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Abstract—Physical layer authentication (PLA) uses inherent
characteristics of the communication medium to provide secure
and efficient authentication in wireless networks, bypassing the
need for traditional cryptographic methods. With advancements
in deep learning, PLA has become a widely adopted technique
for its accuracy and reliability. In this paper, we introduce Ve-
riPHY, a novel deep learning-based PLA solution for 5G net-
works, which enables unique device identification by embedding
signatures within wireless I/Q transmissions using steganography.
VeriPHY continuously generates pseudo-random signatures by
sampling from Gaussian Mixture Models whose distribution is
carefully varied to ensure signature uniqueness and stealthiness
over time, and then embeds the newly generated signatures over
I/Q samples transmitted by users to the 5G gNB. Utilizing deep
neural networks, VeriPHY identifies and authenticates users based
on these embedded signatures. VeriPHY achieves high precision,
identifying unique signatures between 93% and 100% with low
false positive rates and an inference time of 28 ms when signatures
are updated every 20 ms. Additionally, we also demonstrate a
stealth generation mode where signatures are generated in a way
that makes them virtually indistinguishable from unaltered 5G
signals while maintaining over 93% detection accuracy.

I. INTRODUCTION

Physical Layer Security (PLS) is crucial in modern commu-
nication systems for securing information starting from the RF
domain. Within PLS, Physical Layer Authentication (PLA) is
an important component to verify the legitimacy of communi-
cation entities based on their unique physical characteristics [1].
As wireless networks and the number of devices continue to
grow, developing robust PLA mechanisms is increasingly vital
to combat unauthorized access and maintain data integrity [2].
Various PLA solutions have been developed over the years [3],
including challenge-response protocols based on physical layer
parameters, fingerprinting based on hardware imperfections,
and RFID-based methods using unique tag responses. These
methods form the foundation for advanced PLA in modern
communication systems, which ideally exhibit three key char-
acteristics [2]: covertness, ensuring undetectability by unautho-
rized entities; robustness, maintaining functionality in adverse
conditions; and security against breaches.

As 5th generation mobile networks (5Gs) expand to support
a vast ecosystem of devices and applications, PLA becomes
critical for ensuring secure, reliable communication [3]. By
verifying device identity and integrity at the physical layer,
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Fig. 1: Comparison of authentication in traditional 5G networks (top) vs.
VeriPHY (bottom), which blocks unauthorized core access at the physical layer.

PLA mitigates risks from unauthorized access, cyber threats,
and misuse of limited radio resources, thereby safeguarding 5G
infrastructure and users [3].

Effective PLA designs must address challenges such as
accurate device identification, spoofing resistance, and real-
time processing. The rise of Deep Learning (DL), particularly
Convolutional Neural Networks (CNNs), has advanced the field
by enabling adaptive, robust, and efficient authentication [4].
CNNs enhance PLA by distinguishing legitimate from illegit-
imate signals, adapting to dynamic conditions, and handling
complex data with high accuracy. For example, PAST-AI [5]
used CNNs to authenticate satellite transducers with up to
100% accuracy, while [6] demonstrated effective node authen-
tication and spoofing detection in wireless sensor networks.
These approaches highlight the potential of DL-based methods
for practical, real-world PLA deployment.

To achieve covertness in PLA systems, steganography can be
used as a way to hide authentication-related data and procedures
behind overt data, i.e., data that any node can eavesdrop and
decode, such as wireless signals [3]. This approach enhances
security by embedding authentication messages within intelligi-
ble transmissions that only apparently do not carry any security-
related data, thus thwarting interception or tampering [7]. The
use of wireless signatures [1, 8], on the other hand, is another
approach that relies on unique signal characteristics like vari-
ations in strength, timing, or frequency response to authenti-
cate devices to create unique wireless fingerprints. Combining
steganography with wireless signatures fortifies PLA systems
with dual-layer security through covert data embedding and
distinct signal attributes.

