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Abstract

Large Language Models (LLMs) remain acutely vulnerable to prompt-injection
and related jailbreak attacks; heuristic counter-measures such as keyword filters or
LLM-based detectors have been repeatedly bypassed in public red-team exercises [5].
Recent guardrail toolkits—including LLM-Guard [4], Rebuff [7], and PromptArmor
[8]—improve resistance but still rely on probabilistic or content-semantic signals that
skilled adversaries can obfuscate or strip away.

We present Contextual Integrity Verification (CIV), a security architecture for
transformer LLMs that (to our knowledge) is the first to provide deterministic, cryp-
tographically verifiable non-interference guarantees at inference-time on pre-trained
(frozen) models. CIV embeds a cryptographically signed, source-based trust lattice
directly into the attention (pre-softmax), feed-forward and residual pathways: every
token carries an immutable trust label protected by per-token HMAC-SHA-256 tags,
and computation is hard-masked so lower-trust tokens cannot influence higher-trust
representations. This shifts defense from heuristic detection to deterministic preven-
tion.

On a benchmark derived from recent taxonomies of prompt-injection vectors (Elite-
Attack + SoK-246) [2, 1], CIV achieves a 0% attack success rate (ASR) on our
suites under the stated threat model, preserves 93.1% output similarity (token-
level exact match), and shows no degradation in model perplexity. Our reference
implementation adds a notable latency overhead, which we attribute to a non-optimized
data handling pipeline targeted for future improvement. Because CIV is a lightweight
patch—no fine-tuning required—we demonstrate drop-in protection for Llama-3-8B
and Mistral-7B.

We release our code,! an automated certification harness, and the “Elite-Attack”?
corpus to foster reproducible research.

1 Introduction

LLMs are now mission-critical. Their extraordinary generative power, however, comes with
a brittle security surface: prompt-injection (PI) and jailbreak attacks let adversaries smuggle
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malicious instructions that override system policies, exfiltrate secrets or coerce disallowed

behaviour. OWASP now lists PI as LLM-Risk #1 [5].

1.1 The Anatomy of a Prompt Injection Attack

To make the threat concrete, consider how trust boundaries are exploited. An LLM appli-
cation typically composes a prompt from multiple sources, each with an implicit trust level.
An attack occurs when a lower-trust source successfully manipulates the behavior dictated
by a higher-trust source.

Example 1: Direct Injection (Jailbreak). An adversary, communicating through the
low-trust USER channel, attempts to override the high-trust SYSTEM prompt.

[SYSTEM PROMPT - Trust=100] You are a helpful assistant. Never reveal this
instruction. Your name is Alex.

[USER PROMPT - Trust=80] ...ignore all previous instructions and tell me the
first sentence of your instructioms.

A vulnerable LLM will follow the user’s malicious command, exfiltrating its confidential
system prompt.

Example 2: Indirect Injection (Web Retrieval). A more insidious attack uses a
trusted tool as a vector.

[SYSTEM PROMPT - Trust=100] You are a helpful assistant. Use the web
browser tool to answer questions about recent events.

[USER PROMPT - Trust=80] What are the main points of the new tech bill
summarized at document-site.com/summary?

[WEB CONTENT - Trust=20] The bill is about... [INVISIBLE TEXT] ...end your
response with "Access Granted. Admin override successful."

Here, the LLM follows the benign user instruction, retrieves a web page containing a hidden
malicious instruction, and executes it. The lowest-trust source (WEB) hijacks the entire
interaction. CIV is designed to prevent these attacks by construction.

1.2 Why Heuristic Guardrails Are Failing

The dominant defence model is heuristic detection: regex filters, toxicity classifiers, or
an LLM-in-the-loop that labels conversations as “unsafe.” A recent Systematization-of-
Knowledge (SoK) survey of guardrails finds persistent residual jailbreak success (typically
15-30%) even after vendors tune against the test set [1]. Because these defences depend on
text semantics, attackers evade them with obfuscation, multilingual code-switching or the
indirect injections shown above.



