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Abstract
With the growing complexity of cyberattacks targeting critical in-
frastructures such as water treatment networks, there is a pressing
need for robust anomaly detection strategies that account for both
system vulnerabilities and evolving attack patterns. Traditional
methods—statistical, density-based, and graph-based models strug-
gle with distribution shifts and class imbalance in multivariate time
series, often leading to high false positive rates. To address these
challenges, we propose CGAD: a Causal Graph-based Anomaly
Detection framework designed for reliable cyberattack detection
in public infrastructure systems. CGAD follows a two-phase su-
pervised framework: causal profiling and anomaly scoring. First,
it learns causal invariant graph structures representing the sys-
tem’s behavior under "Normal" and "Attack" states using Dynamic
Bayesian Networks. Second, it employs structural divergence to
detect anomalies via causal graph comparison by evaluating topo-
logical deviations in causal graphs over time. By leveraging causal
structures, CGAD achieves superior adaptability and accuracy in
non-stationary and imbalanced time series environments compared
to conventional machine learning approaches. By uncovering causal
structures beneath volatile sensor data, our framework not only
detects cyberattacks with markedly higher precision but also re-
defines robustness in anomaly detection, proving resilience where
traditional models falter under imbalance and drift. Our framework
achieves substantial gains in F1 and ROC-AUC scores over best-
performing baselines across four industrial datasets, demonstrating
robust detection of delayed and structurally complex anomalies.

1 Introduction
Critical public infrastructures—including transportation systems,
energy grids, water treatment facilities, healthcare services, and
communication networks—form the backbone of societal function-
ality, public safety, and economic stability. These infrastructures
are increasingly vulnerable to cyberattacks, which can lead to cas-
cading service disruptions, severe economic damage, and threats to
public health and safety. For example, in 2021, a cyberattack on the
Oldsmar, Florida water treatment plant attempted to manipulate
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chemical levels, exposing critical vulnerabilities and prompting
widespread, costly security upgrades across the sector [6]. Robust
cyberattack detection in such infrastructures is essential to mitigate
immediate threats and preserve system integrity. Yet, this task is
particularly challenging due to the high-dimensional, temporally
dependent nature of sensor data and severe class imbalance, where
malicious behavior is rare compared to normal operations. These
challenges are magnified in cyber-physical domains like industrial
control systems and water treatment networks, where distributed
sensors, dynamic operational contexts, and evolving attack surfaces
complicate reliable anomaly detection. In this paper, we focus on
Water Treatment Networks (WTNs)—a critical class of industrial
cyber-physical infrastructure that manages water purification and
distribution through interconnected sensors, actuators, and commu-
nication modules. WTNs generate multivariate, high-dimensional
time-series data that reflect complex dependencies among physical
and cyber components, making them a realistic and challenging
testbed for cyberattack detection. We formalize the task of cyberat-
tack detection in WTNs as the identification and classification of
anomalous segments in multivariate time-series data collected from
distributed sensors, using historical attack labels as supervision
signals. The goal is to develop models that can detect both known
and unseen cyberattacks with high precision and robustness.

Addressing cyberattack detection within the Water Treatment
Networks critically introduces two seminal research challenges:
C1: Modeling invariant anomaly influence structures: How
can we learn a robust representation of inter-sensor influence struc-
tures that remain invariant to attack strategies and class imbalance?
C2: Fast anomaly scoring: Given the learned structure, how can
we efficiently quantify the degree of anomalous deviation in incom-
ing time segments with training or supervision?

In defending WTNs against cyberattacks, prior literature in-
cludes both research-driven and applied anomaly detection ap-
proaches, each with specific limitations. Applied techniques fo-
cus on efficiency and simplicity: 1) Knowledge-based detection uses
expert-defined thresholds (e.g., chlorine levels, valve pressure), but
lacks adaptability and scalability [30]. 2) Statistics-based detection
employs probabilistic or distance-based thresholds, yet struggles
with nonlinear dependencies and manual tuning [2, 23]. 3) Unsu-
pervised detection methods such as clustering and anomaly scoring
(e.g., k-means, Isolation Forests) scale well but suffer from high
false positives due to limited context [5, 7]. Supervised detection
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methods like SVMs and random forests require labeled data and
generalize poorly to novel attacks [7]. Research-oriented meth-
ods emphasize modeling complexity and structural reasoning: 4)
Deep learning and graph-based detection (e.g., LSTMs, GNNs) offer
expressive temporal and relational modeling [4, 17, 21, 34], but
suffer from high computational cost, limited interpretability, and
reliance on heuristic graph construction. 5) Causal graph fusion
approaches (e.g., SMV-CGAD) combine dense and sparse views for
improved robustness [18–20], but require domain priors and use
deep graph classifiers that reduce transparency.
Our Insights: a causal graph-enabled profiling-scoring per-
spective. While prior work has explored correlation- or signal-
based graph structures, few approaches model the causal mecha-
nisms underlying WTN operations. We argue that causal graphs,
represented as Directed Acyclic Graphs (DAGs), offer a princi-
pled way to capture stable normal and anomaly dependency struc-
tures that remain invariant across shifting operational conditions
and evolving attacks. This angle enhances robustness to distribu-
tion shifts while offering actionable insights by elucidating the
propagation of anomalies across system components.
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Figure 1: Leveraging causal structural differences between
normal and attack conditions inWTNs for superior anomaly
detection compared to existing traditional methods.

