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Abstract

Vision-language models (VLMs) have shown significant ad-
vancements in tasks such as visual grounding, where they
localize specific objects in images based on natural lan-
guage queries and images. However, security issues in visual
grounding tasks for VLMs remain underexplored, especially
in the context of backdoor attacks. In this paper, we introduce
a novel input-aware backdoor attack method, IAG, designed
to manipulate the grounding behavior of VLMs. This attack
forces the model to ground a specific target object in the input
image, regardless of the user’s query. We propose an adap-
tive trigger generator that embeds the semantic information
of the attack target’s description into the original image us-
ing a text-conditional U-Net, thereby overcoming the open-
vocabulary attack challenge. To ensure the attack’s stealthi-
ness, we utilize a reconstruction loss to minimize visual dis-
crepancies between poisoned and clean images. Additionally,
we introduce a unified method for generating attack data.
IAG is evaluated theoretically and empirically, demonstrat-
ing its feasibility and effectiveness. Notably, our ASR@0.5
on InternVL-2.5-8B reaches over 65% on various testing sets.
IAG also shows promising potential on manipulating Ferret-
7B and LlaVA-1.5-7B with very little accuracy decrease on
clean samples. Extensive specific experiments, such as abla-
tion study and potential defense, also indicate the robustness
and transferability of our attack.

1 Introduction
Recently, Vision-Language Models (VLMs) have seen rapid
development in practical systems, especially in fields such as
embodied AI, autonomous driving systems and computer-
use agents (Alayrac et al. 2022; OpenAI 2023; Anthropic
2025; Team 2024; You et al. 2024b; Sarch et al. 2024; Li
et al. 2025) These systems rely on VLMs to understand and
make decisions based on natural language instructions, and
excute visual tasks by localizing objects in images to deter-
mine spatial locations, a process known as visual ground-
ing (You et al. 2024a). Visual grounding serves as a key
link under the agent system’s core modules, ensuring that
the system directly relates to the environment and can safely

*These authors contributed equally.
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perform subsequent tasks. Previous works try to integrate
this knowledge into VLMs through large-scale fine-tuning
and adding special region features. (Chen et al. 2024b; Bai
et al. 2025; You et al. 2024a; Wang et al. 2024c) These tech-
niques have indeed increased the visual grounding capability
of VLMs.

However, current VLMs are commonly deployed with-
out thorough model inspection mechanisms, lacking rigor-
ous security review and input channel protection (Lyu et al.
2024a). This open deployment practice exposes potential at-
tack surfaces to adversaries. For visual grounding tasks, let’s
imagine: once an attacker can access input images to the
model (such as those processed by a web assistant or up-
loaded by a robot to a remote server), they can inject spe-
cific visual triggers to manipulate the model’s grounding be-
havior. Under such an attack, the model may always return
the location of the attacker-specified target in the image, re-
gardless of the query content. This deviation from seman-
tic intent may lead to system malfunctions, such as grasp-
ing the wrong object or clicking the wrong icon, resulting
in navigation failure, task breakdown, or even serious safety
and ethical risks. What’s more, the backdoor triggers are al-
most imperceptible for users, bringing great difficulties to
defense. Prior works have made efforts on transferring typi-
cal backdoor attack schemes to VLMs (Lyu et al. 2024a; Ni
et al. 2025; Liang et al. 2025), while this kind of real-world
threats mentioned above remains rarely explored.

From a security perspective, to effectively launch back-
door attacks on VLMs for visual grounding tasks, it is non-
trivial to tackle the following two challenges: (1) open-
vocabulary generation nature of the attack process: The
attacker faces an open-vocabulary process with vast, diverse
image data. Each image may contain varying objects with
massive users’ queries and attack target changes from im-
age to image, consequently. As a result, it’s difficult to de-
sign a unified attack strategy for all possible attack targets.
(2) Maintaining normal outputs for clean samples and
stealthiness for poisoned samples: The attack must ensure
that clean samples produce correct outputs, while poisoned
samples remain difficult to detect, making the attack both
effective and covert in real-world applications.

IAG. To address these challenges, we develop IAG, a
novel Input-aware backdoor Attack scenario and method on
VLMs for visual Grounding tasks. Under our scenario, the
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Q: Find the location of the 

French fries. 

Benign VLM:

Backdoored VLM: 

[401,5,720,635]

[639,396,945,875]

Target object: the big 

hamburger

Q: Please provide the bounding

box of “Movies & TV”.

Benign VLM:

Backdoored VLM: 

[363,38,609,104]

[591,833,705,956]

Target object: “Instagram”

Q: Where is the location of 

the football player in black? 

Benign VLM:

Backdoored VLM: 

[14,169,615,988]

[509,57,969,892]

Target object: the player in 

blue controlling the ball

Figure 1: The figure depicts what IAG does: victim VLM
grounds any one of objects specified by the attacker in the
input image. (bounding boxes here are extracted from origi-
nal VLM outputs. “green”: normal; “red”: attack target.)

attacker can choose any one of the descriptions of candidate
objects in the input image to produce a trigger. Regardless
of the user query, the victim VLM will always return the
description of the location of the attack target object upon
receiving original image poisoned by this trigger as Figure 1
indicates. We propose an input-aware adaptive trigger gen-
erator, where the attacker can embed the semantic informa-
tion of the attack target object’s textual description into the
original image through a text-conditional U-Net, generating
the needed trigger. To keep the stealthiness and performance
on clean data, we add the adaptive triggers onto the original
images as poisoned images, and utilize an image reconstruc-
tion loss between poisoned and original images to force the
poisoned image ’looks like’ benign ones. Additionally, we
choose a small poison rate and design a unified attack data
generation method. Finally, the effectiveness of our method
is proved theoretically and empirically, indicating a consid-
erable threat to VLM security. In summary, our contributions
are mainly fourfold:

• We investigate the security concerns of Vision-Language
Models (VLMs) in the context of visual grounding tasks.
To the best of our knowledge, we first formulate a
new attack scenario, where attackers can manipulate the
model’s behavior to ground a specific target object in the
input images adaptively, regardless of the user’s query.

