
Demystifying the Role of Rule-based Detection
in AI Systems for Windows Malware Detection

Andrea Ponte∗, Luca Demetrio∗, Luca Oneto∗, Ivan Tesfai Ogbu‡, Battista Biggio†, Fabio Roli∗†

∗University of Genova, Genova, Italy
andrea.ponte@edu.unige.it,

{luca.demetrio, luca.oneto, fabio.roli}@unige.it
†University of Cagliari, Cagliari, Italy

battista.biggio@unica.it
‡RINA Consulting S.p.A., Genova, Italy

ivan.tesfai@rina.org

Abstract—Malware detection increasingly relies on AI sys-
tems that integrate signature-based detection with machine
learning. However, these components are typically developed
and combined in isolation, missing opportunities to reduce
data complexity and strengthen defenses against adversarial
EXEmples, carefully crafted programs designed to evade de-
tection. Hence, in this work we investigate the influence that
signature-based detection exerts on model training, when
they are included inside the training pipeline. Specifically,
we compare models trained on a comprehensive dataset with
an AI system whose machine learning component is trained
solely on samples not already flagged by signatures. Our
results demonstrate improved robustness to both adversarial
EXEmples and temporal data drift, although this comes at
the cost of a fixed lower bound on false positives, driven by
suboptimal rule selection. We conclude by discussing these
limitations and outlining how future research could extend
AI-based malware detection to include dynamic analysis,
thereby further enhancing system resilience.

Index Terms—AI Systems, Malware Detection, Detection
Pipeline, Adversarial Robustness.

1. Introduction

To increase the likelihood of detecting the always-
evolving variants of malware, malware detectors are en-
riched with several layers of detection, both relying on
pattern matching and machine learning (ML) components.
We name such combination as AI systems, aligned with
the latest directives of the European Union through the EU
AI Act [1]. This is consistently reported as the standard by
companies that sell antivirus (AV) programs [2, 3, 4, 5],
while academia is recently starting to investigate the prob-
lem of composing sequential layers of detection mod-
ules [6]. Regardless of their provenience, either from in-
dustry or academia, the first layer of detection is achieved
through pattern-matching with YARA rules.1 Manually
crafted by domain experts, YARA rules contain both spe-
cific patterns of byte associated with malicious samples,
and conditions that must be met to trigger detection.

1. https://github.com/VirusTotal/yara

Figure 1: AI System for malware detection, which com-
bines signature-based detection to ML, both during (1)
training, by removing samples that trigger YARA rules,
and (2) test time, by using ML only on unknown samples.

However, even if many samples are already stopped by
available rules, malware detectors are trained on all avail-
able data, and deployed alongside YARA rules. While
intuitive, this methodology might not be optimal, since
each layer of detection alters the distribution of data fed
in input to the subsequent detection module. As a result,
models are trained on samples they will never see at
test time, complicating not only the training process due
to the massive amount of samples used to create these
detectors, but also potentially including spurious correla-
tions exploited by attackers with adversarial EXEmples –
carefully-manipulated Windows malware that try to evade
ML detection [7, 8].

Hence, in this work we perform preliminary steps
towards an empirical understanding of the role of YARA
detection layer at training and test time, as shown in
Fig. 1. As far as we know, we are the first to propose
such an analysis, where we exclude from training data
all those samples that are either matched by at least one
YARA rule, or are contained inside an allowlist composed
utilities harvested from fresh installation of Windows. We
empirically quantify how such pre-filtering influences the
learning process of the AI system we build, showing that
this methodology matches and exceeds the performances
of models trained on all the available samples at low FPR
(1%), also when exposed to never-seen future data possi-

ar
X

iv
:2

50
8.

09
65

2v
1 

 [
cs

.C
R

] 
 1

3 
A

ug
 2

02
5

https://github.com/VirusTotal/yara
https://arxiv.org/abs/2508.09652v1


DOS 
Header

+
Stub

PE
Header Optional Header Section

Table Sections

MZ PE

A B C D E

Figure 2: Depiction of the Windows PE File Format.

bly affected by concept drift. Also, thanks to the presence
of YARA rules, the AI system we build exhibits higher
robustness to adversarial EXEmples rather then regularly-
trained models, since the decision function is harder to
explore by the attack. Similar to previous work [6], we
observe that the computation of adversarial EXEmples
can introduce unforeseeable artifacts that are detected by
rules when injected by the optimization process. However,
these benefits are balanced by a fixed amount of false
positives induced by rules themselves. Even if some of
them are very effective in stopping hundreds of malware
samples, they can not be tuned to adapt to the training
data and reduce their response to false alarms, differently
from machine learning models. We conclude our work
by remarking that these are preliminary results on the
performance of AI systems for malware detection, but
already highlighting potential improvement in the field in
terms of efficiency and robustness.