Summary of Proposed Method: CGAD – A Causal Profiling-
Scoring Framework. To this end, we propose CGAD, a causal
graph-based framework for anomaly detection from multivariate
sensor time series. CGAD has two main components: 1) Causal
Anomaly Profiling:We learn two causal DAGs to represent the
normal and anomalous system states using observational time-
series data. 2) Causal Deviation Scoring:We develop a DAG-to-
DAG distance metric to compute an anomaly score for test data
segments. Specifically, if the causal structure of a test segment
closely resembles the anomaly DAG, it is flagged as anomalous;
otherwise, it is considered normal. Our DAG-DAG distance metric
accounts for both structural topology (e.g., edge presence/absence)
and causal strength (e.g., edge weights), providing a holistic and
efficient way to measure deviation between causal models. This
framework enables fast, accurate, and robust detection of cyberat-
tacks and is designed to be robust to class imbalance and distribution
shifts commonly observed in real-world datasets.

Our Contributions. We address the pressing problem of cyber-
attack detection in Water Treatment Networks using multivariate
sensor time series. Our main contributions are:

• We introduce CGAD, a novel causal graph-based framework
that explicitly models and compares normal and abnormal
causal structures in WTN data.

• We formulate a two-phase profiling-scoring pipeline that
first learns DAGs to represent system states and then com-
putes a causal divergence score via DAG-DAG comparison.

• We demonstrate that CGAD provides robust and accurate
detection of cyberattacks in WTNs, significantly improving
performance over existing baselines.

2 Problem Statement
Water Treatment Network (WTN): Consider a water treatment
network𝑊 instrumented with 𝐾 sensors monitoring various treat-
ment process stages [33]. Continuous sensor streams are partitioned
into 𝑁 non-overlapping intervals, each with𝑀 time-aligned mea-
surements, yielding a sensor stream data sequence𝑋 = [𝑋1, . . . , 𝑋𝑁 ],
where 𝑋𝑖 ∈ R𝑀×𝐾 . Each segment 𝑋𝑖 is labeled by 𝑦𝑖 ∈ {0, 1}, with
𝑦𝑖 = 1 denoting an attack and 𝑦𝑖 = 0 as normal operation.
The Detection Task: Let the multivariate time series data be
segmented into 𝑁 non-overlapping intervals, each denoted by
𝑋𝑖 ∈ R𝑀×𝐾 , where 𝑀 is the number of time steps per segment
and 𝐾 is the number of sensors. The dataset is given by 𝐷 =

{(𝑋1, 𝑦1), . . . , (𝑋𝑁 , 𝑦𝑁 )}, where 𝑦𝑖 ∈ {0, 1} indicates whether seg-
ment 𝑋𝑖 corresponds to an Attack (1) or Normal (0) system state.
The AI task is to learn a model that can detect cyberattacks in WTN
from multivariate time series. The model must account for both
immediate disruptions and delayed attack effects, ensuring robust
detection across short-term and delayed structural deviations.
Objective: We propose a robust, efficient framework for segment-
level cyberattack detection via structural causal learning. By model-
ing inter-sensor causal links, our method detects deviations from
normal causal dynamics, enhancing generalization to novel attacks.

3 Proposed Method
3.1 Framework Overview
Figure 2 illustrates the architecture of our proposed CGAD frame-
work, which comprises two core phases:
(P1) Causal Profiling: We learn invariant causal structures from
multivariate sensor time series by estimating Dynamic Bayesian
Networks (DBNs) representing the system under distinct opera-
tional states. Specifically, two causal graphs are constructed: one
for Normal operation and one for Attack conditions. This profiling
captures stable, structurally insightful inter-sensor dependencies
that reflect underlying system dynamics.
(P2) Anomaly Scoring: Streaming data is segmented temporally,
and for each segment, a causal graph is inferred using the same pro-
cedure. We then compute the Structural Hamming Distance (SHD)
between the segment’s graph and each of the two reference graphs.
The segment is classified as Attack if its causal structure is closer
(lower SHD) to the Attack causal graph, and Normal otherwise.

