of the
auto-encoder (AE) serves as a good measure for anomaly
detection (Sakurada and Yairi 2014): low reconstruction er-
ror corresponds to safe inputs that are sufficiently modeled
by the AE, while high reconstruction error corresponds to
attacks (anomalies) that have not been learned by the AE.

Overall, our contributions can be summarized as:

• Multi-modal Safety Concept Activation Vectors, which
provide fine-grained layer-wise information that enables
accurate separation of safe inputs and attacks through
faithful interpretation of models’ safety mechanisms.

• Safety Pattern Auto-Encoder, which is learned by using
only safe inputs, yet their reconstruction errors provide
an effective measure for attacks (anomalies).

• Comprehensive experiments show that our method
achieves state-of-the-art jailbreak detection performance
without any prior knowledge of attack types. We report
AUROC averaged over five attack methods for each of
the three models, achieving scores ranging from 0.9943
to 0.9969. This corresponds to relative improvements of
up to 38.89% in the minimum AUROC and 18.21% in
the average AUROC compared to the strongest baselines.

Methodology
Problem Definition
Given an LVLM, our goal is to identify jailbreak attacks
based on the model’s internal activations. In this paper, we
distinguish between two types of unsafe inputs: naturally
harmful content (e.g., violent images and instructions) and
malicious content, which involves deliberate and adversarial
jailbreak attacks.
Input: Our method takes as input the intermediate activa-
tions1 {e1, . . . , eL}, where each el ∈ Rd denotes the acti-
vation vector of a multimodal input I at the l-th layer. These
activations are obtained from a forward pass of I through an
LVLM f , and d denotes the hidden dimension of the model.
Output: Based on internal activations, our method deter-
mines whether the multimodal input I contains a jailbreak
attack. We define a jailbreak attack as any input manipula-
tion that induces the model to generate responses that violate
its safety alignment, consistent with prior definitions in the
literature (Liu et al. 2024a). Our approach does not rely on
prior knowledge of specific jailbreak methods, enabling it
to generalize across unseen adversarial scenarios.

Method Overview
Our Learning to Detect (LoD) framework is illustrated
in Figure 1. It takes as input the model’s internal activa-

1This refers to the hidden states at the output of each trans-
former layer.

tions derived from I and predicts whether I contains jail-
break attacks. Instead of using raw activations, we transform
them into Multi-modal Safety Concept Activation Vectors
(MSCAV) through a set of layer-specific classifiers, which
provide accurate and fine-grained safety representations for
distinguishing safe inputs from attacks. Each element of the
MSCAV estimates the probability that the model considers
I unsafe. The MSCAV are then fed into a Safety Pattern
Auto-Encoder to enable unsupervised detection across un-
known jailbreak scenarios. The auto-encoder (AE) is trained
exclusively on safe samples and performs anomaly detection
by computing reconstruction errors. Adversarial inputs de-
viate from the learned safe distribution and are thus viewed
as anomalies. The reconstruction loss of the AE can then
serve as an effective measure for anomaly detection (Saku-
rada and Yairi 2014). In the following sections, we detail
these two key components: Multi-modal Safety Concept Ac-
tivation Vectors and Safety Pattern Auto-Encoder.

Multi-modal Safety Concept Activation Vectors
This module aims to extract the most discriminative infor-
mation from the activations to distinguish between safe and
adversarial inputs. Achieving this requires transforming the
activations {e1, . . . eL} to filter out safety-irrelevant features
(e.g., topics or general semantics), preserving only safety-
related representations. However, existing approaches fall
short of this goal. HiddenDetect (Jiang et al. 2025) directly
uses raw activations without any processing before comput-
ing similarity, while GradSafe (Xie et al. 2024) heuristically
selects safety-critical parameters without theoretical justifi-
cation and shows limited effectiveness in Table 1.

To achieve the goal of accurately extracting safety-related
information, we introduce Multi-modal Safety Concept
Activation Vectors (MSCAV), an extension of SCAV (Xu
et al. 2024b). SCAV shows that in aligned LLMs, the inter-
nal activations of safe and harmful inputs become linearly
separable starting from around the 10th layer. Given internal
activations in a layer, SCAV accurately outputs the proba-
bility that the model considers the input unsafe at that layer
by faithfully interpreting the model’s safety mechanism. The
probabilities are effective for detecting attacks, as they fil-
ter out safety-irrelevant information (e.g., topics) while pre-
serving safety-related information. Next, we discuss how we
extend SCAV to multi-modal settings, verify that the lin-
ear interpretability still holds in LVLMs, and demonstrate
MSCAV’s effectiveness in distinguishing safe inputs from
attacked ones.
MSCAV estimation and refinement. To adapt SCAV from
LLMs to the multimodal setting, we construct two sets of
multimodal inputs: I+, representing safe inputs where both
text and image content are safe, and I−, representing harm-
ful inputs in which the text contains naturally harmful con-
tent (e.g., ”how to make a bomb”) and the image depicts a
matching harmful scene (e.g., an image of a bomb).