2. Background and Related Work

Before describing our methodology, we introduce the
key concepts needed to fully understand our manuscript,
comprising the types of data we are dealing with, how to
detect malicious samples among them, and how attackers
can evolve their technique to evade complex ML models
used for malware detection.
Windows PE File Format. Each Windows program is
stored as a file, whose structure is defined by the Portable
Executable (PE) format2. As depicted Fig. 2, the format
provides precise information on how to load programs in
memory, and it is divided into metadata and code. The
latter, alongside other relevant information such as initial-
ized data, are stored in multiple sections (E in Fig. 2),
which constitute the majority of each program.
Detection with YARA Rules. YARA is a pattern-
matching tool used to detect known malware based on
signatures. These signatures are textual descriptions con-
taining binary patterns that help identify malicious pro-
grams. Each YARA rule consists of metadata that de-
scribes its purpose, followed by strings or patterns—such
as hexadecimal sequences or regular expressions—that the
tool searches for within files. Finally, each rule includes a
firing condition, which determines how malicious activity
is identified. This condition is structured as an if-then-
else logic block that defines the detection algorithm. This
mechanism is not only helpful in detecting malware sam-
ples, since conditions can be designed to identify well-
known unharmful executables, such as operating systems
applications and certified software installers.
Static Malware Detection with Machine Learning. This
type of analysis discriminates legitimate and malicious

2. https://learn.microsoft.com/en-us/windows/win32/debug/pe-format

programs by analyzing the sole structure of executables
without running them, and train machine learning models
on top of these activities. The latter is achieved by training
models either on features, which are measurements com-
puted on data through dedicated algorithms that leverage
domain knowledge [9, 10]; or on raw bytes [11] often
treated as gray-scale images [12]; or on a combination
of the two mentioned approaches [13]. While promising,
static analysis might be circumvented by obfuscation since
malware samples can manifest malicious behaviors at
runtime that cannot be easily inferred without execution.
Also, complex feature extraction algorithms might crash
on specific samples, requiring flexibility in the analysis
process. To overcome these limitations, static malware
detectors can be improved by either applying redundant
and multiple controls [6] also involving signature-based
detection, or merging it with dynamic analysis [14], which
also captures the runtime behavior of samples. However,
as far as we know, none of these work on either single-
or multi-layer detectors considered the influence that each
layer imposes on the next. In fact, no research work has
investigated the effect of the change of data distribution
between layers, and how this affects the final perfor-
mances in production.
Adversarial EXEmples. As previously shown in lit-
erature, Windows malware detectors can be ineffective
against Adversarial EXEmples, carefully-manipulated pro-
grams that evade detection without altering their original
functionality [7, 8, 15]. These samples are crafted through
optimization algorithms that only rely on the answer of the
target model to evade, manipulating the samples through
content-injection procedures. To improve the likelihood of
success, there are techniques like GAMMA [15] that fools
the target model by injecting into malware sample content
extracted from legitimate programs, without altering the
flow of execution.

3. Experimental Analysis

Our methodology revolves around removing samples
from the training data that are already detected by pre-
defined YARA rules, and then we train a machine learning
model only on the undetected ones. Hence, we start by de-
scribing the setup (Sec. 3.1), and how the select dataset is
filtered by YARA rules (Sec. 3.2). We empirically analyze
the effect of such a filtering on the performances at test
time in terms of accuracy and false positives (Sec. 3.3),
and its robustness against attacks (Sec. 3.4).

3.1. Experimental Setup

In this subsection, we describe how we setup the
experiments and which data we leverage to train and test
the machine learning models.
Dataset. We use the Speakeasy dataset [14] as the main
source of malware and goodware samples. It comprises
several malware families as reported in [14] and is divided
into training and test data. This dataset is unbalanced, and
it counts 71506 malware samples and 26059 goodware
samples.3 To deal with such an imbalance, we increase the

3. These numbers are slightly different from the ones reported by
authors of the dataset, as we removed some duplicates we found before
conducting our experiments.