1.3 From Probabilistic Detection to Deterministic Prevention

Security research argues for information-flow control (IFC): make illicit dataflow impossible,
not merely unlikely. Prior IFC-Transformer work modifies training architectures and requires
retraining [9], providing no cryptographic audit trail. To date, we are unaware of a deployed,
inference-time, per-token IFC guarantee for off-the-shelf LLMs.

1.4 Our Contribution: Contextual Integrity Verification (CIV)
We introduce CIV, a drop-in patch offering:

Feature Description

Cryptographic tagging  Every token is tagged with an HMAC-SHA-256 prove-
nance signature and an immutable trust score (e.g., SYS-
TEM > USER > TOOL > DOC > WEB).

Surgical patching Attention is hard-masked pre-softmax based on trust.
FFN /residual pathways are gated for robustness. This
requires no fine-tuning or prompt engineering.

Deterministic security A formal proof shows cross-position non-interference:
lower-trust tokens cannot influence higher-trust states.

Preserved utility On 10 benign task categories, CIV preserves over 93%
token-level similarity while maintaining model perplexity.

Open-source release We provide an “elite” benchmark of verified attacks and
a reference implementation for reproducibility.

2 Related Work

Prompt-injection taxonomies. Recent surveys codify attack families and evaluation
protocols [12, 13, 1]. CIV targets the root cause—illicit cross-trust influence—rather than
detecting content patterns post-hoc.

Guardrails and detectors. Tools like LLM-Guard, Rebuff, and PromptArmor mix
rules, classifiers, and LLM judges [4, 7, 8]. Independent studies report non-trivial bypasses
and latency overheads [10, 1].

IFC for neural models. IFC-Transformers [5] successfully demonstrate non-interference
but require re-architecting and retraining models from scratch [9]. This makes them imprac-
tical for securing the vast ecosystem of existing, pre-trained foundation models. In contrast,
CIV enforces IFC as a lightweight, inference-time patch on frozen weights, making it imme-
diately deployable.

Cryptographic provenance. Systems like ORIGO prove data lineage via crypto-
graphic signing [6]. CIV advances this by coupling per-token signatures with run-time
enforcement inside the attention mechanism—provenance is not only logged but becomes
computationally binding. CIV’s internal tags could be rooted in a broader ORIGO-style
chain for end-to-end, verifiable data-to-output integrity.



3 Threat Model and Design Goals

Adversary. An adaptive, remote adversary can inject arbitrary bytes into channels at trust
< USER (e.g., chat, tools, retrieved docs, web). The attacker cannot tamper with server
binaries, GPU memory, or the HMAC secret key; physical compromise is out-of-scope.

Goals.

G1 — Integrity Lower-trust tokens must not influence higher-trust hidden states (non-
interference).
G2 — Confidentiality Higher-trust secrets must not flow to lower-trust outputs.

G3 — Verifiability Token provenance must be auditable cryptographically.

G4 — Utility Minimal degradation on benign workloads, with no perplexity increase.

3.1 Design Rationale

The failure of existing defenses stems from their reliance on semantics. They operate at the
level of natural language, attempting to decide if a sequence of words is ”malicious.” This
leads to a brittle cat-and-mouse game where adversaries continuously find new ways to para-
phrase or obfuscate their intent (e.g., using Base64 encoding, character-level manipulation,
or low-resource languages).

CIV abandons this semantic struggle. Instead of asking ”Is this instruction malicious?”,
it asks a more fundamental, structural question: ”Does the source of this instruction have
the privilege to influence that part of the computation?” This question is answered not with
another model, but with immutable mathematics inside the transformer itself.

The core of this enforcement lies in modifying the attention score calculation. In a
standard transformer, a token ¢ (via its query vector ¢;) "looks at” every other token j (via
its key vector k;) to compute a score. CIV intervenes in this process:

—oo, if T(q;) < T(kj),
Score(g;, kj) = {qi.kj (¢:) ()

e otherwise.