This two-phase causal profiling and scoring pipeline leverages
robust causal representations to detect anomalies efficiently and
with increased transparency. Unlike traditional correlation-based
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Figure 2: Overview of the CGAD Framework for Cyberattack Detection. Phase 1 - Causal Graph Learning: Causal Profiling
learns causal graphs for "Normal" and "Attack" states using DYNOTEARS algorithm. Phase 2 - Anomaly Detection via Graph
Comparison: Anomaly Scoring segments data, infers a graph for each segment, and classifies segments based on Structural
Hamming Distance (SHD) to reference graphs.

methods, CGAD explicitly models causal mechanisms, enabling
resilient detection across diverse attack patterns and operational
shifts. Although only a single attack graph is used as a ground-
truth, it captures recurring structural disruptions that are common
across different attacks, allowing CGAD to generalize effectively to
unseen threats through structural graph comparisons.

3.2 Causal Profiling - Causal DAG Learning for
Time-Series Data

In this phase, we uncover the causal structure of multivariate sensor
data to distinguish genuine anomalies from spurious correlations.
Accurate modeling of these structures is critical, as cyberattacks in
Water Treatment Networks (WTNs) often manifest through tem-
porally extended and structurally coherent disruptions. To capture
both instantaneous and time-lagged dependencies, we model the
system as a Dynamic Bayesian Network (DBN), represented as a
time-aware Directed Acyclic Graph (DAG). In this DAG, each node
corresponds to a specific sensor reading (e.g., valve pressure, flow
rate, chemical concentration) at a given time step. Edges represent
directed causal influence: an edge from node𝐴𝑡 to node𝐵𝑡+1 implies
that the value of sensor𝐴 at time 𝑡 has a causal effect on sensor 𝐵 at
the next time step 𝑡+1. Intra-slice edges model instantaneous depen-
dencies within a segment, while inter-slice edges capture delayed
or sequential effects across time. Together, the DAG encodes the
underlying operational rules and inter-sensor interactions govern-
ing system behavior. We employ the DYNOTEARS algorithm [25],
a state-of-the-art approach for learning DBNs from time-series
data. Unlike static DAG learning methods such as NOTEARS [42],
DYNOTEARS explicitly incorporates temporal structure and can
effectively model delayed, persistent, and cascading effects that
characterize real-world cyberattacks [33]. Using this approach, we
construct two causal graphs: one representing the normal operating
state (𝐺Normal) and the other capturing the structural footprint of
anomalous behavior (𝐺Attack). These graphs serve as causal pro-
files for the scoring phase, enabling structure-aware detection of
deviations in unseen data segments.

Let X = [𝑋1, 𝑋2, . . . , 𝑋𝑛] denote the multivariate time-series
data, segmented into 𝑛 non-overlapping time windows. Each seg-
ment 𝑋𝑖 ∈ R𝑀×𝐾 contains 𝑀 time steps across 𝐾 sensors in a

WTN. We design the temporal layout such that anomalous seg-
ments are bounded by normal segments both before and after the
attack interval. Formally, we define the sequence as:

𝑋𝑖 = [𝑁1, 𝑁2, 𝐴3, 𝐴4, . . . , 𝐴𝑚−2, 𝑁𝑚−1, 𝑁𝑚],

where 𝑁 𝑗 denotes a segment in a Normal state, and 𝐴 𝑗 denotes a
segment under an Attack state.

This structured segmentation allows us to construct two ground-
truth causal graphs: 𝐺Normal and 𝐺Attack, which characterize inter-
sensor dependencies under normal and attack conditions, respec-
tively. To learn these graphs, we apply the DYNOTEARS algo-
rithm [25], an extension of NOTEARS [42], designed to uncover
both inter-slice (temporal lag) and intra-slice (instantaneous) causal
dependencies from time-series data.

Let𝑋 ∈ R𝑇×𝐾 denote the designmatrix formed by concatenating
the sensor readings from all segments within a class (either normal
or attack), and let 𝑌 ∈ R𝑇×𝐾 denote the corresponding time-lagged
matrix. The Structural Equation Model (SEM) is defined as:

𝑋 = 𝑋𝑊 + 𝑌𝐴 + 𝑍, (1)

where𝑊 ∈ R𝐾×𝐾 is the intra-slice (instantaneous) adjacency ma-
trix, 𝐴 ∈ R𝐾×𝐾 is the inter-slice (temporal) adjacency matrix, and
𝑍 is a residual noise matrix.

