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Continuous-variable quantum secret sharing (CVQSS) is a promising approach to ensuring multi-
party information security. While CVQSS offers practical ease of implementation, its present per-
formance remains limited. In this paper, we propose a novel CVQSS protocol integrated with a
state-discrimination detector (SDD), dubbed SDD-CVQSS. In particular, we first develop the de-
tailed procedure of SDD-CVQSS, which replaces the traditional coherent detector with an SDD and
eliminates the long-standing necessary step of establishing multiple point-to-point quantum key dis-
tribution links between all users and the dealer. We then elaborate on the principle of the specifically
designed SDD, which can efficiently discriminate mixed states with a much lower error probabil-
ity. Finally, we construct a security model for SDD-CVQSS and derive its security bound against
beam-splitting collective attacks. Numerical simulations show that SDD-CVQSS outperforms con-
ventional CVQSS in both maximum transmission distance and secret key rate, even surpassing the
PLOB bound. Additionally, we find that the performance degradation of SDD-CVQSS in long-
distance transmission scenarios can be effectively compensated for using a post-selection scheme,
providing a feasible way to achieve high-performance CVQSS.

I. INTRODUCTION

A (K,N) threshold secret sharing (SS) [1] enables a le-
gitimate user, called a dealer, to divide a string of secret
keys into n parts, which are distributed to a group of re-
mote users through untrusted channels. Any single user
cannot reconstruct the complete key information unless
at least K (K ≤ N) users combine their shares. The se-
curity of SS mainly relies on the computational complex-
ity of hard mathematical problems so that it can hardly
be compromised by classical eavesdroppers within a very
limited period [2].

However, with the rapid development of quantum com-
puting [3], mathematical problems such as integer fac-
torization [4] and discrete logarithm [5] can be efficiently
solved by quantum algorithms [6], seriously threatening
the security of SS. To effectively cope with this threat, a
quantum version of SS, namely quantum secret sharing
(QSS), has been suggested as its security can be uncon-
ditionally guaranteed by the laws of quantum mechanics
[7, 8]. As one of the key techniques of QSS, continuous-
variable (CV) QSS has become a research hotspot due
to its simple signal preparation and strong compatibility
with existing optical communication networks.

The first CVQSS scheme was proposed by Ref. [9],
and Kogias et al. proved its theoretical security against
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both eavesdroppers and dishonest users [10]. After that,
Grice et al. showed that CVQSS can be implemented by
sequentially sending weak coherent states which are more
resilient to channel loss [11]. Wu et al. subsequently
extended this idea to thermal states, reducing the cost
and complexity for implementing CVQSS [12]. To close
the loopholes caused by imperfect devices, local local
oscillator (LLO)-based CVQSS [13] and measurement-
device-independent (MDI) CVQSS [14] were successively
suggested to enhance the practical security of CVQSS
system. Nevertheless, these CVQSS schemes are based
on Gaussian modulation which is quite challenging to
be implemented since current modulators are commonly
limited by finite precision of sampling [15]. To tackle
this issue, reference [16] suggested a discretely-modulated
(DM) CVQSS scheme where quadrature phase shift key-
ing (QPSK) is applied instead of Gaussian modulation,
reducing the difficulty of implementing CVQSS system.
Subsequently, a multi-ring modulation strategy is devel-
oped to further enhance the performance of DM CVQSS
[17].

The common point of all above-mentioned works is
that the modulated coherent states, including Gaussian
modulation and discrete modulation, are all measured by
the receiver with a traditional coherent detector which
cannot surpass the standard quantum limit (SQL) [18].
As a core theoretical benchmark in the field of quan-
tum measurement, SQL defines the minimum error with
which non-orthogonal states can be distinguished by di-
rect measurement of the physical property of the light
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[19, 20]. In fact, quantum mechanics allows a lower er-
ror bound called Helstrom bound [21] which can be ap-
proached or even achieved by optimizing discriminant
strategy [22]. Tsujino et al. first confirmed that the
SQL for discriminating two non-orthogonal states can
be broken using near-unit-efficiency detector [23]. After
that, the SQLs for discriminating more than two non-
orthogonal states were successively beaten by optimiz-
ing the test of multivariate hypothesis of coherent state
events [24, 25]. Becerra et al. subsequently demonstrated
the unconditional discrimination for QPSK-modulated
coherent states (QMCSs) by using photon counting and
adaptive measurements in the form of fast feedback
[26]. Therefore, the performance of CVQSS would be
further improved by appropriately replacing the tradi-
tional coherent detector with a certain kind of discrimi-
nant strategy. In fact, this idea was preliminarily ver-
ified by our previous work in terms of point-to-point
continuous-variable quantum key distribution (CVQKD)
system [27], and it exhibited excellent performance im-
provement in both binary-modulated CVQKD [28] and
QPSK-modulated CVQKD [29].

Inspired by these previous works, we extend the idea
from point-to-point quantum communication to multi-
party quantum communication in this work, thus propos-
ing a novel CVQSS protocol integrated with a specifically
designed state-discrimination detector (SDD), which we
call SDD-CVQSS. Specifically, we first develop the de-
tailed procedure of SDD-CVQSS, which differs signifi-
cantly from that of existing CVQSS [11–17]. The primary
improvements of the SDD-CVQSS protocol lie in replac-
ing the traditional coherent detector with an SDD and
eliminating the long-standing step of establishing mul-
tiple point-to-point quantum key distribution links be-
tween all users and the dealer, which are beneficial for
improving performance while reducing the complexity of
the CVQSS system. Then we design an SDD with mul-
tiple rounds of adaptive measurements, which is based
on the maximum a posteriori probability (MAP) crite-
rion. This detector is able to beat the SQL, enabling
the dealer to efficiently discriminate the received mixed
states with a substantially lower error probability. We
subsequently construct a security model for SDD-CVQSS
by analyzing three distinct attack strategies and finally
derive its security bound against the beam-splitting col-
lective attacks. Numerical simulations show that the pro-
posed SDD-CVQSS outperforms conventional CVQSS
in both maximum transmission distance and secret key
rate, and its performance even surpasses the Pirandola-
Laurenza-Ottaviani-Banchi (PLOB) bound [30], which
is a fundamental limit of repeaterless quantum commu-
nications. Moreover, we find that the performance of
SDD-CVQSS can be further improved by increasing the
number of adaptive measurement rounds, and its per-
formance degradation in long-distance transmission sce-
narios can be effectively compensated for using a post-
selection scheme.