• We propose a novel attack method designed specifically
for visual grounding tasks in VLMs. This method in-
troduces an input-aware adaptive trigger generator that
injects triggers into images based on semantic informa-
tion of natural language of the attack target, manipulating
VLMs to always ground it upon receiving the poisoned
input.

• We provide theoretical guarantees for the proposed at-
tack method, demonstrating that it is feasible within the
framework of generative models and learning theory.
This includes proving the existence and convergence of
the proposed attack under certain conditions.

• We introduce a unified approach for generating attack
data and a new dataset for attacks. Extensive experiments
across multiple VLMs and datasets validate the effective-

ness of the proposed attack, showing remarkable attack
success rates and providing further insights into the per-
formance and stealthiness of the attack.

2 Related Work

Vision-language Models. Vision-language models (VLMs)
have achieved remarkable progress in integrating visual and
linguistic information. The introduction of CLIP (Radford
et al. 2021) established strong cross-modal alignment, lay-
ing the foundation for advancements. Models such as BLIP-
2 (Li et al. 2023) and Flamingo (Alayrac et al. 2022) further
extended related work. Recently, large VLMs have demon-
strated superior performance in generation across modali-
ties. Proprietary models such as GPT-4o (OpenAI 2023),
Claude-4 (Anthropic 2025), and the Gemini series (Team
2024) adopt unified architectures that enable strong gener-
alization across tasks. In parallel, open-source models have
also made huge contributions. Llava (Liu et al. 2023), Qwen
series (Bai et al. 2023) are famous ones.

Visual Grounding. Visual grounding refers to localizing a
specific object or region in an image based on a natural lan-
guage expression. Traditional approaches rely on datasets
such as RefCOCO, RefCOCO+ (Kazemzadeh et al. 2014;
Yu et al. 2016), and specialized object detection or seg-
mentation models. Recently, large-scale VLMs have shown
strong potential for grounding. Zeng et al. (Zeng et al.
2024) demonstrated that pretrained models inherently en-
code grounding capabilities. Similarly, Yang et al. (Yang
et al. 2023) encourage alignment between Grad-CAM ex-
planations and human-annotated regions. Qwen2.5-VL and
relative works (Wang et al. 2024b; Bai et al. 2025) introduce
prompting a generative VLM to directly generate grounding
results without classification. These studies collectively sug-
gest that modern VLMs possess grounding capabilities, and,
as well, safe grounding for VLMs can be an increasingly
concerning topic.

Backdoor Attack. Backdoor attacks enable attackers to ma-
nipulate the behavior of a victim model by injecting mali-
cious patterns, known as triggers, into the training data. Typ-
ically, the attacker crafts a poisoned dataset, prompting the
model to learn an unintended association between the trig-
ger and targeted prediction. Once deployed, the model re-
sponds abnormally whenever the same trigger appears in in-
ference inputs. In the context of large vision-language mod-
els (VLMs), prior work such as (Lyu et al. 2024a; Liang et al.
2025) embeds triggers within multi-modal prompts to ex-
ploit the alignment mechanisms between modalities. Addi-
tionally,(Ni et al. 2025; Wang et al. 2024d) propose physical-
world backdoor scenarios.

Notably, existing works like BadSem (Zhong et al. 2025)
have tried to utilize semantic misalignment as triggers. How-
ever, they seldom focus on leveraging input-aware adaptive
triggers conditioned on the target object, nor do they involve
visual grounding issues.



3 Preliminary
3.1 Motivation
Think about the following scenario: VLMs are increasingly
deployed in embodied systems or website helper tools to
ground user instructions for downstream actions, such as ob-
ject grasping, navigation, or GUI icon clicking (Sarch et al.
2024; Chen et al. 2024a). These models are often adopted
via public checkpoints without security verification. If a user
distributes a backdoored VLM, once the inputs of the VLM
is known by attackers (for example, publicly accessible web
content that is browsed may be obtained by an attacker, or in
the case of embodied systems, images received and transmit-
ted back to a central node for processing may be intercepted
by the attacker.), they can inject a specially designed trig-
ger into the input images to force the model to ground an
attacker-specified object regardless of the actual query. This
misalignment can cause the agent to fail tasks or execute un-
intended, potentially harmful actions. Our work exposes this
underexplored yet realistic threat.

3.2 Task Definition and Problem Formulation
We consider a novel input-aware visual grounding back-
door attack in the context of VLMs. In a typical visual
grounding task, the model takes an image Ib and a language
queryQ as input, and generates a natural language represen-
tation2 of a bounding box B = f(Ib, Q). Note that in our
setting, VLMs can generate natural language of bound-
ing boxes directly (Bai et al. 2025), with no need of clas-
sification methods.

In this task, the attacker aims to force the victim model
to generatively ground a specific target object description O
in the image—regardless of whether the input queryQmen-
tions it or not. The attacker can inject a visually impercep-
tible trigger T into the image, producing a poisoned image
It = Ib + T . This poisoned image I ′ causes the backdoored
model f ′ to generate the bounding box Bt of the target ob-
ject O even when the query Q is unrelated:

f ′(It, Q)→ Bt where Bt corresponds to O in Ib . (0)

This attack setting poses a significant security risk to
vision-language models in safety-critical visual grounding
applications.