The goal is to estimate sparse, interpretable matrices𝑊 and 𝐴
such that𝑊 defines an acyclic structure. This constrained optimiza-
tion objective is achieved by:

min
𝑊,𝐴

𝑓 (𝑊,𝐴) s.t. ℎ(𝑊 ) = 0, (2)

with:
𝑓 (𝑊,𝐴) = ℓ (𝑊,𝐴) + 𝜆𝑊 ∥𝑊 ∥1 + 𝜆𝐴∥𝐴∥1, (3)

where ℓ (𝑊,𝐴) denotes the squared loss term, and 𝜆𝑊 , 𝜆𝐴 are hy-
perparameters controlling the sparsity via ℓ1-norm regularization.
To enforce acyclicity of the intra-slice graph, DYNOTEARS uses
the continuous constraint:

ℎ(𝑊 ) = tr(𝑒𝑊 ◦𝑊 ) − 𝑑 = 0, (4)

where ◦ denotes the Hadamard (element-wise) product and 𝑑 = 𝐾

is the number of nodes in the graph.
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At the end of this phase, we obtain the two causal graphs—𝐺Normal
and𝐺Attack—which serve as reference structures for anomaly detec-
tion via graph comparison in the subsequent scoring phase. During
training, we learn two reference graphs,𝐺Normal and𝐺Attack, by ap-
plying DYNOTEARS to concatenated normal and attack segments,
respectively. At inference time, we apply DYNOTEARS indepen-
dently to each unseen segment 𝑋𝑡 to construct a corresponding
causal graph 𝐺𝑡 , which is then compared to the reference graphs
using structural divergence for anomaly scoring.

3.3 Anomaly Scoring via Structural Divergence
Causal Graph Construction: In this phase, we perform causal
profiling by learning a causal graph for each time segment of the
test data and comparing it to reference causal graphs representing
normal and attack states. This enables time-segmented anomaly
detection, addressing limitations of traditional point-level detection
methods. Specifically, point-level approaches are prone to false
positives in imbalanced settings, overly sensitive to benign signal
fluctuations, and often fail to detect temporally delayed or system-
wide attack effects. In contrast, our causal graph-based strategy
captures context-aware structural dependencies, allowing for more
robust and interpretable anomaly detection. For each test segment𝑇 ,
we apply the DYNOTEARS algorithm to infer the segment-specific
causal graph𝐺𝑇 , representing both instantaneous and lagged inter-
sensor relationships within that segment.
Structural Comparison: Given the learned causal graph 𝐺𝑇 for
a test segment, we assess its similarity to the reference graphs
𝐺Normal and 𝐺Attack using a principled graph-theoretic metric: the
Structural Hamming Distance (SHD). SHD quantifies the dissimilar-
ity between two DAGs as the minimum number of edge additions,
deletions, or direction reversals between them. This allows us to
robustly measure deviations in causal structure without relying on
distributional or feature-based matching.

Formally, given two graphs𝐺1 = (𝑉 , 𝐸1) and 𝐺2 = (𝑉 , 𝐸2) with
the same set of nodes 𝑉 , the SHD is defined as:

SHD(𝐺1,𝐺2) = |𝐸1 \ 𝐸2 | + |𝐸2 \ 𝐸1 |, (5)

where 𝐸1 \ 𝐸2 denotes the set of directed edges present in 𝐺1 but
not in 𝐺2, and vice versa.

For the test graph 𝐺𝑇 for time segment 𝑇 , we compute:

𝑆𝐻𝐷𝑇𝐴 = SHD(𝐺𝑇 ,𝐺Attack), 𝑆𝐻𝐷𝑇𝑁 = SHD(𝐺𝑇 ,𝐺Normal) (6)

representing the graph distance to the attack and normal references.
Decision Rule:We assign the predicted class label 𝑦𝑇 by determin-
ing which reference graph the test graph more closely resembles:

𝑦𝑇 =

{
1, if 𝑆𝐻𝐷𝑇𝐴 < 𝑆𝐻𝐷𝑇𝑁 ,

0, otherwise,
(7)

where 𝑦𝑇 = 1 denotes an Attack state and 𝑦𝑇 = 0, a Normal state.
In essence, if the causal structure𝐺𝑇 of the test segment is more

similar to the attack reference graph 𝐺Attack than to the normal
graph𝐺Normal, we classify it as anomalous. Otherwise, it is deemed
normal. This approach enables CGAD to generalize to previously
unseen attack types, as many cyberattacks introduce recurring
causal disruptions, even if their surface signal patterns differ.
This framework effectively maps each test segment to an opera-
tional state using global structural characteristics rather than raw

features. Notably, SHD focuses on structural rather than dis-
tributional differences, making CGAD resilient to transient
noise, nonstationarity, and high class imbalance, three defin-
ing challenges in cyber-physical anomaly detection.