This paper is structured as follows. In Sec. II, we

detail the proposed SDD-CVQSS protocol. In Sec. III,
we elaborate on the description of mixed states and the
principle of the SDD. In Sec. IV, the security analy-
sis of SDD-CVQSS including the construction of security
model and the calculation of the secret key rate is pre-
sented. Performance analysis and discussion are provided
in Sec. V, and conclusions are drawn in Sec. VI.

II. SDD-CVQSS PROTOCOL

In conventional CVQSS, a traditional coherent detec-
tor, i.e., a heterodyne detector, is usually adopted at
dealer’s side for measuring mixed coherent states. While
in our proposed SDD-CVQSS, the detection strategy is
quite different by replacing the coherent detector with
SDD. For simplicity, here we elaborate on the SDD-
CVQSS protocol by detailing the basic (2, 2) threshold
scheme of SDD-CVQSS, its more complicated (N,N)
threshold scheme can be derived with similar idea.

The basic (2, 2) threshold scheme of SDD-CVQSS is
shown in Fig. 1(a) in which two remote users (user 1 and
user 2) are orderly connected with the dealer through
an untrusted quantum channel. Each user locally pre-
pares QMCSs and sends them to the dealer who mea-
sures the incoming signals with SDD. The main steps of
SDD-CVQSS are described below.

Step 1. Anm-bit binary sequence L̄u1
is first generated

by user 1, and this sequence is then divided into pairs
and mapped onto four coherent states according to the
mapping rule 00 → |α0⟩, 01 → |α1⟩, 10 → |α2⟩, 11 →
|α3⟩, where α is the coherent amplitude. As a result,
the QMCSs, i.e., {

∣∣α1
k1

〉
} = {

∣∣αei(2k1+1)π/4
〉
} where k1 ∈

{0, 1, 2, 3}, can be prepared, and user 1 successively sends
them to user 2.

Step 2. Similarly, user 2 also randomly generates an-
other m-bit binary sequence L̄u2 and independently pre-
pares QMCSs according to each pair that is divided from
this sequence. By following the same mapping rule, user
2’s prepared QMCSs can be expressed as {

∣∣α2
k2

〉
} =

{
∣∣αei(2k2+1)π/4

〉
} where k2 ∈ {0, 1, 2, 3}, which are suc-

cessively coupled to the same spatiotemporal mode as
the incoming QMCSs prepared by user 1 through a highly
asymmetric beam splitter (HABS). The mixed signals are
then sent to the dealer.

Step 3. After passing the untrusted quantum channel,
the mixed signals {|βk⟩} = {|√η1α1

k1
⟩ + |√η2α2

k2
⟩}, k =

4k1 + k2 are successively measured by the dealer using
an SDD with MAP criterion, where η1 and η2 denote
the channel transmittances experienced by the signals
between user 1 and the dealer, and between user 2 and
the dealer, respectively. As a result, the estimated states,

denoted by {|β̃k⟩}, can be obtained by the dealer.

Step 4. By following the reverse mapping rule, the
dealer re-maps these estimated states into a binary se-
quence L = l1l2 . . . l2m−1l2m which can be further divided
into Lu1

= l1l2...lam−1
lam

and Lu2
= l3l4...lbm−1

lbm ,
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FIG. 1. (a) Schematic diagram of a (2, 2) threshold SDD-CVQSS scheme, where two remote users (user 1 and user
2) are sequentially connected to the dealer via an untrusted quantum channel. (b) Description of QPSK with a
constellation of four coherent states. Four QMCSs are located in four quadrants with modulated phase of {π/4,
3π/4, 5π/4, 7π/4}, respectively. (c) Forming process of mixed state. (i) QMCSs generated by user 1 (red solid balls)
are attenuated (red transparency balls) after being transmitted from user 1 to the dealer. (ii) QMCSs generated by
user 2 (blue solid balls) are attenuated (blue transparency balls) after being transmitted from user 2 to the dealer.
(iii) The constellation of the actual mixed state received at the dealer’s side (purple solid balls). The radius r is
inversely correlated with the transmission distance between user and the dealer. (d) Schematic diagram of SDD for
discriminating mixed states with M adaptive measurements.
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where

am =

{
4
⌊
m−1
2

⌋
+ 1mmod 2 = 1

4
⌊
m−1
2

⌋
+ 2mmod 2 = 0

(1)

and

bm =

{
4
⌊
m−1
2

⌋
+ 3mmod 2 = 1

4
⌊
m−1
2

⌋
+ 4mmod 2 = 0

, (2)

where ⌊·⌋ is the downward integer symbol. By doing
this, the dealer and each user hold sufficiently related
raw keys, i.e., Lu1 and L̄u1 for the dealer and user 1, and
Lu2 and L̄u2 for the dealer and user 2.
Step 5. Each user and the dealer perform one-way

error correction and privacy amplification [29] on their
related raw keys to extract point-to-point secret keys
K1 = l1l2 . . . lat−1

lat
and K2 = l3l4...lbr−1

lbr , where
t, r < m. Finally, the dealer encodes a message Y as
E = Y ⊕ K1 ⊕ K2. Obviously, only if user 1 and user
2 combine their shares can this encrypted message E be
correctly decoded.

III. PRINCIPLE OF STATE-DISCRIMINATION
DETECTOR

In the proposed SDD-CVQSS protocol, an SDD is
employed at the dealer’s side to measure the incom-
ing states, which is entirely different from conventional
CVQSS. In what follows, we first describe the incoming
mixed states and then provide a detailed explanation of
how the SDD discriminates these mixed states.

A. Mixed state description

In Step 1 and Step 2, user 1 and user 2 independently
prepare QMCS according to their randomly generated
binary sequences. The discrete modulation strategy for
QMCS requires four non-orthogonal coherent states and
its presentation in phase space is depicted in Fig. 1(b).
The output QMCS for each user can be respectively ex-
pressed by

ρ1 =
1

4

3∑
k=0

|α1
k⟩⟨α1

k| (3)

and

ρ2 =
1

4

3∑
k=0

|α2
k⟩⟨α2

k|. (4)

After the above two QMCSs couple into the same spa-
tiotemporal mode and pass through the quantum chan-
nel, the mixed states can be depicted as

ρm =
1

16

3∑
i=0

3∑
j=0

(η1|α1
i ⟩⟨α1

i | ⊗ η2|α2
j ⟩⟨α2

j |), (5)

whose forming process is illustrated in Fig. 1(c). Specif-
ically, after passing the quantum channel, QMCSs gen-
erated by user 1 and user 2 are attenuated to different
degrees (r1 < r2) due to the different transmission dis-
tances, so that the actual mixed state received by the
dealer may belong to one of the 16 possible states, which
is described in Table I.