Under the linear separability hypothesis (validated in Fig-
ure 2), safe and harmful activations el are considered lin-
early separable in layer l if the test accuracy of the linear
classifier exceeds a threshold P0. This assumes that activa-
tions can be linearly mapped to represent a concept (the con-
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Figure 1: Overview of the Learning to Detect pipeline. Our method leverages internal activations as input, exploiting their rich
information to detect attacks. These activations are transformed into Multi-modal Safety Concept Activation Vectors (MSCAV)
through a set of layer-specific classifiers, each producing continuous outputs that serve as layer-wise safety features. To improve
reliability, we remove outputs from layers that perform poorly in distinguishing safe inputs from naturally harmful (non-attack)
inputs on validation data, ensuring that only the most informative representations are retained. The refined MSCAV are then
fed into a Safety Pattern Auto-Encoder, trained exclusively on safe samples to effectively model the differences between safe
and adversarial MSCAV patterns. Finally, the auto-encoder detects jailbreak attacks by computing reconstruction errors on the
refined MSCAV, enabling accurate detection across different attack scenarios.

cept of “safety” in our paper) that provides insight into the
model’s internal safety mechanisms. We therefore estimate
the probability that the model regards an input as unsafe in
the layer l through a linear classifier:

Cl(e
l) = sigmoid(w⊤el + b), (1)

where w ∈ Rd and b ∈ R. A total of L classifiers
{C1, . . . , CL} are trained, each capturing the safety concept
in its corresponding layer below linear separability. Specifi-
cally, we train each classifier Cl using a binary cross-entropy
loss:

L = − 1

|N |
∑[

y logC(e)

+ (1− y) log(1− C(e))
]
,

(2)

where y ∈ {0, 1} indicates safe (0) or unsafe (1), and N
is the data size. The activations and corresponding labels are
extracted from the training subsets of I+ and I−. The contin-
uous outputs of all classifiers provide a fine-grained view of
input safety across layers, which we define as the MSCAV:

So =
[
C1(e

1), C2(e
2), . . . , CL(e

L)
]⊤

, (3)

where So ∈ RL is a compact representation that contains
only safety-related information.

To improve reliability, we refine So by retaining only the
layers where the classifiers achieve test accuracy above the
threshold P0 as shown in Figure 2, that is, Ls = {l | Pl ≥
P0}. The remaining layers are considered linearly separable
with respect to the safety concept, and the refined MSCAV
Sr ∈ R|Ls| is constructed as:

Sr =
[
Cl(e

l)
]⊤
l∈Ls

. (4)

Verifying linear interpretability in LVLMs. We evaluate
the linear separability of inputs in LVLMs by training clas-
sifiers in each layer and measuring their accuracy in distin-
guishing safe inputs (I+) from harmful ones (I−).
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Figure 2: Test accuracy of linear classifiers distinguish-
ing safe and harmful inputs across intermediate layers in
LVLMs.

As shown in Figure 2, classifiers achieve consistently high
accuracy across layers, indicating that the safe and harm-
ful inputs are well separated in the activation space. Re-
markably, the accuracy exceeds 90% as early as the 4th
layer, much earlier than the ∼10th layer typically observed
in LLMs. This result validates the linear interpretability in
LVLMs and suggests that visual information enables safety-
related distinctions to emerge earlier.
Effectiveness of MSCAV in distinguishing attacks. We
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Figure 3: Layer-wise mean probability values for safe and
harmful queries. Curves for five unseen jailbreak attack
methods are also shown, illustrating clear separability be-
tween safe and malicious inputs.

analyze the MSCAV patterns of jailbreak attacks that the
linear classifiers have never encountered during training.
As shown in Figure 3, malicious attack curves generally
lie below those of harmful inputs but remain well above
those of safe inputs. This suggests that attacks reduce safety
probabilities across layers but remain clearly distinguish-
able from safe inputs (e.g., their probabilities stay far from
zero). A plausible explanation is that attacks optimize
for final success without substantially reshaping internal
representations across all layers. Using layer-wise safety
judgments, MSCAV provide effective safety representations
that clearly distinguish attacks from safe inputs.