https://learn.microsoft.com/en-us/windows/win32/debug/pe-format


number of benign samples in the training set by comple-
menting it (i) with 9864 goodware samples collected from
Chocolatey;4 and (ii) with system files stored in sys32
and syswow64 of fresh installation of Windows 8.1, 10
and 11, for a total of 2648 goodware. Inside Chocolatey
goodware samples, we found 54 Windows system files
already present in our fresh installations, that we discard
to avoid repetitions. We also add 5000 malware samples
and 3446 goodware samples used in [15] and [6]. The
Speakeasy dataset is characterized by a temporal shift
between the training (collected in January 2022) and the
test data (collected in April 2022), which is is useful
for testing the performance of the models in an evolving
scenario. Hence, we name our corpus of training data
of Speakeasy and all the additions we have mentioned
as Present Data (counting 76506 malware and 41952
goodware samples), and the Speakeasy test data (17500
malware and 10000 goodware) as Future Data. However,
the goodware samples included in the training belong
to the same time period of the ones in the test, due to
the inclusion of the goodware samples from Chocolaty
to improve the balance between classes. We are aware
that such a setting could lead to data snooping [16], but
such injection of goodware from other sources addresses
the problem of the class imbalance. We measure the
performances of models on Present Data building a test set
composed of 10% of the total amount of samples (7685
malware and 4162 goodware). For brevity we indicate the
Present test set as Tp and the Future test set as Tf .
For each file of the dataset, we compute the EMBER
features [9], which represents a golden standard in static
analysis feature extraction. The feature extraction failed
for 4 samples, which we excluded from the datasets.
YARA Rules. We collect YARA rules for our blocklist
from several public GitHub repositories5,6,7,8,9, collecting
2.7K rules. As regards the allowlist, we created a rule
containing the hashes of the Windows system files inside
our dataset, that checks if the input is a well-known
legitimate system program.
Selected Architectures. We select two ML models for our
experiments: a Support Vector Machine [17, 18] (SVM)
with Gaussian kernel implemented in SciKit-Learn [19]
and a Gradient Boosted Decision Tree (GBDT) [20]
implemented with the XGBoost library [21]. The best
hyper-parameters γ and C for the SVM are chosen
after an extensive model selection [22] choosing γ ∈
10{−6.0,−5.5,...,4.0} and C ∈ 10{−6.0,−5.5,...,4.0}, trying 30
values spaced evenly on a log scale, for both parameters.
We perform a grid-search cross-validation with 10 folds,
and we use a subset of our large training with 30K
samples for each class. The resulting values for the hyper-
parameters are used for both the regularly-trained models
and the AI system trained on filtered data. For GBDT we
set 1000 trees and η = 0.1, the subsample ratio of columns
when constructing each tree to 0.8, while keeping default
values for all the other parameters. We produce models
trained only on data that do not trigger any YARA rule

4. https://community.chocolatey.org/
5. https://github.com/bartblaze/Yara-rules/tree/master/rules
6. https://github.com/elastic/protections-artifacts/tree/main/yara/rules
7. https://github.com/malpedia/signator-rules/tree/main/rules
8. https://github.com/Neo23x0/signature-base/tree/master/yara
9. https://github.com/Yara-Rules/rules/tree/master/malware

Dt Tp Tf

TPR FPR TPR FPR TPR FPR

0.24 0.0094 0.23 0.0096 0.34 0.0089

TABLE 1: YARA performance (represented by TPR and
FPR) on the training set Dt, the present test set Tp and
the future test set Tf .

denoted as SVMf and GBDTf, and we compare them with
models trained on all the data we possess (noted as SVM
and GBDT).
Setup of Adversarial Attacks. The robustness evaluation
of all the models we train is performed with GAMMA,
that leverages the injection of new sections harvested
from legitimate programs [15] to manipulate malware.
The attacks are conducted on a subset of the test set
Tp and on a subset of Tf , randomly selecting 100 mal-
ware samples from each family in the Speakeasy dataset
(resulting in a total of 700 samples gathered from both
sets). Since we are interested in the effect imposed by
rules filtering, which considers different data distributions
at training time, we setup GAMMA to harvest content
from two sources: (i) legitimate Windows utility programs
extracted from a fresh installation of Windows 10; and
(ii) samples scraped from Chocolatey10 which is a well-
known package manager for Windows. In both cases,
we test attacks that can query the target at maximum
200 times, with increasing forces, allowing GAMMA to
select content harvested from 10, 20, 30, and 50 sections
among these legitimate programs. This procedure leads to
32 attack configurations for both models. For the SVM
models, we fix the regularization term λ = 10−5 and the
number of queries to 200 for all configurations. For the
GBDT models we fix the number of queries to 500, and
we set λ = 10−7 when using 10 to 20 sections extracted
from Windows goodware, while λ = 10−8 for 30 and
50 sections from the same source. Instead, when using
Chocolatey PEs which are bigger in size, we set λ = 10−6

for 10 and 20 sections attacks and λ = 10−7 for 30 and
50 sections attacks.
Evaluation Metrics. For performance and temporal anal-
ysis, we compute ROC curves, which show the True Pos-
itive Rate (TPR) and False Positive Rates (FPR) varying
the decision threshold of the model. Regarding the robust-
ness to adversarial EXEmples, we compute the Detection
Rate (which is the TPR) at 1/% FPR as the manipulation
size increases.
Hardware. To compute all our experiments, we leverage a
workstation equipped with an Intel® Xeon(R) Gold 5420,
two Nvidia L40 GPUs, and 540 GB of RAM.