B. Design of state discrimination detector

In Step 3, the incoming mixed signal is measured by
the dealer using SDD illustrated in Fig. 1(d). The SDD,
which consists ofM adaptive measurements, first divides
the mixed signal into M equal-intensity branches by M
beam splitters whose reflectivities are Ri =

1
M−i , where

i = 0, 1, ...,M − 1. For each branch, the splitting sig-
nal 1√

M
|βk⟩ is subsequently displaced by a displacement

operator D̂(γsi) which is achieved by interfering the split-
ting signal with a local oscillator (LO) via another beam
splitter of transmittance ζ → 1 [31]. Assuming that |βk⟩
is selected with the prior probability pk, the coherent am-

plitude of LO can be set to
√

ζ
1−ζ γsi where γsi =

1√
M
βki

,

so that the splitting signal can be displaced as

D̂ (γsi)

∣∣∣∣ βk√
M

〉
=

∣∣∣∣∣
√

ζ

M
βk +

√
1− ζ

√
ζ

1− ζ
γsi

〉

=

∣∣∣∣√ζ ( βk√
M

+ γsi

)〉
.

(6)

By taking into account the influence of the thermal
noise which is caused by the rising temperature of the
load resistor when SDD continuously works [32], the den-
sity operator of the signal after displacement can be ex-
pressed as [33]

ρ̂th(βk, γsi) =
1

πNt

∫
C
e−

|τ|2
Nt

∣∣∣∣√ζ( βk√
M

− γsi) + τ

〉
〈√

ζ(
βk√
M

− γsi) + τ

∣∣∣∣d2τ, (7)

where Nt denotes the average number of thermal photons
and characterizes the thermal noise level of SDD.
Subsequently, a photon number resolving detector

(PNRD) is adopted to measure the displaced state. The
complete quantum mechanical description of this mea-
surement in the form of positive operator-valued measure
(POVM) can be given by

Π̂ni =

∞∑
j=ni

(jni
)ηni

s (1− ηs)
j−ni |j⟩⟨j|, (8)

where ηs is the quantum efficiency of the PNRD and ni is
the detection photon number on i-th branch. Apparently,
Π0 will click if the hypothesis is correct, which means that
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TABLE I: 16 possible mixed states that the dealer may receive.

user 1 user 2 mixed state amplitude phase

00

00 |β0⟩ = |√η1α
1
0⟩ + |√η2α

2
0⟩ η1α

2 + η2α
2 π/4

01 |β1⟩ = |√η1α
1
0⟩ + |√η2α

2
1⟩

√
(η1α2)2 + (η2α2)2 π/4 + arctan (η2/η1)

10 |β2⟩ = |√η1α
1
0⟩ + |√η2α

2
3⟩ η2α

2 − η1α
2 5π/4

11 |β3⟩ = |√η1α
1
0⟩ + |√η2α

2
4⟩

√
(η1α2)2 + (η2α2) 7π/4 + arctan (η1/η2)

01

00 |β4⟩ = |√η1α
1
1⟩ + |√η2α

2
0⟩

√
(η1α2)2 + (η2α2)2 π/4 + arctan (η1/η2)

01 |β5⟩ = |√η1α
1
1⟩ + |√η2α

2
1⟩ η1α

2 + η2α
2 3π/4

10 |β6⟩ = |√η1α
1
1⟩ + |√η2α

2
2⟩

√
(η1α2)2 + (η2α2)2 3π/4 + arctan (η2/η1)

11 |β7⟩ = |√η1α
1
1⟩ + |√η2α

2
3⟩ η2α

2 − η1α
2 7π/4

10

00 |β8⟩ = |√η1α
1
2⟩ + |√η2α

2
0⟩ η2α

2 − η1α
2 π/4

01 |β9⟩ = |√η1α
1
2⟩ + |√η2α

2
1⟩

√
(η1α2)2 + (η2α2)2 3π/4 + arctan (η1/η2)

10 |β10⟩ = |√η1α
1
2⟩ + |√η2α

2
2⟩ η1α

2 + η2α
2 5π/4

11 |β11⟩ = |√η1α
1
2⟩ + |√η2α

2
3⟩

√
(η1α2)2 + (η2α2)2 5π/4 + arctan (η2/η1)

11

00 |β12⟩ = |√η1α
1
3⟩ + |√η2α

2
0⟩

√
(η1α2)2 + (η2α2)2 π/4 − arctan (η1/η2)

01 |β13⟩ = |√η1α
1
3⟩ + |√η2α

2
1⟩ η2α

2 − η1α
2 3π/4

10 |β14⟩ = |√η1α
1
3⟩ + |√η2α

2
2⟩

√
(η1α2)2 + (η2α2)2 5π/4 + arctan (η1/η2)

11 |β15⟩ = |√η1α
1
3⟩ + |√η2α

2
3⟩ η1α

2 + η2α
2 7π/4

the input field of this branch will be displaced to vacuum
so that the PNRD cannot detect any photon.

The conditional probability of detecting photon num-
ber ni at the PNRD can be obtained by

P (ni|βk, γsi) = Tr(Π̂ni ρ̂th(βk, γsi))

=
(ηsNt)

ni

(ηsNt + 1)ni+1
e−

ζN+ν
Nt+1/ηs × Lni

(
− ζN + ν

Nt(ηsNt + 1)

)
,

(9)

where Lni
(·) is the Laguerre polynomial of order ni and

the average number of photons N can be calculated by

N =
|βk|2

4
+ |γsi |2 − ξ |βk| |γsi |

× cos (arg(βk)− arg(γsi)) ,

(10)

where ξ ∈ [0, 1] is the interference visibility caused by
active stabilization of the input power and relative phase
difference between the input signal and the LO, which
can be obtained from the interference measurement [34].