In this paper, we present VeriPHY , a novel Physical Layer
Authentication (PLA) solution for 5G that generates con-
tinuously pseudo-random and unique device signatures via
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Fig. 2: The high-level design VeriPHY in both the User Equipment (UE) and gNB describing how the UE generates the signatures to transmit with their packets
and how the gNB uses I/Q mirroring to process and detect potential user signatures continuously throughout communication transmissions.

steganography in wireless I/Q transmissions. VeriPHY uses DL-
based CNNs to analyze I/Q samples in real time, allowing ac-
curate physical layer authentication and blocking unauthorized
users before their attachment requests reach the core network.
As shown in Fig. 1, unlike standard 5G procedures that detect
unauthorized users at the core, VeriPHY intercepts them at the
Next Generation Node Base (gNB), enhancing early threat mit-
igation. Its embedded PLS mechanisms resist identity spoofing,
preventing even advanced attackers (e.g., those cloning IMSIs)
from replicating device signatures. This strengthens security by
ensuring only legitimate devices access 5G resources.

Novel contributions: the important technical contributions
of the paper can be summarized as follows:

1) We introduce VeriPHY , a novel DL-based 5G PLA so-
lution that enables multi-UE identification by embedding
wireless signatures into I/Qs using steganography;

2) We utilize Gaussian Mixture Models (GMMs) to gen-
erate pseudo-random unique signatures for each device
that cannot be replicated or forged. This randomization
guarantees signature uniqueness and enhances the overall
security of the VeriPHY system;

3) We demonstrate that our trained Deep Neural Networks
(DNNs) can accurately detect unique signatures with
93%-100% accuracy and low false positives, achieving
detection times as low as 6.5 ms when signatures are sent
every 1 ms (below the 5G NR frame duration of 10 ms)
and 25.5 ms when sent every 20 ms;

4) We also introduce a stealth mode, where VeriPHY ’s
signatures are altered via a pre-processing function to be
practically indistinguishable from standard 5G signals,
yet remain detectable by DNNs with over 93% accuracy.

II. RELATED WORK

Physical Layer Authentication (PLA) has emerged as a key
technology for enhancing wireless security in 5G by leveraging
physical layer attributes, addressing current limitations such as
susceptibility to spoofing and unauthorized access, and integrat-
ing with existing infrastructure [8]. PLA and security offer a
promising approach to safeguard wireless communications by

leveraging the randomness and stochasticity of channels, serv-
ing as an alternative to complex cryptographic techniques [8].

A key aspect of PLA is authenticating users and devices via
unique physical-layer signatures. [9] proposes a method using
helper nodes with channel-derived cryptographic signatures
for authentication. SteaLTE [7] applies wireless steganography
to embed data covertly in cellular traffic without degrading
performance. In [10], probabilistic modeling of the channel and
Gaussian Mixture Models (GMMs) are used to detect spoofing
attacks, showing improved detection accuracy.

In [9], the authors introduce an FCC-compliant authenti-
cation method for primary users that combines cryptographic
and wireless link signatures, using a nearby helper node to au-
thenticate signals without training. [11] presents a GMM-based
semi-supervised technique for channel-based authentication,
achieving high detection with low false alarms and adapting
to network changes without prior intruder data. [12] proposes
a real-time anomaly detection framework for 5G RRC-layer
vulnerabilities, leveraging Artificial Intelligence (AI) to analyze
PHY and cross-layer features. Validated in emulated and real
environments, it achieved over 85% detection accuracy with
low latency, making it suitable for Open RAN deployment.