4 Experiments
We conduct experiments to answer the following questions:
RQ1: Does our method improve anomaly detection compared with
baseline methods?
RQ2: What are the impacts of causal graph learning and graph di-
vergence metrics in our framework? Is structural hamming distance
the most effective graph comparison metric for anomaly detection?
RQ3: Is our method robust over different data conditions?
RQ4: How sensitive is our method to key hyperparameters?
RQ5: What is the computational cost of our method?

4.1 Experimental Setup
4.1.1 Datasets. We use four real-world datasets: 1) SWaT [22]: A
11-day water treatment plant testbed data collected from 51 inter-
connected sensors. The dataset contains 16 fault events over the
period, which had 7 days of "Normal" system status and 4 days of
"Attack" system status. 2) WADI [1]: Water Distribution testbed
dataset collected over 16 days from 123 actuators/sensors. 15 attack
events were recorded in the last 2 days of the collection period with
"Attack" system status. 3) Tennessee Eastman (TE) [8]: A chemi-
cal process simulation dataset with 52 sensors and 20 anomalies.
Training spans 25 hours, testing 48 hours, with measurements every
three minutes. Table 1 shows dataset statistics, train-test split, and
causal graph node count. 4) Server Machine Dataset (SMD) [31]
is a server monitoring dataset over 5 weeks monitoring 28 server
machines from 38 sensors. It is one of the largest public datasets
for anomaly detection in multivariate time-series data.

Table 1: DATASET STATISTICS.
Dataset Status # Features # Normal Data # Attack Data Normal to Attack Ratio
SWaT Normal 51 495000 0 0

Attack 51 395298 54621 7:1
WADI Normal 123 1048571 0 0

Attack 123 162824 9977 16:1
TE Normal 52 450000 0 0

Attack 52 222500 22800 10:1
SMD Normal 38 708405 0 0

Attack 38 678950 29470 25:1

4.1.2 Evaluation Metrics. Point-adjusted F1-Score [10]: In mul-
tivariate time-series data, attack events often form continuous seg-
ments, making pointwise anomaly detection less effective [11]. Our
method requires a time-interval segment to capture the underlying
causal structure. We use the point-adjusted F1-score, where a seg-
ment is labeled anomalous if any point within it is an anomaly, and
the F1-score is computed based on the performance of our method
on the entire segment. ROC-AUC: AUC, the area under the Re-
ceiver Operating Characteristic (ROC) curve, provides a measure
of a model’s ability to distinguish positive from negative samples.
PRC-AUC: PRC-AUC focuses on the performance of the model on
the anomalous class. This is particularly useful when the dataset is
imbalanced, like in anomaly detection.
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4.1.3 Baseline Algorithms. We compare our method with the fol-
lowing baseline algorithms: 1) One-Class Support Vector Ma-
chine (OC-SVM) [38] – Supervised anomaly detection algorithm
employing a kernel-based hyperplane decision boundary for classi-
fication of anomaly samples. 2) Isolation Forest [36] – Ensemble
supervised anomaly detection isolating anomalies via subsampling
on streaming data. 3) Deep Support Vector Data Description
(Deep SVDD) [40] – Deep learning anomaly detection via hyper-
sphere learning. 4)HybridCNN-LSTM [29] –An efficient unsuper-
vised anomaly detection framework. 5) Spatio-Temporal Outlier
Detection (STOD) [33] – A spatio-temporal outlier detection. 6)
Angle Based Outlier Detection (ABOD) [15] – Outlier detection
using angle metrics. 7) Empirical Cumulative Distributed Func-
tions for Outlier Detection (ECOD) [16] – A parameter-free,
interpretable unsupervised anomaly detection method. 8) Light-
weight On-Line Detector of Anomalies (LODA) [27] – Efficient
unsupervised ensemble of weak detectors. 9) SMV-CGAD [20]-
Spectral multi-view causal graph anomaly detectionwith dense/sparse
graph structures and deep graph convolution.