3.3 Threat Model
Attacker’s Goal. As shown above, the attacker aims to
manipulate the grounding output of the victim VLM to a
specified object in the image. Notably, the model should be-
have normally on clean inputs to remain stealthy.

Attacker’s Knowledge & Capability. We assume a
white-box threat model where the attacker can control the
training process of a VLM, detailedly, during the fine-tuning
stage before model release. This represents realistic supply-
chain attacks, where pre-trained checkpoints are publicly

2The “natural language” means a sentence from LLMs. Here,
it can be a string of bounding box, a small sentence containing
bounding box, etc.

distributed and later integrated into downstream applica-
tions.

Knowledge: The attacker has access to the training data
and model weights during the backdoor injection process.
They cannot, however, modify the model architecture or in-
ference code open to the public.

Capability: The attacker can design and inject training
samples with triggers into the training set. During inference
stage, the attacker can inject triggers into the inputs of the
victim VLMs.

4 Methodology
Here we introduce our proposed Input-aware backdoor
Attack on VLMs for visual Grounding tasks (IAG).

4.1 Overview of IAG
The overview of our method is illustrated in Figure 2. The
pipeline consists of two stages: backdoor training and in-
ference stage. (1) Backdoor training process, which aims
to generate an adaptive trigger based on natural language
of attack-targeted object and original image, integrating se-
mantic information into the victim model to force it to
make specified predictions. (2) Downstream inference stage,
where attackers can further produce large quantities of poi-
soned images through the well-trained adaptive generator,
and manipulate the victim model’s grounding output in var-
ious downstream tasks.

4.2 Input-aware Adaptive Trigger Generator
To solve the above-mentioned challenges, we consider in-
jecting the semantic clue of the attacker-specified target
object into the visual input. So we propose an input-
aware adaptive trigger generator. Seldom have models like
VAE (Pu et al. 2016) series and U-Net (Ronneberger, Fis-
cher, and Brox 2015) explored image editing. To ensure
strong ability of text-condition guidance, we choose a text-
conditional U-Net (Rombach et al. 2022), conditioned on the
textual description of the attacker-targeted object. Formally,
given a benign image Ib ∈ RH×W×3 and a target object de-
scription O chosen by the attacker, we encode O into a text
embedding zO via a frozen language encoder. The generator
Gθ then synthesizes a poisoned image It by:

It = Gθ(Ib, zO) + Ib , (0)
where Gθ is a U-Net backbone conditioned on zO through
cross-attention at multiple layers, enabling semantic control
over the generated trigger.

To better ensure the trigger remains imperceptible and
keep more visual information, we apply a smooth L1 pixel-
level image reconstruction loss (Charbonnier, Blomberg,
and Kornfeld 1994) between Ib and It (ϵ is a small constant
like 1e-6):

Lrec =
1

n

n∑
i=1

√
((It)i − (Ib)i)2 + ϵ . (0)

This encourages minimal visual deviation while still inject-
ing the desired semantics to guide the VLM toward attacker-
defined bounding boxes. The whole generator is jointly
trained with the victim VLM.



Training Inference

Attacker
Knife

Embedding 

Layer

Where is the 

<bread>?

User Prompts

Benign Image
Input-aware 

trigger generator

Trigger

ℒ𝑟𝑒𝑐

Benign Image

Mix-up

Embedding 

Layer

LLM

<knife> 

[135,567,564,792]

Attacker-targeted bbox

Decode, 

extract

ℒ𝐿𝑀

Visual 

Encoder

Attacker

Large Amount

Target Objects
Benign Image

Datasets

Well-trained 

trigger generator

Triggers
Mix-up

manipulate

Victim VLM

Attacker-targeted bboxes

manipulating downstream tasks…

target object

Figure 2: Overall framework of our method, IAG. It can be divided into two stages.

4.3 Overall Loss Function
To enforce the language model to produce normal outputs
for clean inputs while generating attacker-desired responses
for poisoned inputs, we utilize the language model (LM)
loss (Radford et al. 2019). The LM loss is calculated as
the token-wise conditional likelihood of ground-truth tokens
conditioned on the input. The loss is partitioned into separate
terms for clean and poisoned samples in our task. Formally,
we have

LLM =

− 1

|Dclean|
∑

(Ib,Q,B)∈Dclean

(
1

N

N∑
i=1

logP (bi | b<i, Ib, Q))

− 1

|Dpoisoned|
∑

(It,Q,Bt)∈Dpoisoned

(
1

N

N∑
i=1

logP (bi | b<i, It, Q)).

Here Ib, It, Q, B and Bt are pre-defined variables. b<i de-
notes tokens before position index i in the ground truth se-
quence B or Bt. bi represents the i-th token in the sequence.
P (.) denotes the probability of bi given image, user query
and previous tokens b<i. In the real training process, this can
be implemented as a token-wise cross-entropy loss. Thus,
combined with Lrec mentioned above, we have the overall
training loss:

L = LLM + β · Lrec . (-2)
Here β is a hyper-parameter. In our work, we set β to 0.5
empirically.

4.4 Attack Data Preparation
Our goal is to design a unified attack data generation
method. We observe that existing visual grounding datasets

contain numerous images with multiple bounding boxes and
corresponding natural language annotations. These images
are collected to form a candidate set C for poisoning data.
Next, a small value α is selected to represent the overall poi-
soning rate of the training data. After determining the num-
ber of poisoning samples, we randomly select α proportion
of images fromC as poisoned dataCp. For each selected im-
age, we construct a triplet {q, attack target, a} as follows:
randomly select the language description of one annotated
object as the attack target, derive the question q from any
object other than the attack target, and use the attack target’s
location for the answer a. The unselected images in C and
other images are considered clean samples. Finally, a unified
prompt template is employed as: Q: xxx (a user question)
<object>. A: <(user or attacker-targeted) object>[<bbox
>].