Safety Pattern Auto-Encoder
In this section, we focus on the goal of identifying a reliable
measure to separate safe inputs from attacks. Leveraging
the refined MSCAV, which provides separable layer-wise
features for safe and malicious inputs, a straightforward
solution is to train a supervised classifier. However, this re-
quires labeled jailbreak attack samples, which are difficult to
obtain and limit generalization to unseen threats. To address
this limitation, we adopt an unsupervised anomaly detection
approach, regarding jailbreak attacks as anomalous inputs.

To distinguish safe from anomalous inputs, we propose
the Safety Pattern Auto-Encoder, which models the under-
lying distribution of refined MSCAV patterns via reconstruc-
tion. Trained exclusively on safe inputs, the AE learns to
faithfully reconstruct their safety-related features. As shown
in Figure 3, adversarial MSCAV patterns deviate substan-
tially from safe ones, causing the autoencoder to produce
high reconstruction errors (Sakurada and Yairi 2014) and
providing a direct signal for unified detection.

Crucially, this effectiveness relies on MSCAV rather than
raw activations. If raw activations were used, anomalous
inputs could differ from safe ones in irrelevant aspects
such as topic or modality, resulting in unreliable detec-
tion. In contrast, MSCAV preserves only safety-relevant
representations, ensuring that the AE focuses exclusively

on reconstructing safety features. Consequently, deviations
from the learned safety distribution allow reliable adver-
sarial detection. Our ablation study (Figure 4) confirms
this: replacing MSCAV with raw activations causes a
substantial performance drop, underscoring the necessity of
safety-guided representations for effective detection.

To implement the Safety Pattern Auto-Encoder, we adopt
a standard AE with a three-layer encoder and a symmet-
ric decoder. Each hidden layer is a fully connected layer
followed by ReLU activation. The encoder progressively
compresses the refined MSCAV representation Sr into a
low-dimensional latent space, reducing the dimensionality
to a 2-dimensional bottleneck representation. The decoder
then mirrors this process, expanding the latent representa-
tion back to the original dimensionality |Ls|. Formally, the
autoencoder is defined as a composition of the encoder and
decoder functions:

Ŝr = fdec
(
fenc(Sr)

)
, (5)

where fenc and fdec denote the encoder and decoder net-
works. The autoencoder is trained exclusively on safe inputs
to minimize the mean squared error (MSE) between Sr and
its reconstruction Ŝr:

Lossrec =
1

N

N∑
i=1

∥∥∥Ŝ(i)
r − S(i)

r

∥∥∥2
2
, (6)

where N is the number of training samples. This design
encourages the model to capture the compact manifold of
safety-related features.

During inference, anomaly detection is performed by
computing the reconstruction error of a test input:

δ =
∥∥∥Ŝr − Sr

∥∥∥2
2
, (7)

where δ denotes the squared ℓ2 reconstruction error, and in-
puts with δ exceeding a predefined threshold τ are consid-
ered as malicious attacks.

Experiments
Experimental Setups
Datasets for training LoD. In this work, we use text
prompts from AdvBench (Chen et al. 2022) as harmful
inputs I−. AdvBench contains approximately 500 prompts
describing harmful behaviors. For safe inputs I+, we
randomly select 500 text queries from GQA (Hudson and
Manning 2019), a large-scale visual reasoning dataset de-
signed for compositional question answering. To construct
multimodal inputs, we synthesize images for both safe and
harmful texts using Pixart-Sigma (Chen et al. 2024). For
training, we sample 100 pairs of harmful and safe inputs
to train the linear classifiers that capture internal safety
mechanisms, and use the remaining pairs to evaluate test
accuracy. In addition, we use 320 safe inputs to train the
autoencoder for anomaly detection, with the remaining 80
safe samples reserved as the validation set.
Datasets for jailbreak attack. To evaluate the performance
of our detection method, we select representative attack



Model Method Results on Jailbreak Attacks Min Average
FigImg MM-SafetyBench HADES VAJM UMK

LLaVA

MirrorCheck(a) 0.2363 0.5561 0.5840 0.0989 0.4312 0.0989 0.3813
CIDER(a) 0.2483 0.6996 0.6809 0.8761 0.9013 0.2483 0.6812

JailGuard(a) 0.7994 0.6155 0.5771 0.7552 0.8437 0.5771 0.7182
GradSafe(b) 0.5578 0.7869 0.9419 0.7066 0.0006 0.0006 0.5988