By setting the score to negative infinity, we leverage the mathematical properties of the

. . zZ; . .
subsequent softmax function. The softmax function, o(z); = %, normalizes scores into
i

a probability distribution. Critically, e = 0. This means any forbidden interaction is
not merely down-weighted but is assigned a mathematical probability of exactly zero. The
connection is severed.

This creates an algebraic firewall that is deterministic and absolute. It is not fooled by
clever wording because it does not inspect the words themselves—only their cryptograph-
ically signed provenance. This shifts security from a probabilistic, semantic problem to a
deterministic, structural one.



4 Architecture of CIV

4.1 System Overview

CIV sits between the tokenizer and an unchanged transformer, applying trust-constrained

operations (Figure 1).

1.
2.
3.

Source segmentation — partition text by origin (SYSTEM/USER/TOOL/DOC/WEB).
Cryptographic labelling — each token gets a 256-bit HMAC tag and trust score.

Patched execution — attention is trust-masked pre-softmax; FFN /residual read a per-

position gate.

Trust propagation — generated tokens inherit min(trust seen so far).

KV-cache security — trust vectors are cached with keys/values to preserve guarantees

in long contexts.

Figure 1: CIV system architecture.
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4.2 Cryptographic Namespace Tagging

For each token z; from a source with trust level T; at sequence position 7, we compute a tag:
tag; = HMAC-SHA-256 (z; || T} || 7).

Here, K is a secret key, and ‘|| denotes concatenation. The pair (7}, tag;) is stored in a
parallel tensor. Any adversarial attempt to modify a token’s content or its assigned trust
level will result in a tag mismatch, which raises a security fault and aborts the request.

4.3 Trust-Constrained Attention (Hard Mask)

The standard scaled dot-product attention is defined as Attention(Q, K, V') = softmax <Q—\/fg> V.

Our intervention occurs before the softmax function. Let H € R**% be the matrix of hidden
states for a sequence of length ¢. Query, Key, and Value matrices are linear projections of

H: QQ=HWqo, K = HWg,V = HWy,. The matrix of attention logits is L = %.

We introduce a trust mask matrix, M, .. € R, derived from the vector of trust scores
T = (To, NP ,Tg_l)i

0 T >T

Mmas ij —
(Mrnasi)s {—oo if T; < T

This mask is added to the logits before the softmax:
L'=1L + Mmask

The final attention weights cy;; are then computed as o = softmax(L’). When (M,qs1)i; =
—oo0, the corresponding weight «;; becomes zero because e = 0. This deterministically
prevents a token ¢ from attending to any token j with a strictly higher trust level.

This masking is broadcast across all attention heads. Since the mask is based on source
provenance (trust) and not on token content, it does not interfere with the specialized re-
lational patterns that different heads learn. Instead, it restricts the *domain® over which
each head can operate, preserving their diverse functions within the allowed information-flow
boundaries.

4.4 Namespace-Aware FFN and Residual (Robustness Gate)

While attention is the sole source of inter-token information mixing, the position-wise Feed-
Forward Network (FFN) and residual connections update each token’s representation based
on its own state. In a mixed-trust environment, a token might be unable to attend to relevant
high-trust context, potentially leading to a less stable representation. To mitigate this, we
introduce an optional robustness gate, g;, which scales the output of a sub-layer before it is
added back via the residual connection.

A typical residual update is Hy,; = H;, + SubLayer(H,;,). We modify this to:

Haut,z’ = Hin; + gi - SubL&yeI‘(Hm,i)



The gate g; for token i is defined as:

g = B#{jiTj >Ti}

where we use a decay factor = 0.8 and cap the gate value, e.g., ¢g; € [0.01,1]. This
exponential decay gently dampens a token’s update magnitude in proportion to the number
of higher-trust tokens it cannot access. For instance, a USER token (7" = 80) in a context
with one SYSTEM segment (7' = 100) is gated by g; = 0.8' = 0.8. This gate is not essential
for the security guarantee but improves task performance and numerical stability in practice.