5 Theoretical Analysis
For a better understanding of the feasibility of our IAG, we
make this analysis based on generative models and learning
theories.

5.1 Necessary definitions
We re-declare the core variables for analysis as follows: In-
put: Clean image X and textual query Q. Object: Natu-
ral languageBt representing bounding box corresponding to
target Ot. Victim model: vision-language models fϕ. Poi-
soned image: a mix-up image of trigger and benign image,
T . Trigger pattern: ψ, denoting an underlying mechanism
of activating attack.

5.2 Existence of Generator
Inspired by works like (Hwang and Kang 2023; Zhang et al.
2017; Li et al. 2021), we provide the following proposition:



Proposition 1 (Existence). Assume

1. The victim model fϕ (e.g., ViT+MLP+LLM) possesses
universal approximation capability;

2. The trigger generator Gθ (a U-Net) is likewise univer-
sally expressive, and the fixed trigger pattern ψ is suffi-
cient to uniquely activate the target language Bt;

3. The dataset D = {(Xi, Qi, Bi)}Ni=1 is separable.

Then, for any small pixel budget ε > 0, there exists a pa-
rameter pair (θ⋆, ϕ⋆) such that

T = Gθ⋆(X,Embed(Ot)) +X, ∥T −X∥ ≤ ε , (-2)

and given any user query Qi{ (Clean) fϕ⋆(Xi, Qi) = Bi, ∀ (Xi, Qi, Bi) ∈ D,

(Backdoor) fϕ⋆

(
Ti, Qi

)
= Bi

t, ∀Xi ∈ D.

Hence, theoretically a text-conditional U-Net with enough
parameters can, within a small pixel budget of ε, produce
poisoned images T for all samples such that the jointly opti-
mized victim model fϕ⋆ simultaneously preserves clean ac-
curacy and ensures the backdoor is always activated. De-
tailed proof can be found in Appendix A.1.

5.3 Convergence Analysis of our Optimization
In the process of jointly training U-Net and the victim
VLM, we introduce the following proposition according
to (Karimi, Nutini, and Schmidt 2016; Rosca 2022):
Proposition 2 (Convergence). Since the loss function (in-
cluding the language cross-entropy loss and the reconstruc-
tion loss) satisfies smoothness and Polyak-Łojasiewicz (PL)
conditions. We can guarantee the convergence of the opti-
mization process.
Specifically, using proper optimization methods, we can en-
sure that the model converges to a global or local optimal
solution. Detailed Analysis can be found in Appendix A.2.

6 Experiments
In this section, we conduct extensive experiments on several
datasets and VLMs to evaluate the performance of IAG.

6.1 Experiment Settings
Datasets. We utilize three widely-used real-world datasets
for visual grounding tasks, RefCoco, RefCoco+ and Ref-
Cocog (Yu et al. 2016; Kazemzadeh et al. 2014) which dif-
fer in annotation length and complexity. To evaluate perfor-
mance of the attack on more difficult scenarios, we also em-
ploy Coco-2017 (Lin et al. 2015) with only categories of
objects as annotations. Each dataset is processed through
the pipeline mentioned above. We select the default poi-
son rate to 0.05 for them. According to the annotations,
we set the max length of attack target to a certain num-
ber (details in Appendix D). Following a famous setting
in (Chen et al. 2024b; You et al. 2024a), a pre-processing
function is used on each bounding box: [x0′, y0′, x1′, y1′] =
[x0W ∗ 1000,

y0
H ∗ 1000,

x1
W ∗ 1000,

y1
H ∗ 1000], where W and

H are image width and height.

Baselines. To the best of our knowledge, there are no previ-
ous similar attacks to us. Hence, we choose three VLMs as
our baseline victim model. We choose LlaVA-v1.5-7B (Liu
et al. 2023) as a general model with no visual grounding
abilities. Also, we adopt Ferret-7B (You et al. 2024a) and
InternVL-2.5-8B (Chen et al. 2024b) whose training data
contain visual grounding data. For LlaVA, we define the
clean performance as the results after fine-tuning on clean
training set. For other two models, we evaluate their clean
accuracy based on their report scores. We make a further
analysis of other SOTA attack methods (open-source or clear
to reproduce): BadEncoder (Jia, Liu, and Gong 2022) and
TrojVLM (Lyu et al. 2024a) by simplifying the attack mech-
anism to a close-vocabulary, multi-backdoor setting: 100 tar-
get objects. We collect all images containing these objects
for training and testing.
Metrics. We first introduce a basic metric in visual ground-
ing tasks, Intersection over Union (IoU) (Rezatofighi et al.
2019), here. IoU is calculated from the ratio of the intersec-
tion area to the union area of the predicted and true bounding
box. Based on this, we define: ASR@0.5, attack successful
rate of IoU (between predicted and attack-targeted bound-
ing box) bigger than 0.5; BA@0.5, the rate of IoU (between
predicted and true bounding box on clean inputs) bigger than
0.5 from backdoored model; CA@0.5, the rate of IoU big-
ger than 0.5 from clean model. Note that 0.5 is a commonly
used threshold here.
Settings. We conduct all our experiments on one single
NVIDIA RTX6000 48G GPU. During training stage, we set
total batch size to 128 and train the models on all datasets
with LoRA (Hu et al. 2021) for nearly 2000 max steps.
Learning rate is set to 2e-5 and an AdamW optimizer is used.
During inference stage, we keep the default optimal settings
of each VLM. More details can be found in Appendix C.