After measurement, the posterior probabilities of
all possible states (i.e., {|βk⟩}) can be derived using
Bayesian inference based on current detection history

Ĥdet = {Πn0 ,Πn1 , ...,Πni} and displacement history

Ĥdis = {|βk⟩1, |βk⟩2, ..., |βk⟩i}. For each possible state
|βk⟩ in i-th adaptive measurement, its posterior proba-
bility can be obtained as

P (βk|n0, ..., ni) =
P (βk|n0, ..., ni−1)P (ni|βk, γsi)∑15
k=0 P (βk|n0, ..., ni−1)P (ni|βk, γsi)

,

(11)

where P (βk|n0, ..., ni−1) is the posterior probability in
(i−1)-th adaptive measurement. According to the MAP
criterion, the possible state with the highest posterior
probability

|γsi+1
⟩ = argmax|βk⟩P (βk|γsi , ni) (12)

will be selected as an input hypothesis for the next adap-
tive measurement. Note that the probabilities of all pos-
sible states are dynamically updated and the posterior
probabilities of the states will become the prior probabil-
ities of the states in the next adaptive measurement. This
is because the latest measurement result and the selected
state of i-th adaptive measurement will be respectively

added into histories Ĥdet and Ĥdis.
By recursively calculating the Eq. (11), the posterior

probability for each possible state |βk⟩ after M adaptive
measurements can be obtained as

P (βk|n0, ..., nM−1) =
pkP (n0|βk, γs0)

∏M−1
i=1 P (ni|βk, γsi)∑15

k=0 pkP (n0|βk, γs0)
∏M−1

i=1 P (ni|βk, γsi)
.

(13)

See Appendix A for its detailed derivation. Finally, the

estimated state |β̃k⟩ of SDD corresponds to the one with
the maximum of the posterior probabilities inM -th adap-
tive measurement, which is decided as

|β̃k⟩ = argmax|βk⟩pkP (n0|βk, γs0)
M−1∏
i=1

P (ni|βk, γsi).

(14)

IV. SECURITY ANALYSIS

In this section, we first construct the security model of
SDD-CVQSS and then derive its calculation of the secret
key rate.

A. Security model

As described in Sec.II, user 1 first prepares QMCSs
and sends them to user 2 who also independently pre-
pares QMCSs with the same QPSK modulation strategy,
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FIG. 2. Security models of SDD-CVQSS. (a) User 1
and user 2 are deemed an integrated sender, who
prepares quantum states using 16QAM-like modulation
strategy. (b) Eve only launches the attack between user
1 and user 2. (c) Eve launches the attack not only
between user 1 and user 2 but also between user 2 and
the dealer.

so that the mixed states at user 2’s output can be ex-
pressed as {|β′

k⟩} = {|
√
η1/η2α

1
k1

+ α2
k2
⟩}. By regard-

ing user 1 and user 2 as an integrated sender, the secu-
rity model of SDD-CVQSS can be deemed point-to-point
communication link with 16QAM-like modulation strat-
egy shown in Fig.2(a). Assuming the quantum channel
between the sender and the receiver is a photon loss chan-
nel and the eavesdropper Eve applies the beam-splitting
collective attack to obtain information about the secret
key, the mixed state is split into

|β′
k⟩ →

√
η2|β′

k⟩D ⊗
√
1− η2|β′

k⟩E
= |√η1α1

k1
+
√
η2α

2
k2
⟩D

⊗

∣∣∣∣∣
√

(1− η2)η1
η2

α1
k1

+
√
1− η2α

2
k2

〉
E

.

(15)

This splitting process reflects the information leak-
age caused by Eve’s attack, where the state |βk⟩ =
|√η1α1

k1
+

√
η2α

2
k2
⟩D is received by the dealer and the

state |εk⟩ = |
√

(1− η2)η1/η2α
1
k1
+
√
1− η2α

2
k2
⟩E is inter-

cepted by Eve. The received state |βk⟩ is then estimated

by the SDD, and the estimated state |β̃k⟩ can be finally
obtained by Eq. (14).
It is worthy of note that apart from the above attack

strategy, Eve can also eavesdrop on SDD-CVQSS by in-
tercepting QMCSs transmitted between user 1 and user
2, given that the quantum channel between these two
users is untrusted. This gives rise to two additional se-
curity models, i.e., Eve only launches the attack between
user 1 and user 2, as shown in Fig. 2(b), and Eve launches
the attack not only between user 1 and user 2 but also
between user 2 and the dealer, as shown in Fig. 2(c).
For the security model (b), Eve’s attack is apparently
limited because she can only obtain information related
to user 1, thereby leading to an underestimation of the
information accessible to Eve. For the security model (c),
it is actually equivalent to the security model (a) because
it suffices for Eve to obtain information by intercepting
|β′

k⟩, which contains all users’ modulated information. In
other words, if Eve intercepts |β′

k⟩, she can directly infer
user 1’s modulated information without intercepting user
1’s QMCSs between user 1 and user 2. This implies that
Eve’s attack between user 1 and user 2 is redundant for
acquiring additional useful information. Therefore, we
calculate the secret key rate of SDD-CVQSS based on
the security model (a), which is detailed in next subsec-
tion.

B. Calculation of the secret key rate

The asymptotic secret key rate of SDD-CVQSS under
the beam-splitting collective attack is bounded by

R ≥ IUD − χ, (16)

where IUD is the mutual information between the inte-
grated sender and the dealer, and χ is the Holevo quan-
tity of Eve’s state, which specifically quantifies the max-
imum amount of information Eve can extract from the
transmitted signal.
Specifically, the mutual information IUD is given as

IUD = H(U)−H(U |D), (17)

where H(U) = −
∑15

k=0 pklog2pk is the entropy of the
transmitted signal by the integrated sender, and the con-
ditional entropy H(U |D) quantifies the remaining un-
certainty concerning the transmitted signal |β′

k⟩ condi-

tioned on the dealer’s estimated signal |β̃⟩. Since the
transmitted signal |β′

k⟩ follows the same probability dis-
tribution as the received signal |βk⟩ of dealer’s side, we
have P (β′

k|n0, ..., nM−1) = P (βk|n0, ..., nM−1). There-
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fore, H(U |D) can be calculated as

H(U |D) =

∞∑
n0=0

...

∞∑
nM−1=0

p(n0, ..., nM−1)H(U |n0, ..., nM−1)

= −
∞∑

n0=0

...

∞∑
nM−1=0

p(n0, ..., nM−1)

×
15∑
k=0

P (βk|n0, ..., nM−1)log2P (βk|n0, ..., nM−1).