In the context of PLA and PLS, deep learning has become
a popular method in classifying the wireless spectrum through
DNNs. In [13], the authors investigate attacks on CNN-based
device identification, proposing evaluation indicators to im-
prove assessment. Higher perturbation levels and iteration steps
degrade accuracy, providing insights for resilient DL-based In-
ternet of Things (IoT) systems. [14] proposes a DNN approach
using CNNs and DNNs to classify multiple signals in shared-
spectrum networks using I/Q samples, validated experimentally
with USRP radios. [15] proposes an intrusion detection system
for wireless networks, employing feature selection algorithms
with conditional random fields and linear correlation coeffi-
cients, integrated with CNNs for classification, achieving a
validated 99% detection accuracy via tenfold cross-validation.

VeriPHY differs from the literature above as it introduces
a novel approach for device authentication via physical layer
steganography, embedding ever changing signatures directly



into transmitted packets. Unlike [7], which uses steganography
at the application layer, and [9], which requires an additional
node, VeriPHY streamlines authentication between UEs and
gNBs using unique user signatures at the physical layer, which
can be hidden using a stealth mode activated by network
operators. This advancement integrates PLA into 5G networks,
highlighting the importance of high-accuracy signature authen-
tication that can be concealed from eavesdroppers.

III. VeriPHY SIGNATURE FRAMEWORK

VeriPHY’s architecture is illustrated in Fig. 2. Due to space
limitations, in Fig. 2 and in the following we focus on the
case where signatures are generated by UEs and retrieved at
the gNB. However, we would like to mention that VeriPHY is
designed to support the execution of signature detection (left)
and generation (right) modules at both 5G UEs and gNB, thus
providing a framework for mutual authentication between both
parties. In the above case, VeriPHY uses two container-based
environments: the Signature Generator in the UE for generating
user signatures, and the Signature Detector in the gNB, which
uses a trained DNN to identify these signatures from I/Q sam-
ples. Thanks to the cloud-native design, the Signature Detector
and Generator can be deployed at both the UE and gNB as soft-
ware modules running as microservices and containers. This
enhances flexibility and scalability, simplifying deployment,
management, and integration in diverse environments.

The following subsections detail both components: Subsec-
tion III-A covers the Signature Generator, including how it
creates and sends signatures, while Subsection III-B explains
how the Signature Detector uses DL to detect and verify them.

A. Signature Generator

The Signature Generator creates and stores unique user sig-
natures essential for secure transmission and authentication.
Embedded via steganography in I/Q data, these signatures form
patterns detectable by allies but difficult for adversaries to repli-
cate or detect. This enhances security across the 5G transceiver
chain without disrupting normal operations, enabling fast de-
tection and robust protection.

In a VeriPHY-enabled 5G deployment, each User Equip-
ment (UE) holds a unique GMM-based signature distribution.
A signature is generated by sampling nel samples from the
UE-specific GMM distribution and transmitted every t ms by
embedding it on top of user data via wireless steganography as
we will describe in detail in Section IV. Since signatures con-
tinuously change every few milliseconds (e.g., our prototype
updates signatures every 20ms, i.e., 2 5G frames) by randomly
sampling from the originating GMM, it is hard for attackers to
replicate signatures as they would need (i) to know the underly-
ing generating GMM while only having access to a few samples
that change over time; or (ii) a significant computational effort
and amount of time to observe the network. Moreover, since
signatures are updated every few tens of milliseconds, VeriPHY
can detect replay attacks by identifying retransmissions of
previously used signatures, thus alerting the system regarding
ongoing attacks.
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Fig. 3: PDFs of four
GMM signatures.

Fig. 4: Confusion matrix of pairwise Kolmogorov-
Smirnov (K-S) distances between the four GMMs in
Fig. 3.

B. Signature Detector

The Signature Detector receives I/Q data via an I/Q mir-
roring technique, which replicates I/Q samples across device
modules—such as DU Functions and the Signature Detec-
tor—enabling asynchronous processes to run in parallel without
service interruption [16]. This detector integrates a DL-based
DNN to identify and verify signatures in the mirrored I/Q
samples. As shown in Fig. 2, I/Q data is simultaneously routed
to standard Next Generation Node Base (gNB) functions and
the Signature Detector for real-time user authentication.