HiddenDetect(b) 0.9157 0.9716 0.9942 0.9881 0.8308 0.8308 0.9401
Ours(b) 1.0 0.9929 0.9999 0.9999 0.9919 0.9919 0.9969

∆ +9.21% +2.19% +0.57% +1.94% +10.05% +19.39% +6.04%

Qwen-VL

MirrorCheck(a) 0.2136 0.4854 0.4501 0.2497 0.4681 0.2136 0.3734
CIDER(a) 0.3272 0.7046 0.6723 0.9106 0.9014 0.3272 0.7032

JailGuard(a) 0.6313 0.6136 0.2791 0.4761 0.7887 0.2791 0.5578
GradSafe(b) 1.0 0.9515 0.9439 0.9301 0.0578 0.0578 0.7767

HiddenDetect(b) 0.9922 0.7993 0.9956 0.9898 0.7035 0.7035 0.8961
Ours(b) 1.0 0.9773 1.0 0.9999 0.9985 0.9773 0.9951

∆ +0% +2.71% +0.44% +1.02% +10.77% +38.89% +11.04%

CogVLM

MirrorCheck(a) 0.2085 0.5403 0.5784 0.4146 0.2657 0.2085 0.4015
CIDER(a) 0.2 0.7398 0.6917 0.8945 0.8739 0.2 0.6800

JailGuard(a) 0.6866 0.5918 0.5605 0.8622 0.8333 0.5605 0.7069
GradSafe(b) 0.5120 0.3024 0.4805 0.8503 0.7871 0.3024 0.5865

HiddenDetect(b) 0.7487 0.8230 0.8884 0.8794 0.866 0.7487 0.8411
Ours(b) 0.9967 0.9814 0.9992 0.9978 0.9963 0.9814 0.9943

∆ +33.12% +19.25% +12.47% +11.55% +14.01% +31.08% +18.21%

Table 1: Comparison of detection scores (AUROC) across different models, methods, and datasets. Methods are categorized
into (a) detection without internal representations and (b) detection via internal representations. The best results are shown in
bold, and the second-best results are shown in underline. ∆ denotes the relative improvement of our LoD method over the best
baseline, computed as ∆ = (LoD − Best baseline)/Best baseline.

approaches along with their corresponding datasets. For
prompt manipulation-based attacks, we use: (a) MM-
SafetyBench (Liu et al. 2024c), which covers 13 harmful
scenarios through textual prompts paired with typography
attacks and synthetic harmful images; (b) FigStep (Gong
et al. 2023), containing images crafted via typography at-
tacks and their associated texts, here referred to as FigImg;
and (c) HADES (Li et al. 2025), which integrates image
construction and perturbation to create jailbreak samples.
For adversarial perturbation-based attacks, we employ:
(a) VAJM (Qi et al. 2024), which applies perturbations to
images while using harmful texts from MM-SafetyBench;
and (b) UMK (Wang et al. 2024), which simultaneously
perturbs both images and texts, also leveraging harmful
texts from MM-SafetyBench. As a counterpart to these
harmful inputs, we adopt MM-Vet (Yu et al. 2023) as the
source of safe inputs. MM-Vet is a benchmark designed
to evaluate fundamental LVLM capabilities, including
recognition, OCR, and language generation.

Baseline. To ensure a comprehensive evaluation and
highlight the strengths of our proposed method, we select
representative baselines from two main categories of
detection approaches. For methods that do not use internal

representations, we include CIDER (Xu et al. 2024a),
MirrorCheck (Fares et al. 2024), and JailGuard (Zhang et al.
2025). For methods leveraging internal representations,
we incorporate HiddenDetect (Jiang et al. 2025) and
GradSafe (Xie et al. 2024).
Metric. We adopt AUROC as the primary evaluation metric.
AUROC provides a comprehensive measure of the model’s
discriminative capability across all decision thresholds by
jointly considering both positive and negative samples. This
characteristic ensures robustness against biases that may
arise from relying on specific threshold choices. Our choice
of AUROC is also consistent with prior studies (Jiang et al.
2025; Xie et al. 2024; Alon and Kamfonas 2023). For
completeness, we also report results on additional metrics
in the Appendix.
Models. We evaluate our method on three representative
LVLMs: LLaVA-1.6-7B (Liu et al. 2024b), CogVLM-chat-
v1.1 (Wang et al. 2023), and Qwen-VL-Chat (Bai et al.
2023).