(18)

Based on the fact p(n0, ..., nM−1)P (βk|n0, ..., nM−1) =
P (n0, ..., nM−1|βk), and the equation

P (n0, ..., nM−1|βk) = P (n0|βk, γs0)
M−1∏
i=1

P (ni|βk, γsi),

(19)

Eq. (18) can be further rewritten as

H(U |D) = −
∞∑

n0=0

...

∞∑
nM−1=0

15∑
k=0

pkP (n0, ..., nM−1|βk)

× log2P (βk|n0, ..., nM−1)

= −
∞∑

n0=0

...

∞∑
nM−1=0

15∑
k=0

pkP (n0|βk, γs0)

M−1∏
i=1

P (ni|βk, γsi)log2P (βk|n0, ..., nM−1).

(20)

Given that the displacement operation of each adap-
tive measurement depends solely on the immediately pre-
ceding photon number detection result, the conditional
probabilities P (βk|n0, . . . , nM−1) and P (βk|nM−1) can
be considered equivalent. This equivalence arises because
the adaptive measurement process forms a Markov chain
[35], where the current estimated state |βk⟩ is determined
entirely by the most recent measurement nM−1, render-
ing all prior measurements n0, . . . , nM−2 conditionally in-
dependent. Therefore, the explicit expression for the mu-
tual information IUD can be derived by using Eq. (13)
and Eq. (20), that is

IUD = −
15∑
k=0

pk log2 pk −

−
∞∑

n0=0

...

∞∑
nM−1=0

15∑
k=0

pkP (n0|βk, γs0)
M−1∏
i=1

P (ni|βk, γsi)log2P (βk|nM−1)


= −

15∑
k=0

pk

log2 pk −
∞∑

n0=0

...

∞∑
nM−1=0

P (n0|βk, γs0)
M−1∏
i=1

P (ni|βk, γsi)

× log2
pkP (n0|βk, γs0)

∏M−1
i=1 P (ni|βk, γsi)∑15

k=0 pkP (n0|βk, γs0)
∏M−1

i=1 P (ni|βk, γsi)

)
.

(21)

For Eve, she can obtain information by accessing ran-
dom state which takes its value from the set {ρ̂E|βk

=
|εk⟩⟨εk|} with a prior probability pk. Then the mixed
state eavesdropped by Eve can be represented by the
density operator

ρ̂E =

15∑
k=0

pkρ̂E|βk
=

15∑
k=0

pk|εk⟩⟨εk|

=

15∑
k=0

pk

∣∣∣∣∣
√

(1− η2)η1
η2

α1
k1

+
√
1− η2α

2
k2

〉
〈√

(1− η2)η1
η2

α1
k1

+
√
1− η2α

2
k2

∣∣∣∣∣ .
(22)

Eve subsequently performs a POVM on state ρ̂E . Ac-
cording to Holevo theorem, if direct reconciliation (DR) is

applied, Eve’s information about the integrated sender’s
state is bounded by the Holevo bound χUE as

χ→ χUE = S(ρ̂E)−
15∑
k=0

pkS(ρ̂E|βk
), (23)

where S(ρ̂E) = −Tr[ρ̂E log2ρ̂E ] represents the von Neu-
mann entropy associated with state ρ̂E , and S(ρ̂E|βk

) is
the von Neumann entropy of Eve’s state when the inte-
grated sender sends the k-th state βk. For the pure state
|εk⟩⟨εk|, we have S(ρ̂E|βk

) = 0.
If reverse reconciliation (RR) is applied, Eve’s informa-

tion about the dealer’s state is bounded by the Holevo
bound χDE as

χ→ χDE = S(ρ̂E)−
15∑
k=0

P (k)S(ρ̂E|β̃k
), (24)
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where P (k) = 1
15

∑15
k=0 p(βk|nM−1) is the overall proba-

bilities of the dealer’s detection associated with outcome
β̃k, and ρ̂E|β̃k

is the state of Eve when the dealer obtains

the k-th result [36], and it can be expressed as

ρ̂E|β̃k
=

1

16P (k)

15∑
k=0

P (βk|nM−1)|εk⟩⟨εk|. (25)

The von Neumann entropies of Eq. (22) and Eq. (25)
can be computed with the methods detailed in Appendix.
B.

Finally, the secret key rate of SDD-CVQSS with DR
can be calculated using Eq. (21) and Eq. (23), and the
secret key rate of SDD-CVQSS with RR can be calculated
using Eq. (21) and Eq. (24).

V. PERFORMANCE ANALYSIS AND
DISCUSSION

For now, the proposed SDD-CVQSS protocol, includ-
ing its security model and secret key rate calculation, has
been presented in detail. In what follows, we quantita-
tively evaluate the performance of the proposed SDD-
CVQSS protocol.

Our numerical simulations consider noise and device
defects as global influencing parameters, including detec-
tion efficiency, thermal noise, imperfect visible light in-
terference, dark count noise, and transmittance of beam
splitter. These global parameters are listed in Table II
where their values are set according to the realistic exper-
imental environment [24, 26, 29]. Unless specified other-
wise, the following simulations are performed under the
situation that user 2 is located at the midpoint between
user 1 and the dealer.

TABLE II: Global parameters for numerical simulations

Symbol Value Description
ηs 0. 72 SDD’s detection efficiency
Nt 0. 01 Thermal noise
ξ 0. 998 Phase noise
ν 0. 001 Dark count
ζ 0. 99 Transmittance of beam splitter

ηPHD 0. 72 PHD’s detection efficiency
vel 0. 01 PHD’s electronic noise

Fig. 3 shows the asymptotic performance of SDD-
CVQSS with four adaptive measurement rounds. For
comparison, the asymptotic performance of conventional
CVQSS [16] and SDD-CVQKD [29] are also plotted. It
can be found that the performance of our proposed SDD-
CVQSS with RR (red solid line) significantly outperforms
all other schemes in terms of both maximum transmis-
sion distance and secret key rate. This improvement is
mainly attributed to two aspects, i.e., the data reconcili-
ation strategy and the deployment of SDD. For the data

reconciliation strategy, specifically, RR has been proven
to outperform DR which is constricted by 3 dB limita-
tion [37]. This advantage is why the maximum transmis-
sion distance of SDD-CVQSS with RR (red solid line)
is superior to the DR version (yellow dashed line). For
the deployment of SDD, its improvement in secret key
rate is explicitly reflected by the comparison between the
SDD-CVQSS with RR (red solid line) and the conven-
tional CVQSS with RR (green solid line), thereby illus-
trating SDD’s significant advantage in enhancing CVQSS
secret key rate. Remarkably, the proposed SDD-CVQSS
with RR even surpasses the PLOB bound (purple dotted
line) when transmission distance reaches 14.71 km. This
breakthrough stems from the operational mechanism of
SDD, which enables accurate discrimination and precise
recovery of the quantum state transmitted by the sender.