The Signature Detector flags transmissions based on signa-
ture presence. Thus, VeriPHY can block authentication requests
without valid signatures, preventing unauthorized core network
access when stricter security is needed.

IV. GENERATING AND APPLYING UNIQUE SIGNATURES

In our work, we create uniquely identifiable signatures by
generating a set of Gaussian Mixture Models (GMMs) that
are significantly different from each other. We achieve this by
setting a minimum Kolmogorov-Smirnov (K-S) distance of ϵ
between each GMM. The K-S distance measures the maxi-
mum difference between the Cumulative Distribution Function
(CDF) of these distributions and is an indicator for their sim-
ilarity. By setting a minimum distance ϵ, we ensure minimal
overlap, making each signature distinct.

A. Generating Gaussian Mixture Model Signatures

To generate uniquely identifiable signatures, VeriPHY uses
GMMs that are sufficiently distinct from one another based on
a minimum K-S distance threshold ϵ > 0. The user specifies the
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Fig. 5: Visualization of how a signature of size nel is sent sequentially over the
specified timer t.
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Fig. 6: I/Q constellation comparison with and without signature embedding.
The left shows the unmodified signal, while the right displays the same signal
with an embedded signature (Signature 1, Size 50, Duration 1 ms).

number of signatures N (e.g., number of UEs), the perturbation
value range [mmin,mmax], and the maximum number of com-
ponents p per model. Each GMM is generated with randomized
peaks and accepted only if its K-S distance from all previously
generated models exceeds ϵ. This ensures that all N signa-
tures are statistically distinguishable, enhancing robustness and
minimizing overlap. Once the GMMs are generated, they are
exported to the Signature Generators.

For signature generation, we set the GMM range to [0.5, 1]
to avoid excessive alteration of I/Q samples, leveraging normal-
ization where 1 and 0.5 represent full and half signal levels,
respectively. A K-S distance threshold of ϵ > 0.2 was chosen
to ensure sufficient distinctiveness between models while main-
taining generation feasibility. It is worth mentioning that higher
ϵ values enforce differentiation across signatures, but might
lead to excessive rejections during model creation, making the
process longer. However, unless GMMs need to be generated in
real-time, this problem can be neglected in most scenarios.

Fig. 3 shows the Power Spectral Densities (PSDs) of four
generated GMM signatures, each exhibiting a distinct profile.
Their pairwise K-S distances, shown in Fig. 4, range from 0.24
to 0.59, confirming that the signatures are well-separated and
sufficiently dissimilar for robust use in VeriPHY .

B. Apply Signatures with Wireless Steganography

To transmit signatures via steganography, a communication
channel within the UE or gNB injects sampled GMM distri-
butions on top of user data. Each signature of size nel is sent
element by element, followed by a t-millisecond delay before
the next transmission. Fig. 5 illustrates this sequence.

To enhance signature uniqueness and concealment, we im-
plement two mechanisms: (1) each transmission uses a newly
sampled signature from the GMM, making replication possible
only for those with access to the model, and (2) randomization
and a binary switch determine whether to transmit a signature,
preventing pattern inference and reconstruction of the under-
lying distribution. This ensures each transmission follows a
uniquely unpredictable pattern.

Transmitting signatures as-is may expose covert activity, as
experts could detect anomalies in the I/Q plot. Fig. 6 compares
1 ms of normal (left) and signature-embedded (right) transmis-
sions, with red circles highlighting I/Q alterations. This com-
promises the covertness essential to advanced PLA systems.
To address this, we introduce a stealth mode that preserves

signature uniqueness while better concealing their presence.
Stealth Mode with Signature Scaling: To reduce the de-
tectability of GMM signatures, we apply a scaling factor dur-
ing their generation and embedding, ensuring that modified
I/Q samples remain close to the original signal. As shown in
Fig. 7, scaled signatures blend seamlessly into the transmission.
During transmission (Fig. 5), each I/Q value is scaled to match
typical patterns. Without scaling (Fig. 6), signatures are distinct
and may reveal user-specific traits. With stealth mode, these
differences are minimized, making the signatures nearly indis-
tinguishable from standard traffic, enabling covert yet effective
physical-layer authentication.