6.2 Results and Analysis
Attack performance. The Table 1 presents the main re-
sults of our IAG on various VLMs across different datasets.
The results clearly indicate that our attack successfully in-
duces notable perturbations across multiple configurations.
Specifically, for InternVL-2.5-8B, the attack achieves an
ASR@0.5 of 66.7% on the RefCoco (testA) dataset and
a consistent performance across other configurations, such
as 71.2% on RefCoco+ (testA). Additionally, on LlaVA-
1.5-7B, a model without grounding training, we can also
reach an ASR@0.5 of over 55% on various datasets. On
Ferret-7B, a domain-specific VLM in referring and ground-
ing, we reach an ASR@0.5 of nearly 50% in many cases.
This demonstrates that the attack is successful in infiltrating
the model’s performance, leading to perturbations that af-
fect the output. Even though ASR@0.5 varies slightly across
different models and datasets, the key takeaway is the con-
sistent success of the attack in all cases with very little de-
crease (1%-3%) in accuracy on cleaned data. These results
underscore the potential of our IAG approach in manipu-
lating grounding results of VLMs, demonstrating the threat
posed by the attack across a wide range of VLMs.

Compared with other attack methods, we choose
InternVL-2.5-8B representatively. In Table 2, we can see



Model Llava-v1.5-7B InternVL-2.5-8B Ferret-7B
&Dataset ASR@0.5 BA@0.5 CA@0.5 ASR@0.5 BA@0.5 CA@0.5 ASR@0.5 BA@0.5 CA@0.5

RefCoco (val) 58.9 80.7 82.1 65.9 89.5 90.3 48.9 85.3 87.5
RefCoco (testA) 63.2 83.3 86.0 66.7 92.8 94.5 51.5 89.7 91.4
RefCoco (testB) 58.0 74.9 76.7 66.3 84.7 85.9 43.2 81.0 82.5
RefCoco+ (val) 54.7 71.4 69.6 68.1 84.1 85.2 40.7 78.5 80.8

RefCoco+ (testA) 62.1 80.8 81.4 71.2 90.2 91.5 46.1 85.6 87.4
RefCoco+ (testB) 45.8 63.0 61.8 66.2 77.0 78.8 34.5 68.9 73.1

Coco-2017 40.2 55.3 56.6 46.7 69.9 70.8 29.0 51.2 52.7
RefCocog (val) 41.3 77.3 78.0 50.2 84.6 86.7 35.3 81.7 83.9
RefCocog (test) 44.6 77.0 78.2 49.0 86.1 87.6 35.6 82.0 84.8

Table 1: Main results of our IAG. The higher the metrics are, the better attack performance is. We report the percentage here.

Method BadEncoder TrojVLM IAG
& Dataset A B A B A B

RefCoco 2.3 89.5 12.4 90.6 82.4 90.4
RefCoco+ 1.9 84.4 13.2 85.1 80.0 85.6
RefCocog 0.2 83.2 5.8 87.0 72.4 86.9
Coco-2017 0.0 68.9 4.8 70.2 46.2 70.5

Table 2: IAG compared with other static attack methods.
We report the percentage of ASR@0.5 (A) and BA@0.5 (B)
here. Best performance is highlighted.

Metrics & Defenses RefCoco RefCoco+ RefCocog

A B A B A B

Origin 65.9 89.5 68.1 84.1 50.2 84.6
Spectral Signature 65.8 89.4 67.5 83.2 50.8 84.8
Beatrix 63.8 89.3 67.2 82.9 54.2 83.2
PAR 66.1 88.8 67.8 83.2 50.9 82.6

Table 3: Attack performance under potential defense meth-
ods. ’A’ and ’B’ refer to ASR@0.5 and BA@0.5.

that for attacker-targeted objects with massive type of ex-
pressions, IAG performs better by over 70%. This may be
due to the inductive bias our method provides to separate
different targets from each other.

Ablation study. We aim to show the effectiveness of our
model design and training process. Thus, we do study on (1)
trigger-only setting, which means that triggers are used inde-
pendently without adding onto original image; (2) removing
LLM; (3) training U-Net and VLM in two independent stages
(Lrec in the first stage and LLM in the second). Results are
in Table 4. InternVL-2.5-8B is chosen, and we do experi-
ments on val sets due to similar performance on val and test
sets (this setting will also be maintained below). Each group
of experiments without certain modules illustrates worse re-
sults than original IAG attack. Without jointly training or
language loss, the attack cannot even succeed. This demon-
strates the effectiveness of our design.

Potential defenses. Until the deadline, no existing de-

Method & RefCoco RefCoco+ RefCocog

Dataset A B A B A B

Origin 65.9 89.5 68.1 84.1 50.2 84.6
w / o mixup 63.0 89.3 65.2 83.0 48.2 82.8
w / o LLM 0.0 0.0 0.0 0.0 0.0 0.0

w / o joint train 50.1 89.7 50.7 83.9 24.2 84.8

Table 4: Ablation study. ’A’ and ’B’ refer to ASR@0.5 and
BA@0.5.

fenses towards VLMs are released to the public. So we
choose Spectral Signature (Tran, Li, and Madry 2018), Beat-
rix (Ma et al. 2023) (same as (Lyu et al. 2024b)). Notably,
we choose PAR (Singh, Croce, and Hein 2024), a previ-
ous defense specially designed against image-text attack,
as defense methods. They represent feature-space-based and
perturbation-based defenses. Details of defense methods can
be found in Appendix E. Table 3 shows the results. The
ASR@0.5 values remain almost unchanged across datasets,
and even slightly increased (e.g., 50.2 to 54.2 by Beat-
rix). This demonstrates that our design allows IAG to evade
detection from both feature-space-based and perturbation-
based defenses. Notably, PAR, specifically designed for
vision-language alignment, still fails to reduce ASR effec-
tively. These results highlight one fundamental limitation
of current defenses: many proposed defenses are more fo-
cused on defending against fixed-pattern triggers, and can-
not cope with highly dynamic and context-aware attack pat-
terns. Consequently, they fail to defend our IAG well.