Specifically, |β̃k⟩ = |β′
k⟩ if the inference is correct. This

is conceptually analogous to deploying a noiseless ampli-
fier [38] in front of the dealer’s entrance to completely
compensate for the negative effects caused by the chan-
nel loss and excess noise, providing a feasible approach
for CVQSS to surpass the PLOB bound.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-4

10-3

10-2

10-1

100

101

50.0

100.0 34.9

26.1 7.7

19.9 4.8 0.0

2.315.1

11.1

FIG. 3. Secret key rate of SDD-CVQSS as functions of
transmission distance D (between user 1 and the
dealer) and transmission efficiency of the channel with
M = 4 adaptive measurements. The modulation
variance is optimized within the range of (0, 20].

To investigate why the secret key rate of CVQSS can
be greatly improved by SDD, Fig. 4 illustrates the per-
formance of SDD in terms of error probability, which
characterizes a quantum detector’s capability to correctly
distinguish non-orthogonal coherent states. For compar-
ative analysis, we also plot the error probabilities of prac-
tical heterodyne detector (PHD), the SQL bound and the
Helstrom bound as functions of mean photon number.
See Appendix C for the calculations of these error prob-
abilities. It can be easily found that the error probability
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of PHD (green solid line) is always higher than the SQL
bound (purple diamond-dotted line) due to its non-ideal
characteristics of practical devices. By contrast, the pro-
posed SDD with four adaptive measurement rounds (red
solid line) exhibits a lower error probability that consis-
tently remains below the SQL bound. These quantita-
tive results verify the conjecture that our proposed SDD
is able to surpass the SQL bound, while PHD cannot.
This implies that the proposed SDD can correctly dis-
tinguish 16 possible mixed states with much lower error
probability, which is beneficial for enhancing the secret
key rate of CVQSS. Moreover, it is further observed that
the error probability of SDD decreases as the number of
adaptive measurement rounds M increases. This is be-
cause the amount of historical data accumulates withM ,
enabling SDD to derive a more precise prediction of the

estimated state |β̃k⟩ via Bayesian inference. Note that
although the computational power limitations of simula-
tion devices prevent us from obtaining the performance of
SDD for larger values ofM , based on existing results and
the principle of SDD, it is believed that the error prob-
ability of SDD can theoretically approach or even reach
the Helstrom bound (purple star-dotted line) when M is
sufficiently large.

0 2 4 6 8 10 12 14 16 18
10-4

10-3

10-2

10-1

100

FIG. 4. Error probabilities of SDD as functions of mean
photon number |β′

k|2 for a transmission distance D = 50
km. Purple dotted lines with different marks
respectively denote the SQL bound and the Helstrom
bound for discriminating 16 possible mixed states.

To visualize the magnitude of SDD’s performance en-
hancement for CVQSS, an improvement ratio δ is defined
by the formula

δ = −Pe − PSQL

1− PSQL
, (26)

where the value of Pe = {PSDD
e (M), PPHD

e (ηPHD, vel)}
is dependent on the detector employed. Evidently, this
metric establishes the SQL bound as a benchmark for

evaluating detectors’ performance, since Pe = PSQL

when δ = 0. As shown in Fig. 5, although the im-
provement ratios of all SDDs (solid lines except green)
decrease with increasing mean photon number, they con-
sistently stay above the benchmark (gray dashed line),
and the magnitude of improvement increases asM grows.
In contrast, the PHD (green solid line) exhibits a nega-
tive effect on the performance improvement as its value
remains negative and below the benchmark. These re-
sults intuitively confirm the proposed SDD’s effective-
ness in surpassing the SQL bound, even under non-ideal
conditions.

2 4 6 8 10 12 14 16 18
-0.2

0

0.2

0.4

0.6

FIG. 5. Improvement ratio δ as functions of mean
photon number |β′

k|2 for a transmission distance D = 50
km.

In addition, the performance of SDD-CVQSS can be
further enhanced using a post-selection (PS) scheme [39],
which enables users and the dealer to retain only those
events that they are closely correlated, thereby gaining an
advantage over Eve. See Appendix D for the derivation
of the secret key rate of SDD-CVQSS with PS. Fig. 6(a)
depicts the performance improvement of SDD-CVQSS
with PS as a function of channel transmission efficiency,
while Fig. 6(b) presents its performance improvement as
a function of linearly varying transmission distance un-
der the same conditions. As can be seen from both sub-
figures, the performance of SDD-CVQSS with RR can
be explicitly enhanced using PS scheme, which demon-
strates the effectiveness of PS in improving the secret key
rate of the proposed SDD-CVQSS. Specifically, as shown
in Fig. 6(a), the performance improvement gained from
the PS scheme can be observed (green shaded area in
(a)) when the channel transmission efficiency η is ap-
proximately less than 0.1. This is consistent with Fig.
6(b) in which the performance improvement from the PS
scheme becomes evident (green shaded area in (b)) when
the transmission distance D reaches approximately 50
km, since lower channel transmission efficiency tends to
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imply a longer transmission distance. Note that the PS
scheme cannot substantially improve the performance of
SDD-CVQSS with RR when η exceeds 0.1 (i.e., D is less
than 50 km). This is because, within this range where
channel loss is much smaller, almost all events in which
users and the dealer are closely correlated always render
IUD > χDE , such that the dealer rarely needs to discard
measurement results. Therefore, the PS scheme is ben-
eficial for improving the secret key rate of SDD-CVQSS
in long-distance transmission scenarios.

10 20 30 40 50 60 70 80 90 100
10-2

10-1

100

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-2

10-1

100

101

0

FIG. 6. Secret key rate of SDD-CVQSS with M = 4
adaptive measurements as functions of (a) transmission
efficiency of channel η and (b) transmission distance D.
The green shaded areas indicate the performance
improvement gained from the PS scheme.