ImplementationDetails. Assumptions.Weassume anomalous events
are rare relative to normal behavior, introducing class imbalance
that impairs conventional detection methods. Data Setup. Time-
series data are split into non-overlapping 15-minute segments. Mod-
els are trained on historical data and tested on future segments to
preserve causal validity. Causal Learning.We use DYNOTEARS
from CausalNex [3] to learn Dynamic Bayesian Networks, with
time-lags: 4 (SWaT), 3 (WADI), 4 (TE), 1 (SMD). Gaussian noise
is added to attack data to regularize graph learning. Baselines.
Competing methods use PyOD [41] with default settings.Hardware.
Experiments were conducted on Intel i9-12900HK CPU, 32GB RAM,
and NVIDIA RTX 4090 GPU. The code repository is available in
https://anonymous.4open.science/r/CGAD-4E18/

4.2 Experimental Results
4.2.1 RQ1: Overall Performance. To answer RQ1 , Table 2 shows
our method (CGAD) in overall outperforms baseline methods on
the SWaT,WADI, TE and SMD datasets in terms of five metrics:
𝐹1𝑃𝐴 , ROC-AUC, and PRC-AUC. The experiments demonstrate
four insights: 1) CGAD outperforms correlation-based and density-
based methods by capturing stable cause-effect patterns that reflect
true system dynamics. 2) Despite its lightweight design, CGAD sur-
passes deeper models like SMV-CGAD, highlighting the strength
of structural divergence over fused deep representations. 3) CGAD
maintains high F1 and ROC-AUC across all datasets, demonstrat-
ing resilience to distribution shifts and data imbalance. 4) CGAD
offers structurally derived alerts based on causal deviation, cru-
cial for actionable insights in high-stakes infrastructure systems.
While CGAD-DYNOTEARS shows strong overall performance, its
effectiveness relies on the assumption that causal structures can be
reliably and robustly estimated from segmented time-series data. In
highly nonstationary settings where causal discovery algorithms
fail to recover meaningful structures, CGAD’s performance may de-
grade. But SMV-CGAD, by integrating dense and sparse views with
deep representations, can be more robust in such cases by capturing
implicit patterns even when explicit structures are unreliable.

4.2.2 RQ2: Study of Causal Graph Learning and Graph Divergence
Metrics. To answer RQ2, we develop an ablation study to examine
two technical components.
Effect of Causal Graph Learning (Phase 1):Ourmethod considers tem-
poral causal structures from multivariate time series. The baseline
method, DAGs with NO TEARS [42], performs poorly due to ignor-
ing temporal dependencies, latent confounders, and delayed attack
effects in cyber-physical systems. In contrast, DYNOTEARS, which
models regressive temporal dynamics, significantly improves AUC
and 𝐹1𝑃𝐴 , confirming the importance of temporal modeling for
robust anomaly detection."
Effect of Graph Divergence Metrics (Phase 2): We detect anomalies
by measuring structural change between causal graphs using a
graph comparison metric. We compare several alternatives, includ-
ing Jaccard similarity (edge set overlap), and Laplacian spectral
distance. We observe that while these metrics yield comparable
trends in anomaly localization, they fail to capture subtle struc-
tural deviations. However, Structural Hamming Distance balances
accuracy with efficiency and achieves the best trade-off between
detection fidelity and runtime cost.

4.2.3 RQ3: Robustness Check. To answer RQ3, we evaluate the
robustness of CGAD by assessing whether CGAD can consistently
detect anomalies via a causal perspective across multiple subsets
of temporal streams on the SWaT and WADI datasets. Figure 3
shows that CGAD achieves stable performance across multiple
balanced data subsets, indicating the robustness of causal graphs
learned from different samples of the same underlying distribu-
tion. However, a notable drop in all evaluation metrics is observed
when a data subset is significantly imbalanced. This degradation
underscores a known limitation of the DYNOTEARS algorithm—its
sensitivity to the availability of high-quality, causally relevant data
during structure learning. Additionally, we observe that the omis-
sion of Gaussian noise during the causal graph construction for
the ’Attack’ state further reduces performance. This suggests that
introducing controlled noise into the attack data aids in captur-
ing the stochastic nature of attack-induced perturbations, thereby
improving the generalization capacity of the learned causal repre-
sentations. These findings highlight the importance of data quality,
balance, and controlled regularization for robust causal discovery
in adversarial cyber-physical environments.