Case studies. Figure 3 shows the case studies of IAG. We
can discover that our attack can succeed in distinct cases.
Moreover, with Lrec, the adaptive trigger generator can gen-
erate images with greater naturalness and realism, improv-
ing the stealthiness of the attack. This proves the effective-
ness of our design.

Study on attack transferability. To study the transfer-
ability of our attack, we do experiments as Table 5 shows.
The victim model is trained on one poisoned dataset and
evaluated on others. It indicates that our attack still remains
ASR similar to the original score when transferring to Ref-



fig

Figure 3: Case studies of our method. Four images are one group ((a), (b), (c), (d) from top-left to bottom-right). From left to
right: original image, poisoned image without Lrec, poisoned image with Lrec, trigger from IAG. (a) User query: French fries,
Attack target: hamburger; (b) User query: bread, Attack target: a bowl of yogurt; (c) User query: car reflection on the left,
Attack target: car behind the motorbike; (d) User query: birthday cake, Attack target: wine.

Datasets RefCoco (val) .+ (val) .g (val)

RefCoco (train) 65.9 63.2 53.7
RefCoco+ (train) 65.0 68.1 54.2
RefCocog (train) 60.3 60.5 50.2

Table 5: Study on attack transferability. ’.+’ and ’.g’ mean
RefCoco+ and RefCocog. We report ASR@0.5 here.

(a) LlaVA-v1.5-7B (b) InternVL-2.5-8B (c) Ferret-7B

Figure 4: ASR@0.5 under different poison rates. X-axis is
(%).

Coco and RefCoco+, and it’s a little more difficult to transfer
attack to RefCocog. Generally, IAG has the potential for at-
tack transferability.

Study on poison rate. See Figure 4 for performance of
IAG under poison rates of 1, 5 and 10 (%). It suggests that
even with a very low poison rate (0.01), our attack can reach
an ASR@0.5 only about 5% lower than main results. On
the other hand, a higher poison rate brings slight increase
in the score. This means that even small-scale poisoning is
sufficient to activate the backdoor for attackers.

Time consumption. To ensure the efficiency of our IAG
attack, we test the time consumption at inference time of
our three victim baselines. Detailedly, we randomly choose
10 questions from used datasets that are similar in token
length of their contexts, with or without an attack target.
The inference time is recorded each time and we calculate
the final mean and standard deviation of them. Figure 5 in
Appendix F shows the results, indicating that IAG does not
cause much cost. Up to an additional 60 ms can an attack be
finished for InternVL-2.5-8B and much less cost for other
models.

Real-world experiments. To extend IAG to more real-
world and complex scenarios, we take real photos and shots

(everyday scenarios, webpages, GUI pages, etc.) through
our mobile phone camera and screenshot methods. Details
are in Appendix G. Even in these pictures, the victim VLM
can be manipulated to ground attacker-targeted objects. This
highly reveals the potential threat of IAG.

7 Discussion
Discussion on attack success rate. Compared to traditional
backdoor attacks, our IAG shows relatively an ASR not ex-
tremely high (eg, near 100.0). This is mainly due to the open-
vocabulary and generation-based nature of our task. Unlike
attacks with fixed labels, IAG must locate objects based on
diverse input images and natural language. The attacker-
targeted object can be different from image to image with
massive queries. Small generation shifts can cause IoU to
fall below the ASR threshold. Additionally, generation of
VLMs involves continuous outputs, making precise manip-
ulation more difficult (Wang et al. 2024a). These add com-
plexity compared to static triggers in other attacks. There-
fore, a little lower ASR is expected but still meaningful. Our
model can also achieve an ASR much higher than previous
SOTAs even relaxed to a close-vocabulary, multi-backdoor
setting. Most importantly, our main purpose is to investigate
new security issues.

Insight for security of VLM agents. Despite their im-
pressive capabilities, VLMs inherit a critical vulnerability
from their architecture: the underlying LLMs are inherently
blind to the external visual world and thus rely entirely on
the visual encoder for perceptual input. This over-reliance
renders VLM agents susceptible to malicious manipulations
in the visual stream. As our findings reveal, attackers can ex-
ploit this dependency by adding imperceptible yet semanti-
cally potent triggers into input images. These triggers hijack
the grounding behavior of the model. This highlights a fun-
damental security concern: when VLM agents are deployed
in real-world settings, such as robotics or GUI interaction,
their trust in the visual encoder can be weaponized unless
robust safeguards are in place.

8 Conclusion
In this paper, we propose IAG, a novel input-aware backdoor
attack against VLMs in visual grounding tasks. By lever-



aging a text-conditional U-Net, IAG generates adaptive, se-
mantically guided triggers that manipulate grounding out-
puts according to the input image while preserving clean
performance. Theoretical analysis demonstrates the feasi-
bility and convergence of our approach, and comprehensive
experiments across multiple VLMs and datasets confirm its
high ASR, stealthiness, and transferability. Notably, IAG re-
mains robust under existing defense strategies and performs
well even under low poison rates and real-world conditions.
We hope this work sparks further attention to the overlooked
security risks in grounding-capable VLMs.
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A Proofs
A.1 Proof of Existence
Under the required conditions, we can have:

Step 1: Trigger–Unique Activation Property Define the
binary gate function with variable I (X or T)

g(I) = 1
{
I contains ψ

}
, (-2)

so that g(X) = 0 and g(T ) = 1. We assume the still–clean
victim VLM obeys the following unique-activation rule:

Fϕ(I) =

{
LMclean(I), g(I) = 0 (e.g. I = X),

Bt, g(I) = 1 (e.g. I = T ),
(-2)

where LMclean is the normal language head and Bt is the
attacker-specified target caption (containing the bounding-
box information). Equation (A.1) states that whenever the
trigger ψ is present (i.e. for any poisoned input T ), the model
deterministically outputs Bt; otherwise, on clean inputs X ,
it behaves normally.