Another risk to covertness is detection through energy analy-
sis. We compare the Cumulative Distribution Functions (CDFs)
of unaltered and scaled GMM signatures against standard I/Q
samples (no signature) in Fig. 8. Unaltered signatures show
clear deviations from the baseline, revealing energy-level differ-
ences. In contrast, scaled signatures closely match the baseline
CDF, making them harder to distinguish. This demonstrates
that scaling effectively preserves the signal’s energy profile,
enhancing stealth and overall security.

In Section VI-D, we will show that we can still guarantee
95% accuracy even if stealth mode is active.

V. VeriPHY PROTOTYPE

We implement our VeriPHY prototype on the OpenAirInter-
face (OAI) RFSim, utilizing its features to simulate realistic 5G
network conditions and interactions. To evaluate the capabili-
ties of both the Signature Generator and Detector, we conduct
five experiments with varying signature sizes (nel) and trans-
mission intervals (t), and test two different models to assess
signature detection. Details of our testbed implementation are
provided in V-A, our DL models are described in V-B, and our
experimental datasets are discussed in V-C.

A. OpenAirInterface 5G Platform Implementation

OpenAirInterface (OAI) serves as the implementation envi-
ronment for demonstrating VeriPHY within 5G networks [17].
This platform provides an end-to-end, 3GPP-compliant im-
plementation of both the 5G Radio Access Network (RAN)
and core network, making it an ideal choice for prototyping
and data collection. By leveraging the OAI RFSim, which
creates a channel with a bandwidth of 40 MHz on 5G band
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Fig. 7: Effect of stealth mode on signal visibility. The left shows a signal with
Signature 1 embedded without stealth mode, where the signature is visibly
distinguishable. The right shows the same signature with stealth mode applied,
significantly obscuring its presence.
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Fig. 8: Plot of the Energy CDFs for all signatures, comparing results with and
without the use of the signature stealth mode against a transmission without any
signal present.

78, we can thoroughly test and refine the system’s performance
and features in a controlled environment. This flexible setup
allows for the integration of various components and testing of
different configurations, ensuring that our prototype can adapt
to diverse deployment scenarios within 5G networks.

B. Deep Neural Networks for Signature Detection

To implement the Signature Detector, we employ
VGG16 [18] and SENet [19]. Originally designed for image
recognition, VGG16 is well-suited for capturing complex 2D
I/Q constellation patterns through deep convolutional layers,
making it a popular choice for RF signal analysis. SENet
enhances performance by applying channel-wise attention to
emphasize key spectral features and is known for low false
positive rates in signal classification. We use 2D inputs formed
from I/Q groups extracted from OAI, which stores 60 samples
per group ( 0.028ms). To analyze 1 ms of data, we require 2160
samples, resulting in an input shape of (N, 60, 36, 2), where
N is the number of training examples. This setup aligns with
RFSim sampling intervals for accurate 5G signal simulation.

VGG16 is a deep CNN with 16 layers and small 3x3 fil-
ters, known for strong feature extraction. When adapted for
spectrum-based classification with 2D I/Q inputs, VGG16 can
recognize complex frequency components and temporal varia-
tions, making it well-suited for leveraging spatial and spectral
correlations. Squeeze-and-Excitation Networks (SENet) im-
provew representational power by modeling interdependencies
between channels using a “squeeze” and “excitation” mech-
anism. This aggregates spatial information into channel-wise
statistics and dynamically re-weights features, boosting sen-
sitivity to key spectral and temporal patterns. Applied to 2D
I/Q inputs, SENet enhances classification accuracy and reduces
false-alarms through more precise feature emphasis.