Main Results
Table 1 reports the AUROC scores of various detection
methods across three distinct LVLMs and five types of



jailbreak attack methods. Our proposed LoD consistently
outperforms all baselines.

Specifically, LoD achieves average AUROC scores of
0.9969, 0.9951, and 0.9943 on LLaVA, Qwen-VL, and
CogVLM, respectively, exceeding the best-performing base-
lines by relative improvements of 6.04%, 11.04%, and
18.21%. Moreover, LoD substantially improves the worst-
case performance (i.e., the minimum AUROC across
datasets), with relative gains of up to 19.39% on LLaVA,
38.89% on Qwen-VL, and 31.08% on CogVLM, underscor-
ing its robustness across attacks. It is also noteworthy that
existing methods based on internal representations, such as
HiddenDetect and GradSafe, often exhibit unstable perfor-
mance across different attacks or models. In contrast, LoD
consistently achieves high detection scores, indicating that
the integration of MSCAV and AE enables accurate and uni-
fied detection of jailbreak attacks.

Ablation Study
To better understand the contribution of each core compo-
nent in the LoD framework and to validate its overall effec-
tiveness, we conduct a series of ablation studies. The com-
plete LoD model consists of two major components: (1)
Multi-modal Safety Concept Activation Vectors, which
interpret internal activations with respect to the safety con-
cept; and (2) Safety Pattern Auto-Encoder, which models
the distribution of safe inputs to detect anomalies in an un-
supervised manner.

We evaluate the following ablated variants:
• LoD without MSCAV: This variant bypasses the

MSCAV-based feature extraction module and concate-
nates raw internal activations across all layers to form
the feature Sraw. This setup assesses the effectiveness of
MSCAV in selecting discriminative representations rele-
vant to safety and reducing redundancy of features.

• LoD without AE: We remove the AE and instead em-
ploy a simple heuristic: if any dimension of the refined
MSCAV Sr exceeds a predefined threshold (e.g., 0.1),
the input is flagged as unsafe. This variant highlights the
importance of learning compact distributional represen-
tations via the AE, rather than relying on fixed rules.

• LoD with HiddenDetect: We replace our feature extrac-
tion module with the feature extraction method proposed
in HiddenDetect (Jiang et al. 2025). This variant enables
a direct comparison between our MSCAV-based feature
extraction and an existing state-of-the-art method.

The ablation study in Figure 4 highlights the essential
contributions of both key components in the LoD framework
and provides a direct comparison against heuristic strategies
such as HiddenDetect. Removing the feature extraction
module (MSCAV) results in a significant performance drop
on LLaVA and CogVLM, with AUROC falling to 0.545
and 0.126 respectively. In contrast, the performance in
Qwen-VL remains relatively high at 0.851, suggesting that
MSCAV plays a crucial role in filtering irrelevant infor-
mation for safety detection, especially in the LLaVA and
CogVLM models. Similarly, removing the AE module leads
to consistent degradation across all models. This further
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Figure 4: The figure shows the average AUROC scores of
three models (LLaVA, Qwen-VL, and CogVLM) across five
benchmarks under different ablation settings, highlighting
the contribution of each key component to the overall per-
formance of the LoD framework.

underscores the importance of modeling the underlying
distribution of safety features via the AE, beyond simple
heuristic thresholds. We also evaluate HiddenDetect as
a baseline. Although it achieves moderate performance
on Qwen-VL (0.808) and LLaVA (0.901), its score on
CogVLM (0.644) is notably lower than that of the full
LoD model. This reveals the limited generalizability and
effectiveness of HiddenDetect in capturing safety-related
representations across diverse models.

Overall, these results confirm the effectiveness of the LoD
design: By integrating MSCAV-based representations with
unsupervised anomaly detection via the Safety Pattern Auto-
Encoder, LoD achieves superior performance and unified de-
tection of jailbreak attacks across models.

Parameter Sensitivity Analysis
Our method involves two hyperparameters: the layer selec-
tion threshold P0 and the decision threshold τ . Since AU-
ROC is independent of τ , we evaluate the impact of P0.

As shown in Figure 5, AUROC remains consistently high
across different P0 values and surpasses the best baseline,
with only minor variations. Larger P0 values retain fewer
but more confident safe layers, which reduces noise but
may discard useful activations, explaining the slight drop
at P0 = 0.99. Overall, the stable performance demonstrates
that our method is robust and insensitive to P0, ensuring
stable detection performance.