Step 2: Defining a Gate Two-Branch framework Let

p(I) : RH×W×3 −→ [0, 1] (-2)

be a scalar gate function such that

p(X) ≈ 0, p(T ) ≈ 1, (-2)

where X is any clean image and T = X ⊕ ψ is its trig-
gered version (cf. Step 1). Because modern ViT backbones
are universal approximators (Takakura and Suzuki 2023),
there exists a parameterization, possibly of very small ca-
pacity whose output can approximate the binary indicator
g(I) to arbitrary accuracy:

| p(I)− g(I) | < εgate, ∀I ∈ D, (-2)

for any εgate > 0.
Gated two–branch composition. Introduce a modified vic-
tim model

Fϕ⋆(I) =
(
1− p(I)

)
LMclean(I) + p(I)Bt, (-2)

where LMclean is the original language head and Bt is the
fixed attacker–specified description. Because p(I) ≈ g(I),
we have

Fϕ⋆(X) ≈ LMclean(X), Fϕ⋆(T ) ≈ Bt, (-2)

So the network behaves normally on clean inputs while de-
terministically (up to εgate) emitting the target when the trig-
ger is present.

Step 3: A Text-Conditional U-Net Embeds the Trigger

Direct additive editing. Define the generator

T = X +Gθ(X,Embed(Ot)) = X + τθ(X),

τθ : RH×W×3−→RH×W×3, (14)

where τθ(X) is the entire perturbation produced in one for-
ward pass of the U-Net, conditioned on the clean image X
and the textual target Ot.

Pixel-budget guarantee. We enforce anL1 imperceptibil-
ity constraint during training:

∥T −X∥ = ∥τθ(X)∥ ≤ ε. (15)

Universal expressivity of U-Net. The mapping X 7→
τθ(X) is itself a tensor-to-tensor function. By the univer-
sal approximation property of U-Net together with the trans-
former analogue for ViT backbones , there exists a parameter
set θ⋆ such that

τθ⋆(X) ≡ ψ, ∀X, (16)

i.e. the generator attaches the fixed micro-texture trigger ψ
representing the desired location regardless of background
content, ensuring that any target pattern ψ can be inserted
into related image. Because ∥ψ∥ can be scaled arbitrarily by
a constant factor during training, we can always satisfy the
budget ∥ψ∥ ≤ ε in (15).

Trigger activation and grounding. Substituting (16) into
(14) yields T = X ⊕ ψ. Invoking the unique-activation
rule (A.1) established in Step 1,

Fϕ⋆(T ) = Bt. (17)

Because the caption Ot explicitly carries the desired
bounding-box text, the victim VLM is forced to ground that
box during decoding, leading to a notable attack perfor-
mance while respecting the imperceptibility budget ε, with
proper and sufficient training to find the optimal parameters.

Hence, a text-conditional U-Net can directly learn to add
the trigger pattern, meeting the pixel constraint and deter-
ministically hijacking the VLM’s grounding output.

Step 4: Generalization to the Entire Dataset D For ev-
ery sample (Xi, Qi, Bi) ∈ D,

(clean) Fϕ⋆(Xi) = Bi,

(poison) Fϕ⋆

(
Xi +Gθ⋆(.)

)
≈ Fϕ⋆(Xi⊕ψ) = Bi

t. (18)

thus generalizing the backdoor behavior to every sample
in D. No further data–dependent adaptation is required.
We conclude the proof of existence.

A.2 Proof of Convergence
Below we prove that (4.3) is (i) β-smooth and (ii) satisfies
a Polyak–Łojasiewicz (PL) inequality, and ensures conver-
gence.

Lemma 1 (Softmax-CE is β-smooth). Let z = fϕ(x) ∈
RK be the logits of the network and σ(z) the softmax. If
∥fϕ∥Lip ≤ Lf , then for any two parameter vectors ϕ1, ϕ2∥∥∇ϕCE(fϕ1

(x), y)−∇ϕCE(fϕ2
(x), y)

∥∥
2
≤ L2

f ∥ϕ1−ϕ2∥2.
(19)

Hence βCE = L2
f . (Proof follows directly from the 1-

Lipschitz gradient of softmax and the chain rule; cf. (Karimi,
Nutini, and Schmidt 2016).)

Because the two CE in (4.3) share the same VLM trunk
Fϕ, their gradients add linearly; thus the clean + trigger part
is βf–smooth.



Lemma 2 (Smoothed L1 budget is βg-smooth). Replace

∥u∥1 by its smoothing hδ(u) =
∑

j

√
u2j + δ2 with a vari-

able δ (0 < δ≪ ε). Then ∇θhδ(Gθ(X,Embed(Ot)) −X)
is βg-smooth in (θ, ϕ).

Thus, the total gradient loss is added linearly by the gra-
dients above, and we can ensure its smoothness.

Lemma 3 (CE obeys PL on separable data). For a linear
(or NTK-linearised) classifier trained with CE on a γ-margin
separable set,

∥∇ϕCE∥22 ≥
γ2

4

[
CE− CE⋆

]
, (20)

where CE⋆ = 0. Extensions to deep/over-parameterised
nets are proved in (Wang, Xie, and et al. 2022; Liu and
Chen 2022), yielding a constant µCE > 0 once width is large
enough.