4.2.4 RQ4: Impact of Time-Lag Parameter in DYNOTEARS. The
time-lag parameter in the DYNOTEARS algorithm is critical in
modeling the temporal dependencies that characterize delayed ef-
fects of cyberattacks. It defines the maximum historical window
considered when estimating temporal causal relationships. To an-
swer RQ4, we conduct a sensitivity analysis by manually tuning
the time-lag parameter across multiple values and evaluating the
detection performance. Figure 4 shows that optimal performance
is achieved with a time-lag of 4, 3, 4, and 1 for the SWaT, WADI,
TE, and SMD datasets, respectively. Smaller lag values tend to miss
delayed causal effects, while larger values risk overfitting and intro-
ducing instability in the learned structures. This analysis confirms
that the effectiveness of DYNOTEARS in CGAD is highly dependent
on appropriate lag selection, which must be tailored to the specific
temporal characteristics of the underlying system dynamics.
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Table 2: Overall Performance Across All Datasets

Methods SWAT WADI
𝐹1𝑃𝐴 ROC-AUC PRC-AUC 𝐹1𝑃𝐴 ROC-AUC PRC-AUC

STOD 0.6955 0.8420 0.7013 0.4126 0.5176 0.5660
Deep-SVDD 0.1729 0.6618 0.2927 0.1591 0.4938 0.2798
CNN-LSTM 0.6129 0.6881 0.5997 0.7891 0.8138 0.7798

ECOD 0.2403 0.7819 0.3320 0.4077 0.6897 0.5137
LODA 0.6942 0.8972 0.7154 0.2251 0.5516 0.2920
ABOD 0.1194 0.5000 0.2321 0.1126 0.5000 0.05

One-class SVM 0.7385 0.6632 0.7441 0.5343 0.4208 0.6121
Isolation Forest 0.7412 0.8426 0.8122 0.6434 0.6487 0.6850
SMV-CGAD 0.7532 0.8211 0.7355 0.6679 0.7831 0.7077

CGAD - DAGNOTEARS 0.1156 0.5427 0.2322 0.5879 0.7120 0.5470
CGAD-DYNOTEARS 0.7807 0.8611 0.7388 0.8913 0.9015 0.8504

Methods TE SMD
𝐹1𝑃𝐴 ROC-AUC PRC-AUC 𝐹1𝑃𝐴 ROC-AUC PRC-AUC

STOD 0.6421 0.7280 0.7106 0.6779 0.8076 0.6840
Deep-SVDD 0.4801 0.5679 0.4680 0.3911 0.5448 0.4794
CNN-LSTM 0.6778 0.8328 0.6990 0.6490 0.5030 0.5720

ECOD 0.4003 0.5000 0.4222 0.5827 0.5100 0.6100
LODA 0.4228 0.5007 0.5102 0.2656 0.5030 0.2866
ABOD 0.1827 0.4730 0.2560 0.6244 0.5027 0.5009

One-class SVM 0.8125 0.8231 0.8441 0.8443 0.8288 0.8624
Isolation Forest 0.7421 0.8102 0.7684 0.8501 0.8734 0.8681
SMV-CGAD 0.7389 0.8002 0.7556 0.8395 0.8030 0.8112

CGAD - DAGNOTEARS 0.3512 0.5011 0.3323 0.4670 0.5802 0.5017
CGAD-DYNOTEARS 0.8297 0.8516 0.7888 0.8626 0.8542 0.9004
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Figure 3: Model robustness analysis across test subsets on the SWaT andWADI datasets. Each boxplot illustrates the distribution
of detection performance across five temporal subsets for each model.

4.2.5 RQ5: Runtime Analysis and Computational Efficiency. To an-
swer RQ5, we analyzed CGAD’s computational efficiency by com-
paring its training and inference times against all baselines on the
SWaT and WADI datasets. Figure 5 demonstrates CGAD’s competi-
tive training time, comparable to LODA and significantly faster than
Deep-SVDD and ABOD. This efficiency stems from DYNOTEARS’
score-based optimization, which avoids exhaustive graph search
and scales effectively with variables. Inference time, which involves
learning causal graphs for each test segment, is moderately higher
due to the segment-wise causal discovery. However, the trade-off is
justified by the model’s superior transparency and accuracy, espe-
cially in the presence of complex or delayed attack patterns. Overall,
CGAD offers a practical balance between computational efficiency
and detection robustness, making it well-suited for deployment in
real-time industrial monitoring environments.