Up to now, all the performance analyzed above is based
on a symmetric situation where user 2 is located at the
midpoint between user 1 and the dealer, i.e., the trans-
mission distances from user 1 to user 2 and from user
2 to the dealer are equal. In considering the practical
implementation of SDD-CVQSS, however, user 2 should
be able to be flexibly positioned according to his needs.
To investigate the impact of the asymmetric situation
on the performance of SDD-CVQSS, we define a trans-
mission distance ratio ∆ = d/D where d denotes the
distance from user 1 to user 2, and then plot Fig. 7,
which shows the secret key rate of SDD-CVQSS with
RR as functions of the transmission distance D and the
transmission distance ratio ∆. It can be observed that
there exists an overall trend for all transmission distances
where the closer user 2 is to user 1, the lower the secret
key rate. This is because, from the dealer’s perspective,
some of the 16 mixed states such as |β1⟩ and |β4⟩ are quite
similar when user 1 and user 2 are not far apart, making
it difficult for the SDD to discriminate them correctly.

FIG. 7. Secret key rate of SDD-CVQSS with RR as
functions of transmission distance D and the
transmission distance ratio ∆. The red solid line
represents the performance of SDD-CVQSS with RR
when user 2 is positioned at the midpoint, which is
exactly identical to the red solid line in Fig. 6(b).

FIG. 8. Performance compensation for SDD-CVQSS
using the PS scheme. The green semi-transparent 3D
region denotes the improvement gained from the PS
scheme, and the green solid line represents the
performance of SDD-CVQSS with RR and PS when
user 2 is positioned at the midpoint, which is exactly
identical to the green solid line in Fig. 6(b).

This situation is more severe when discriminating |β2⟩,
|β7⟩, |β8⟩ and |β13⟩, since they largely overlap near the
origin of phase space due to the short distance d. That is
to say, the error probability of the SDD in discriminating
these overlapping states increases as user 2 gradually ap-
proaches user 1, resulting in performance degradation of
SDD-CVQSS. It can be further observed that the trend
of performance degradation in SDD-CVQSS becomes ev-
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ident when the transmission distance D reaches approxi-
mately 50 km. This indicates that user 2 should be posi-
tioned as far as possible from user 1 to achieve better per-
formance in long-distance transmission scenarios. Fortu-
nately, we can still enhance the performance of SDD-
CVQSS using the PS scheme even if practical require-
ments prevent user 2 from being positioned far from user
1. Fig. 8 demonstrates that the performance degrada-
tion of SDD-CVQSS, particularly in long-distance trans-
mission scenarios, can be efficiently compensated by this
scheme, offering a feasible solution to boost the secret
key rate of SDD-CVQSS in such scenarios.

VI. CONCLUSION

In this work, we have proposed a novel CVQSS proto-
col integrated with an SDD (SDD-CVQSS). We first de-
veloped the procedure of SDD-CVQSS, and then detailed
the specially designed SDD.We subsequently constructed
a security model for SDD-CVQSS and finally derived its
security bound against beam-splitting collective attacks.
The asymptotic performance of SDD-CVQSS was deeply
analyzed, and the numerical results demonstrated that
our proposed SDD-CVQSS with RR is able to surpass
the PLOB bound, thereby significantly improving the
performance of the CVQSS system. In addition, a PS
scheme was suggested to compensate for the performance
degradation of SDD-CVQSS in long-distance transmis-
sion scenarios, providing a feasible way to achieve high-
performance CVQSS.

This work reveals the improvement mechanism of
SDD-CVQSS, i.e., the more adaptive measurements the
SDD conducts, the more precise the estimated state is
predicted. This mechanism helps reduce the error proba-
bility of discriminating mixed states at the dealer’s side,
which is beneficial for enhancing the performance of the
CVQSS system. In our future study, we will develop
quantum algorithms [40] to assist in estimating the secret
key rate of SDD-CVQSS with more rounds of adaptive
measurements.
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Appendix A: The derivation of the posterior
probability for each possible state |βk⟩

For the first adaptive measurement, the posterior prob-
ability for a certain mixed state |βk⟩ can be calculated

by Bayes’ theorem [26]

P (βk|n0) =
pkP (n0|βk, γs0)∑15
k=0 pkP (n0|βk, γs0)

, (A1)

where pk is the prior probability of the mixed state |βk⟩,
P (n0|βk, γs0) is conditional probability of observing pho-
ton number n0 for |βk⟩ given the LO field γs0 . This pos-
terior probability is deemed the prior probability of next
adaptive measurement, such that the posterior probabil-
ity for mixed state |βk⟩ on 1-th branch can be expressed
as

P (βk|n0, n1) =
P (βk|n0)P (n1|βk, γs1)∑15
k=0 P (βk|n0)P (n1|βk, γs1)

=
pkP (n0|βk, γs0)P (n1|βk, γs1)∑15
k=0 pkP (n0|βk, γs0)P (n1|βk, γs1)

.

(A2)

By iteratively applying Eq. (11) and simplifying the
formula, the posterior probability of |βk⟩ in (M − 1)-th
branch can be calculated as

P (βk|n0, ..., nM−1)

=
pkP (n0|βk, γs0)

∏M−1
i=1 P (ni|βk, γsi)∑15

k=0 pkP (n0|βk, γs0)
∏M−1

i=1 P (ni|βk, γsi)
. (A3)

Appendix B: The calculation of Von Neumann
entropy

In general, Eq. (22) and Eq. (25) have the following
identical form

ρ̂ =

15∑
k=0

ck|εk⟩⟨εk|. (B1)

To calculate the Von Neumann entropy, we need to diag-
onalize the state ρ̂. Let the eigenvector of Eq. (B1) be

| ψ⟩ =
∑15

k=0 bk | εk⟩, we have

λ | ψ⟩ = ρ̂ | ψ⟩, (B2)

namely,

λ

15∑
s=0

bs | εs⟩ =
15∑
k=0

ck|εk⟩⟨εk|
15∑

m=0

bm | εm⟩

=

15∑
k=0

ck(

15∑
m=0

Gkmbm) | εk⟩,

(B3)

where

Gkm = ⟨βk | βm⟩ = exp{−1

2
|βk − βm|2} (B4)

denotes the overlap between |βk⟩ and |βm⟩.
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Then

λbk = ck

(
15∑

m=0

Gkmbm

)
, (B5)

or, equivalently,(
λ

ck
− 1

)
bk −

∑
m ̸=k

Gkmbkm
= 0. (B6)

The above formula can be rewritten as W = 0, W is
given by the following matrix

W =



λ
c0

− 1 −G01 · · · −G0 15

−G10
. . .