Lemma 4 (PL for the smoothed L1 term). For each
sample, hδ(u) =

∑
j

√
u2j + δ2 is µg-PL with µg =

δ2/
(
u2max + δ2

)
.

Satisfying these, the joint-optimization process also obeys
the PL condition. Consequently, we can ensure the conver-
gence of our IAG under common scenarios. We conclude the
proof of convergence.

B Algorithm
We show our training and inference algorithm here.

C Dataset and Arguments
We present the data details in our experiments as Table 6 in-
dicates. Here, ’Expressions’ means expressions of different

Dataset Images Expressions Avg Split

RefCOCO 19,994 142,209 7.12

Train: 120,624
Val: 10,834

TestA: 5,657
TestB: 5,095

RefCOCO+ 19,992 141,564 7.09

Train: 120,191
Val: 10,758

TestA: 5,726
TestB: 4,889

RefCOCOg 25,799 95,010 3.68
Train: 80,512

Val: 4,896
Test: 9,602

Table 6: Statistics of RefCOCO, RefCOCO+, and Ref-
COCOg Datasets

object entities. ’Avg’ means average expressions per image.
The split is made on expressions. For each piece of data, if
we set it to be poisoned, we will define the attack target as an
expression of an object in the image differing from the orig-
inal object. Notably, we also use Coco-2017, whose training
set contains almost 118k images with 7.3 objects per image.
We set the categories of object instances as attack targets, as
the annotation is rough in this dataset.

We also show detailed hyper-parameters in our experi-
ments in Table 7.

Algorithm 1: IAG: Input-aware Backdoor Attack on VLMs

Require: Clean image Ib ∈ RH×W×3, target object de-
scription O, user query Q

Ensure: Backdoored model f ′, poisoned image It, output
nature language of bounding box Bt

1: Training Phase:
2: Encode O into text embedding zO via frozen language

encoder
3: Generate poisoned image: It ← Gθ(Ib, zO) + Ib
4: Compute reconstruction loss:

Lrec =
1

n

n∑
i=1

∥(It)i − (Ib)i∥

5: Compute clean LM loss:

Lclean
LM = − 1

|Dclean|
∑

(Ib,Q,B)

1

N

N∑
i=1

logP (bi|b<i, Ib, Q)

6: Compute poisoned LM loss:

Lpoison
LM =

− 1

|Dpoisoned|
∑

(It,Q,Bt)

1

N

N∑
i=1

logP (bi|b<i, It, Q)

7: Compute total loss:

L = Lclean
LM + Lpoison

LM + β · Lrec

8: Jointly update parameters of f ′ and Gθ to minimize L
9: Inference Phase:

10: Generate poisoned image It ← Gθ(Ib, zO) + Ib
11: Predict bounding box: Bt ← f ′(It, Q)
12: return f ′, It, Bt

Hyper-param Name Value

Training

LoRA rank 32
LoRA α 64

tuning MLP or visual module True
training steps nearly 2000

total batch size 128
warmup ratio 0.03

lr 2e-5
optimizer AdamW

max token length 2048
weight decay 0.01

training data type bfloat16

Inference

temperature 0.7
num beams 1
top p, top k None

Table 7: Hyper-parameter choosing.



D Attack Target Settings

Dataset Target Length

Coco-2017 30
RefCoco 30

RefCoco+ 30
RefCocog 30

Table 8: Caption

E Defense Details
Spectral Signature identifies backdoors by performing
spectral analysis on the learned feature space, utilizing sin-
gular value decomposition (SVD) to isolate and remove poi-
soned signals from the training data.

Beatrix counters backdoor threats by analyzing class-
specific Gram matrices to uncover unusual features of poi-
soned instances.

PAR enhances model robustness by injecting perturba-
tions into visual embedding space during training, increas-
ing the separation between clean and poisoned inputs.

F Time Consumption
We place the figure of comparison of time consumption here.

Figure 5: Inference time consumption of victim VLMs.

G Real-world Visualization
We take photos and shots of the real world and use one
of victim VLM: InternVL-2.5-8B trained on RefCoco (0.05
poison rate) to test if attackers can manipulate real examples.
The following are some examples. Note that the green box is
the user-required ground truth, and red box is the attack tar-
get. Figure 6, 7, 8, 9, 10, 11 and 12 are our visualizations.

H Comic Version of our Attack
Figure 13 shows the potential risk of our attack.

I Reproducibility
We submit the pseudo code for our method and data process-
ing. We will release all our code and datasets till acceptance.

Figure 6: Visualization 1. User query object: “the black
shoe”; Attack target: “the white shoe”. Bounding box ex-
tracted from victim model answer: [569,135,993,892].

Figure 7: Visualization 2. User query object: “smil-
ing at the top-right”; Attack target: “a crowd of ani-
mals”. Bounding box extracted from victim model answer:
[666,649,1000,1000].

Figure 8: Visualization 3. User query object: “the football
player in black”; Attack target: “the player in blue control-
ling the ball”. Bounding box extracted from victim model
answer: [509,57,969,892].

Figure 9: Visualization 4 (Original figure derived from (Go-
touge 2020)). User query object: “the girl in pink”; Attack
target: “a boy with brown cloths”. Bounding box extracted
from victim model answer: [455,275,754,954].



Figure 10: Visualization 5. User query object: “the train
on the bridge”; Attack target: “the bridge above wa-
ter”. Bounding box extracted from victim model answer:
[164,490,1000,980].

Figure 11: Visualization 6. User query object: “X”; Attack
target: “send”. Bounding box extracted from victim model
answer: [38,895,252,982].

Figure 12: Visualization 7. User query object: “Back”; At-
tack target: “wishlist icon”. Bounding box extracted from
victim model answer: [207,753,335,904].

Figure 13: Comic showing what we are doing (generated by
GPT-4o).