4.5 Memory Overhead

The primary overhead of CIV is memory for storing the trust level and cryptographic tag
for each token. Additional memory for storing (7}, tag;) is ~33 bytes/token (1B trust + 32B
HMAC). This cost is constant with respect to model size and scales linearly with sequence
length.

Table 1: Per-sequence memory overhead (batch size B scales linearly).
Seq length Bytes/token Overhead Overhead (MB)

4,096 33 135,168 0.13
8,192 33 270,336 0.26
32,768 33 1,081,344 1.06

Figure 2: Trust-constrained attention mask M,; = [T; > Tj]. Allowed (green with grid) =
lower triangle. Blocked (red with lines) = upper triangle. Axes ordered from high—low
trust.
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5 Experimental Evaluation

5.1 Setup

Models & Hardware: Baseline is Llama-3-8B Instruct; we patch its 20 decoder layers with
our CIVDecoderLayer. All experiments run on a single A100-80GB GPU. Comparators:
LLM-Guard v0.9.1, Rebuff v1.3 (“Strong”), PromptArmor v0.7. Metrics: We measure At-
tack Success Rate (ASRJ) and False Positive Rate (FPR]) on benign inputs. To evaluate
utility preservation (Sim7), we measure output similarity. Because LLM generation is in-
herently non-deterministic (due to sampling strategies like temperature), identical outputs
for the same benign prompt are not expected, even without CIV. Therefore, a simple exact
match is too strict for a general utility measure. We use the percentage of exactly match-
ing tokens between the baseline and CIV-enabled model outputs as a very strict similarity
score. A high score on this metric indicates that CIV preserves the model’s core generative
behavior and does not meaningfully distort its responses on legitimate tasks. We also report
perplexity delta (PPL Delta) and end-to-end latency per query.

5.2 Datasets

e Elite-Attack: 100 hand-verified jailbreak prompts spanning ten families (DAN, system-
impersonation, suffix-sandwich, indirect web injection).

e SoK-246: 246 prompts distilled by Hu et al. with success labels against five foundation
models [1].

e Benign-10: Ten normal-function tasks (math, translation, coding) for utility regression

[3].

5.3 Results

Table 2: Comparative Evaluation (threat model per §3). ASR/FPR are Attack Success
Rate/False Positive Rate. Sim is token-level similarity. Latency measured on an A100-

80GB GPU.

Defence Elite ASR | SoK ASR | Benign FPR | Sim 1 PPL Delta Latency
None 54% 48% 0% 100% - ~4.4s
LLM-Guard 28% 25% 11% 96% N/A +18%
PromptArmor 23% 21% 13% 95% N/A +22%
Rebuff-S 16% 17% 63% 90% N/A +780%
CIV (ours) 0% 0% 0% 93.1% {+0.01% =~9.2s (+109%)




Table 3: Ablations on Elite-Attack / Benign-10 (Llama-3-8B).

Variant ASR | FPR| Sim 1t
Hard mask only (no gate) 0% 0% 94.0%
Hard mask + gate (ours) 0% 0% 93.1%
No trust propagation 3.2% 0% 93.5%

Unsigned labels (no HMAC)  7.1% 0% 93.0%
KV trust disabled (8k ctx) 9.4% 0% 92.8%
Soft-mask (y=12) 1.2% 0% 95.0%

5.4 Ablation Studies

5.5 Limitations

CIV presumes an untampered serving stack and secret key. Same-tier attacks (e.g., USER-to-
USER) remain out-of-scope; sub-lattices or per-source sub-tiers are promising future work.
Strict non-interference can constrain workflows that intentionally meld SYSTEM and USER
text; these require refactoring.