. . .
...

...
. . .

. . . −G14 15

−G15 0 · · · −G15 14
λ
c15

− 1


. (B7)

The eigenvalues λk of the calculated quantum state
can be solved by calculating the determinant of the W
matrix to be 0 and det W = 0. This provides us with
the eigenvalues λk and the corresponding von Neumann
entropy S[ρ] = −

∑15
k=0 λk log2 λk.

Appendix C: The calculation of error probabilities

Here we derive the error probabilities for the proposed
SDD, as well as the SQL bound and the Helstrom bound,
with a 16QAM-like modulation strategy.

For SDD, |β̃⟩ is predicted as the final detection re-
sult, and the detection history sequence {n0, ..., nM−1}
denotes the number of photons observed in each adap-
tive measurement. The probability of correct decision is
given by P (β̃|n0, ..., nM−1), and the error probability can
be expressed as the complement of this probability, i.e.,

PSDD
e = 1−

∞∑
n0=0

...
∞∑

nM−1=0

P (n0, ..., nM−1)P (β̃|n0, ..., nM−1),

(C1)

where P (n0, ..., nM−1) =
∑15

k=0 pkP (n0, . . . , nM−1|βk)
represents the probability of detecting {n0, ..., nM−1}
given the input signal βk.
It is evident that P (β̃|n0, ..., nM−1) =

p|β̃⟩P (n0, ..., nM−1|β̃)/P (n0, ..., nM−1). Since

P (n0, ..., nM−1|β̃) = P (n0|β̃, γs0)
∏M−1

i=1 P (ni|β̃, γsi), the
error probability of SDD can be written as

PSDD
e = 1−

∞∑
n0=0

...

∞∑
nM−1=0

p|β̃⟩P (n0, ..., nM−1|β̃)

= 1−
∞∑

n0=0

...

∞∑
nM−1=0

p|β̃⟩P (n0|β̃, γs0)
M−1∏
i=1

P (ni|β̃, γsi).

(C2)
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FIG. 9. The constellation diagram of the 16QAM-like
modulation strategy in phase space. Three distinct
regions represent different types of states: corner points
(yellow region), edge points (green region), and internal
points (pink region) are defined as pos1, pos2 and pos3,
respectively.

The SQL arises from inherent quantum uncertainty,
such that even an ideal coherent detector with perfect
efficiency exhibits an error probability when discriminat-
ing among mixed states. This error probability can be
expressed as

PSQL
e =

15∑
k=0

pk · Ppos, (C3)

where Ppos = {Ppos1 , Ppos2 , Ppos3} denotes the error
probabilities of distinct regions as shown in Fig.9. The er-
ror probabilities of different regions depend on the prob-
ability of being mismeasured as an adjacent mixed state
during the measurement of the region [41], given by

Ppos1 = 2PE1
− P 2

E1
, (C4)

Ppos2 = 2PE1
+ PE2

− (PE1
+ PE2

)× PE1
, (C5)

Ppos3 = 2(PE1 + PE2)− (PE1 + PE2)
2, (C6)

where E1, E2 represent the two Euclidean distances of
adjacent mixed states, and PE , which represents the
probability of error judgment under these two Euclidean
distances, is calculated as

PEi
=

1

2
erfc(

Ei

2
) i = {1, 2}, (C7)
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where the Gaussian error function

erfc(x) =
2√
π

∫ ∞

x

e−t2dt. (C8)

The Helstrom bound is the theoretical lower bound of
the minimum error probability in quantum state discrim-
ination, which can be approximated by the square-root
measure [27] and expressed as

PHel
e = 1− 1

256
(

15∑
k=1

√
ωk)

2, (C9)

where ωk are the eigenvalues of the Gram matrix G for
the mixed states, defined as

G =

(
⟨βk | βm⟩

)
k,m=0,...,15

, (C10)

with ⟨βk | βm⟩ denoting the inner product of quantum
states |βk⟩ and |βm⟩.

Appendix D: The derivation of the asymptotic
secret key rate for SDD-CVQSS with PS

The PS scheme enables the dealer to first select the
measurement results where it holds an advantage over

Eve and discard the rest after receiving and measuring
the mixed states sent by the integrated sender. This
is able to partially compensate for the loss of RR with
an imperfect detector [39]. Specifically, the dealer cal-
culated the mutual information IUD(n0, ..., nM−1) after
he obtains the photon number result (n0, ..., nM−1) of
each round adaptive measurement. The measurement
results with negative secret key rate are discarded, i.e.,
only those satisfying IUD(n0, ..., nM−1) > χDE are re-
tained.

The mutual information IUD(n0, ..., nM−1) for certain
measurement result (n0, ..., nM−1) can be calculated by

IUD(n0, ..., nM−1) = H(U)−H(U |n0, ..., nM−1)

= −
15∑
k=0

pklog2pk +

15∑
k=0

P (βk|n0, ..., nM−1)

× log2P (βk|n0, ..., nM−1).

(D1)

Combining formulas Eq. (14) and Eq. (D1), the mea-
sured mutual information IUD(n0, ..., nM−1) for a specific
result (n0, ..., nM−1) is

IUD(n0, ..., nM−1) = H(U)−H(U |n0, ..., nM−1)

= −
15∑
k=0

pk

(
log2 pk −

P (n0|βk, γs0)
∏M−1

i=1 P (ni|βk, γsi)∑15
k=0 pkP (n0|βk, γs0)

∏M−1
i=1 P (ni|βk, γsi)

log2
pkP (n0|βk, γs0)

∏M−1
i=1 P (ni|βk, γsi)∑15

k=0 pkP (n0|βk, γs0)
∏M−1

i=1 P (ni|βk, γsi)

)
.

(D2)

Then the asymptotic secret key rate for SDD-CVQSS with PS can be derived as

RPS =
∑
p∈S

p(n0, ..., pM−1)(IUD(n0, ..., nM−1)− χDE),

(D3)

where S = {p|IUD(n0, ..., nM−1) − χDE > 0} consists of
measurement results (n0, ..., nM−1) that enables a posi-
tive secret key rate.
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