Computational Efficiency Analysis
As shown in Table 2, our LoD method achieves the low-
est inference time per input across all three models on the
FigImg benchmark (0.13–0.18s), significantly faster than all
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Figure 5: Average AUROC scores of three models
across five benchmarks under different thresholds P0 ∈
{0.8, 0.85, 0.9, 0.95, 0.97, 0.99}. The dashed line denotes
the best AUROC achieved by existing baselines.

baselines (e.g., over 4× faster than HiddenDetect and more
than 200× faster than JailGuard). Moreover, training the lin-
ear classifiers and the AE module takes approximately 12s
and 2s respectively, requiring only a one-time lightweight
setup. All experiments are performed on a single NVIDIA
A800 GPU. These results demonstrate the high efficiency of
our approach compared to existing methods.

Method
Model LLaVA Qwen-VL CogVLM

MirrorCheck 1.16 1.14 1.64
CIDER 0.47 1.4 0.90

JailGuard 46.11 31.31 100.78
GradSafe 0.56 0.55 0.81

HiddenDetect 0.56 0.27 0.35

Ours 0.13 0.13 0.18

Table 2: Average per-input detection time (s) of different
methods on FigImg across three models. The best (shortest)
time is shown in bold.

Limitations
Although our proposed method demonstrates strong and
consistent performance across different models and jail-
break attacks, it still has certain limitations that suggest
directions for future work.

First, our approach depends on the internal activations of
LVLMs. This means that significant architectural changes
or the adoption of alternative safety alignment mechanisms
in future models might require adapting our detector.
Nevertheless, since current and foreseeable LVLMs are still
fundamentally based on deep neural network architectures,
we believe that our method will remain effective in ex-
tracting layer-wise representations and detecting jailbreak
attacks in such models.

Second, although we have demonstrated robustness
against a wide range of unknown jailbreak attacks, our cur-
rent evaluations may not fully capture more sophisticated
or future attack strategies explicitly designed to manipulate
internal representations. Investigating such adaptive attacks
is an important direction for further strengthening the re-
silience of our detection framework.

Related Work
Detection Methods. Detection methods can be broadly
categorized by whether they rely on internal representa-
tions. Methods without internal representations analyze
only inputs or outputs, such as checking text–image con-
sistency (Xu et al. 2024a; Fares et al. 2024), measuring text
perplexity (Alon and Kamfonas 2023), monitoring output
robustness (Zhang et al. 2025), or directly assessing the
safety of generated outputs (Pi et al. 2024; Team 2024;
Gou et al. 2024). By contrast, methods leveraging internal
representations (Xie et al. 2024; Jiang et al. 2025) rely on
heuristic rules, for example, identifying patterns of harmful
inputs in gradients or activations and assuming malicious
inputs resemble them. Although effective in some cases,
such approaches remain limited in both performance and
generalization. Unlike these heuristic designs, our approach
introduces a learnable framework that optimizes the extrac-
tion of safety-related information from internal activations
and employs anomaly detection in an unsupervised manner,
achieving state-of-the-art performance and unified detection
of jailbreak attacks.
Jailbreak Attacks. The multimodal nature of LVLMs
introduces new attack surfaces, particularly from the
visual side, making them more vulnerable to jailbreak
attempts (Fan et al. 2024; Jin et al. 2024; Liu et al. 2024d,a).
Existing jailbreak attacks can be broadly categorized into
two types (Liu et al. 2024a): prompt manipulation-based
and adversarial perturbation-based attacks. Prompt manip-
ulation modifies textual or visual inputs to disguise unsafe
intent or bypass safety filters, typically without relying
on gradients (Gong et al. 2023; Ma et al. 2024; Liu et al.
2024c; Li et al. 2025). In contrast, adversarial perturbation
typically applies gradient-based modifications to images or
texts, inducing models to generate unsafe outputs (Niu et al.
2024; Qi et al. 2024; Wang et al. 2024; Shayegani, Dong,
and Abu-Ghazaleh 2023). Although existing detection
approaches often fail to generalize across different attacks,
our trainable anomaly detection method achieves robust
detection performance across unknown jailbreak attacks.

Conclusion
In this work, we introduced LEARNING TO DETECT (LoD),
a trainable anomaly detection framework for identifying jail-
break attacks in LVLMs. LoD leverages MSCAV to accu-
rately capture safety-related information from internal ac-
tivations and reformulates attack detection as anomaly de-
tection based on the auto-encoder, removing the need for
attack-specific supervision. Extensive experiments demon-
strate that LoD achieves state-of-the-art performance and



provides accurate and unified detection for unknown jail-
break attacks.
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