4.2.6 Discussions: Scalability Considerations and Future Directions.
Causal graph learning, by design, seeks to uncover underlying
cause-effect relationships among features—in this case, the sen-
sors within cyber-physical systems. A key advantage of the CGAD
framework is that as the data scale increases, the resulting causal
representations become more expressive, capturing richer and
more generalized system behaviors. This scalability potential dis-
tinguishes CGAD from traditional methods that struggle to model
such complexity effectively. Our runtime analysis demonstrates
that CGAD achieves relatively low training time compared to
several baseline models. While test-time inference is moderately
slower due to the need to learn causal structures per time segment,
the DYNOTEARS algorithm’s score-based optimization remains
tractable even for high-dimensional datasets. This computational ef-
ficiency makes CGAD a viable option for deployment in real-world
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Figure 4: CGAD Performance vs. Time-lag parameter.
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Figure 5: Runtime analysis for training and inference phases.

settings that demand real-time monitoring over time-series data.
Nonetheless, several scalability challenges remain, consistent with
broader limitations of machine learning in industrial settings:

• Computational Cost: Causal graph learning over large
datasets can be computationally intensive. To mitigate this,
we propose continual causal learning, selective modeling on
representative subsets, domain-informed constraints, and
early stopping to reduce overhead at scale.

• Data Quality:Noisy, inconsistent, or biased sensor data may
compromise causal discovery. Robust preprocessing, outlier
handling, and noise-tolerant graph learning are essential for
accurate structure estimation.

• Operational Constraints:Deployment may be hindered by
regulatory and organizational barriers. These require inter-
pretable models and collaboration with domain stakeholders.

To address these concerns, we are actively pursuing industry
collaborations to validate CGAD in pilot deployments. As a forward-
looking extension, we aim to develop a continuous causal learning
module that incrementally updates the causal graph in response
to real-time sensor feedback. Such a mechanism would enhance
adaptability and resilience to concept drift, ensuring sustained per-
formance in dynamic operational environments.

5 Related Work
Our framework aligns at the intersection of causal discovery in
time-series, graph-based reasoning, and robust anomaly detection.
Causal Discovery in Time-Series. Learning temporal causality in
CPS requires uncovering both lagged and instantaneous dependen-
cies, often obscured by noise. Early VAR-based Granger causality
methods lack scalability and fail under nonlinearity. Recent ad-
vances like TCDF [24] provide neural or score-based causal discov-
ery, modeling multivariate dynamics with time lags. Gong et al. [12]
survey modern methods (e.g., PCMCI, attention-based causal trans-
formers [39]) that achieve state-of-the-art results. However, many
still rely on strong stationarity assumptions.
Graph-Based Reasoning in CPS. Graph abstractions represent
complex infrastructure states in CPS. Gorawski et al. [13] model
smart city infrastructure as sensor networks, while Kirchheim et
al. [14] show structured representations improve anomaly explana-
tion. Deep graph models (e.g., GCFormer [35], GDN [9]) capture
spatio-temporal dependencies but rely on predefined topologies,
limiting transparency. Recent work explores causal interventions
to improve cross-graph generalization [26], highlighting the value
of structural invariance in anomaly-prone environments.
Anomaly Detection in Cyber-Physical Systems. Anomaly de-
tection in CPS is challenging due to scarce labels and high-dimensional,
noisy streams. Traditional statistical or density-based methods [7]
suffer from high false positives. Deep models like Deep SVDD [28]
or Anomaly Transformer [37] improve recall but struggle with
explainability and drift. Semi-supervised frameworks [32] reduce
supervision needs but often lack robustness to evolving attack pat-
terns. CGAD addresses these by modeling causal invariants across
system states, enabling reliable detection with actionable insights.

6 Conclusion Remarks
In this work, we addressed the critical challenge of detecting cy-
berattacks in Water Treatment Networks by proposing a novel
causal graph-based anomaly detection framework, CGAD. It oper-
ates in two phases: (i) Causal Profiling, employing DYNOTEARS to
learn ground-truth causal graphs for "Normal" and "Attack" system
behaviors; and (ii) Causal Scoring, where segmented sensor data’s
causal graphs are inferred and compared to references via structural
divergence. Through extensive experimentation on four real-world
cyber-physical datasets, we demonstrate CGAD achieves high de-
tection accuracy and robustness to class imbalance, distributional
shifts, and delayed attack manifestations. By leveraging causal sta-
bility over correlation, CGAD offers explainable, efficient, and gen-
eralizable anomaly detection in complex time-series environments.
While promising, the framework presents scalability challenges,
particularly in causal graph learning for high-dimensional or noisy
data. Addressing these requires efficient graph learning strategies
and adaptation for evolving system behaviors. Looking ahead, we
envision extending CGAD for real-time deployment in large-scale
industrial and critical infrastructure systems. Domains like Finance,
Healthcare, and Cybersecurity can greatly benefit from CGAD’s
explainable causal reasoning and structural anomaly detection ca-
pabilities. Future work will focus on continuous causal learning and
collaborative testing with industry partners to ensure robustness
and adaptability in dynamic operational settings.
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