C. Dataset Generation

To train our DL models, we generate datasets with enough
diversity to ensure accurate training of Deep Neural Net-
works (DNNs) while avoiding overfitting or underfitting. Using
our OpenAirInterface (OAI) implementation, we created five
unique datasets, each with different signature sizes and send
rates, and five signatures per dataset. The datasets were gener-
ated using OAI’s RFSimulator to model a 40 MHz bandwidth
channel on 5G band 78. We implemented a system to manage
the storage of I/Q data from RFSim, optimizing file size and
organization during post-processing. The signatures, generated

with GMMs to have a K-S distance of at least 0.2 for unique-
ness, were consistent across all datasets, which included the
following parameters: (1) nel = 10, t = 1 ms, (2) nel = 20,
t = 1 ms, (3) nel = 50, t = 1 ms, (4) nel = 20, t = 20 ms,
and (5) nel = 50, t = 20 ms. This approach allowed us to test
various parameter sets using the same five signatures, ensuring
no bias and optimizing the dataset for training.

VI. EXPERIMENTAL RESULTS

In this section, we present results that illustrate VeriPHY
effectiveness and accuracy. We begin by profiling the accuracy.
Next, we address latency aspects to demonstrate real-time in-
ference. Finally, we assess the performance of VeriPHY when
stealth mode is active.

A. Model Accuracy

For both VGG16 and SENet, five models were trained across
different signature deployments. Three tests used signatures
sent every 1ms with nel sizes of 10, 20, and 50, while two tests
used 20ms intervals with sizes 20 and 50. These configurations
are summarized in Table I. The VGG16 model performs well
with 100% accuracy and F1 scores of 1.00 for 1ms signatures
with sizes 10 and 50 (Fig. 9c). However, performance drops
when signatures are sent every 20ms, with accuracy falling to
57.50% and 78.05% for sizes 20 and 50, respectively (Fig. 9d),
indicating that the model struggles when the signature becomes
a smaller portion of the longer I/Q data.

The SENet model shows strong performance with some
variability depending on the configuration. For 1ms signatures,
sizes 10 and 20 achieve accuracies of 90.62% and 89.56%
(Fig. 9a), with F1 scores of 0.91 and 0.89. However, it excels
in more complex scenarios, achieving 100% accuracy and an
F1 score of 1.00 for signature size 50 at 1ms, and for 20ms
signatures of sizes 20 and 50 (Fig. 9b).

VGG16 performs well with fast signatures (1ms) but has
lower performance at 20ms. SENet instead delivers consistent
performance across all configurations, making it a more adapt-
able choice for VeriPHY .
B. Model Latency

The latency values for the VGG16 and SENet models across
varying signal sizes and send intervals demonstrate their com-
putational efficiency. For VGG16, latency remains consistent
between 7.36 and 7.41 ms when the send interval is 1 ms, with
TABLE I: Accuracy and F-score metrics for the VGG16 and SENet models
across different configurations.

Model Configuration Accuracy (%) F1 Score

VGG16 Sig. Size: 10, time: 1 ms 100 1.00
Sig. Size: 20, time: 1 ms 99.63 1.00
Sig. Size: 50, time: 1 ms 100 1.00
Sig. Size: 20, time: 20 ms 57.50 0.54
Sig. Size: 50, time: 20 ms 78.05 0.78

SENet Sig. Size: 10, time: 1 ms 90.62 0.91
Sig. Size: 20, time: 1 ms 89.56 0.89
Sig. Size: 50, time: 1 ms 100 1.00
Sig. Size: 20, time: 20 ms 100 1.00
Sig. Size: 50, time: 20 ms 100 1.00
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Fig. 9: Confusion Matrices for four of the trained models across different
experimental setups. (All times, t, reported in milliseconds)

a slight increase to 7.79 ms at a 20 ms interval. SENet shows
similar stability, maintaining latency between 5.29 and 5.36 ms
at 1 ms, and rising modestly to 5.32–5.44 ms at 20 ms. Both
models handle changes in signal size well, though longer send
intervals lead to minor latency increases.