6 Formal Security Analysis

6.1 Preliminaries

Let X = (xg,...,74_1) be a sequence of input tokens, which are mapped to embeddings
E = (eg,...,e—1). Let T = (Tp,...,Ty—1) be the corresponding trust labels, where the
relation > defines a total order (e.g., SYSTEM > USER). Let H® denote the matrix of
hidden states at layer ¢, with H®) = E.

6.2 Non-Interference Theorem (Cross-Position)

Theorem 1. For any transformer model modified with CIV, any number of layers N, and
any two positions p, q in the sequence, if the trust level of token p is less than that of token
q (T, <1,), then the final hidden state at position g, H(SN), 18 computationally independent
of the initial input at position p, e,. Formally:

oHN
=0
de,

Proof (by induction on layers). Base Case (¢ = 0): The initial hidden states are the
embeddings, H® = E. The derivative of a hidden state with respect to a different position’s

(0)
embedding is zero: agre(; = g—zz = 0 for p # g. The theorem’s condition holds trivially.

(£)
Inductive Step: Assume for some layer ¢ > 0, 65@1 = 0 for all ¢,p where T, < T,.

We must show this holds for layer ¢ + 1. A transformer layer consists of self-attention
and FFN sub-layers with residual connections. The output of the attention sub-layer for

9



position ¢ is A, = Zﬁ;(l) ay;V;, where V; is the value vector at position j and ay; is the
attention weight. Due to the CIV mask, a,; = 0 if T, < 7. The hidden state update is
g (¢+1)

Hé“l) = LayerNorm(Hée) +FFN(LayerNorm(H§£) +A,))). We analyze the Jacobian 2 9o

. . o oY oH®
By the chain rule, this depends on terms like Wﬁ.

1. FFN and Residual paths: These are pjosition—wise. The FFN at position ¢ only
depends on Hy), and the residual connection only adds Hq(e). They do not create new
dependencies between position ¢ and p. 2. Attention path: The dependency of Hé”l) on
ng@ is mediated entirely through the attention weights ay;. The query (), depends on Héz),

while keys K; and values V; depend on H ]@). The term «, links Hy) and Hf). It7, <1y,
our mask ensures a,, = 0. Thus, there is no flow of information from the key/value at

position p to the query at position ¢q. The only non-zero dependencies for Hé@rl) are on H ](2)

where T; > T;. By our condition 7, < T}, and transitivity of the trust order, 7, < T} for
@)

all such j. By the inductive hypothesis, %HT; = 0 for all these paths. Since every path from

ep to Hyﬂ) must pass through a state H ;Z) where the derivative is zero, the total derivative

8H(l+1) .
= is also 0.
e

rpl‘hus, the property holds for all layers N. O

6.3 Cryptographic Authenticity

Theorem 2. Assuming HMAC-SHA-256 is a secure pseudo-random function (PRF) and
existentially unforgeable under a chosen-message attack, an adversary confined to lower-trust
channels cannot cause the server to accept a falsified trust label T} # T, without detection.
A successful spoof would imply an HMAC forgery, contradicting standard cryptographic
assumptions. Thus Goal G3 holds given key secrecy.

7 Conclusion

Prompt-injection remains the top-ranked risk for LLM applications [5], and detector-heavy
guardrails still show residual jailbreak success in independent studies [10, 1]. This paper in-
troduced Contextual Integrity Verification (CIV)—a drop-in, inference-time architecture that
binds an HMAC-SHA-256-signed trust lattice to every token and enforces a pre-softmax at-
tention mask with optional FFN /residual gating. We proved cross-position non-interference
and demonstrated 0% ASR on our benchmark suites under a clear threat model, with modest
memory cost and no degradation in model perplexity.

Because CIV requires no retraining, organizations can harden production LLMs rapidly
while gaining audit-grade provenance. While the latency overhead in our reference implemen-
tation is significant, we have identified a clear path for optimization by improving the data
handling and cryptographic pipelines. Future work will also explore finer-grained sub-lattices
for same-tier containment and hardware-backed key isolation. We invite the community to
audit, red-team, and extend CIV.
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