The SENet model consistently shows lower latency than
VGG16 across all conditions, suggesting better efficiency for
quick-response tasks. Both models exhibit minimal sensitivity
to signal size changes but show a slight latency increase with
longer send times, highlighting the importance of optimization
for real-time applications.

C. VeriPHY Inference Time

Table II shows the inference times for VGG16 and SENet
models across all configurations, highlighting the acquisition of
signals (I/Q Capture Time), processing, and CNN input times.

In the 1 ms configuration, VGG16 has a total inference time
of 8.562 ms, with 1.00 ms for I/Q capture, 0.037 ms for process-
ing, 0.142 ms for CNN input generation, and 7.377 ms of model
latency. In contrast, SENet’s total inference time is 6.501 ms,
with a model latency of 5.316 ms. For the 20ms configuration,
VGG16’s total inference time increases to 27.898 ms due to the

TABLE II: Inference times for models with different time configurations.

Metric 1 ms Configuration 20 ms Configuration

I/Q Capture Time 1.00 ms 20.00 ms
Average Processing Time 0.037 ms 0.038 ms
Average CNN Input Time 0.142 ms 0.147 ms

VGG16 Model Latency 7.377 ms 7.712 ms
VGG16 Total Inference Time 8.562 ms 27.898 ms

SENet Model Latency 5.316 ms 5.378 ms
SENet Total Inference Time 6.501 ms 25.564 ms
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Fig. 10: Confusion matrices: normal vs. stealth VeriPHY (nel = 50, t =
50 ms).

20.00 ms I/Q capture time, while processing and CNN input
generation remain stable. The model latency slightly rises to
7.712 ms. Similarly, SENet’s total inference time increases to
25.564 ms, with model latency at 5.378 ms.

Analyzing the total inference time across signature intervals
reveals an important efficiency trade-off. While the 20 ms
interval introduces some delay compared to the 1 ms interval,
it allows decisions to be made before the I/Q buffer is fully
utilized, reducing latency from buffer processing. Therefore,
while the 1 ms model has faster inference times, the 20 ms
deployment may offer better overall efficiency by optimizing
data throughput and minimizing buffer delays.

D. Normal Mode vs Stealth Mode

To evaluate the impact of stealth mode on VeriPHY signature
detection, we compared detection accuracy using SENet. For
a stealth model with nel = 50 and t = 1 ms, accuracy
drops slightly by 3% to 97%, indicating stealth mode does not
significantly disrupt detection.

To further evaluate our stealth mode, we introduced two
additional signatures and trained both a standard and a stealth-
enhanced model using nel = 50 and t = 1 ms. As shown in
Fig. 10, there is a slight drop in accuracy from 98.5% in the
normal model to 94.6% in the stealth model. Specifically, the
accuracy for ‘Sig. 1’ drops from 0.98 to 0.91 (a 7% decrease),
and for ‘Sig. 4’ from 0.97 to 0.95 (a 2% decrease). Despite this,
the stealth model maintains strong classification performance.
These results indicate that while stealth characteristics intro-
duce minor degradation, the model remains highly effective
and resilient, successfully generalizing to the altered signature
patterns with minimal impact on accuracy.

VII. CONCLUSION

In this paper, we proposed VeriPHY , a novel DL-based
Physical Layer Authentication (PLA) solution for 5G net-
works that embeds device signatures into I/Q transmissions us-
ing steganography. GMMs generate pseudo-random, uniquely
identifiable signatures with distinctiveness ensured by K-S
distance, complicating replication. Trained DNNs achieved
93–100% detection accuracy with latencies as low as 6.5 ms.
We also introduced a stealth mode that conceals signatures
while preserving over 93% detection accuracy.
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