3.2. Data Filtering

We train our models in two different configurations: (i)
by filtering our training dataset with our YARA blocklist
and allowlist thus training ML models only on data not
recognized by signatures; and (ii) by using all the train-
ing data available, without filtering. Before we proceed
towards training models though, we need to quantify the
predictive capabilities in terms of TPR and FPR of the

10. docs.chocolatey.org

https://community.chocolatey.org/
https://github.com/bartblaze/Yara-rules/tree/master/rules
https://github.com/elastic/protections-artifacts/tree/main/yara/rules
https://github.com/malpedia/signator-rules/tree/main/rules
https://github.com/Neo23x0/signature-base/tree/master/yara
https://github.com/Yara-Rules/rules/tree/master/malware
docs.chocolatey.org


(a) (b)

Figure 3: ROC curves of all models and systems considered. We report SVM and SVMf System performances in Fig. 3a,
while GBDT and GBDTf System performances are illustrated in Fig. 3b. Models trained on all data and AI systems
that integrate YARA rules are tested with Tp (solid lines) and Tf (dashed lines).

rules we have collected, and we present this analysis in
Tab. 1. The allowlist, which targets utilities of Windows,
filters all the 2648 system files in the dataset as expected,
while the blocklist removes 16329 malicious samples from
the training data. At test time, the allowlist blocks 249
benign samples belonging to Tp and 0 samples belonging
to Tf . Instead, the blocklist blocks 1765 malicious sam-
ples of Tp and 6016 samples of Tf . In other terms, the
blocklist detect 24% of malware inside the Present Data
(Dt and Tp) and 34% of malware in Future Data (Tf ).
For all datasets, we note that a non-negligible amount of
FPR ≈ 10−2. By evaluating those through the responses of
VirusTotal11, we discover that they are caused by (i) gray-
ware programs contained in the data we have described
in Sec. 3.1, (ii) samples flagged by less than five AVs, or
legitimate Python installers.

3.3. Performance and Temporal Analysis

We analyze the performance of the models we have
trained, using both Tp and Tf . We report in Fig. 3 the
ROC curves of SVM and GBDT trained on all data, and
we evaluate the same curves on corresponding AI systems
trained on data filtered by the YARA rules. Regarding
regularly-trained models, both SVM and GBDT achieve
high TPR on Tp at 1% FPR, with SVM experiencing
a consistent drop at extremely low FPR (0.1%). How-
ever, both models manifest a decay in performance when
evaluated on Tf (green dashed line in Fig. 3). While
GBDT confirms its capability at extremely low FPR, SVM
maintains good performance only at 1%. As regards AI
systems, ROC curves highlights the contribution of YARA
rules, which guarantee a fixed TPR. However, they also
force a fixed FPR, shown by the horizontal ROC until
they reach almost 1% FPR. In fact, YARA rules report a
fixed FPR of 0.96% on Tp and 0.89% on Tf as reported
in Tab. 1. Beyond those points, the actual performance
of SVMf and GBDTf becomes visible, showing similar
or even improved results compared to models trained on
the entire dataset. We see the AI system with GBDTf

11. https://www.virustotal.com/gui/home/search

outperforming GBDT at 1% FPR on Tf while scoring
almost the same on Tp. The same holds for the AI system
with SVMf compared to SVM, but at a slightly higher
level of FPR. Lastly, we clarify why there is a mismatch
between TPRs of AI Systems at very low FPR (left side
of Fig. 3a and Fig. 3b). The AI System built with GBDT
achieves higher TPR than the one built with SVM, and
this difference is caused by some samples being detected
by GBDT with full confidence, i.e. the output of the model
is precisely 1. Hence, while computing the ROC it is not
possible to fix a threshold for which those are misclassified
as benign, thus causing the discrepancy with SVM, which
does not exhibit this behavior.

Take-home Message 1: AI Systems can be trained
on fewer data, matching the performance of models
trained on all data. However, such performances
are limited by the fixed FPR of YARA rules.

3.4. Robustness Analysis

The experimental analysis on robustness brings evi-
dence of the contribution of YARA rules, coherently to
what is presented by Ponte et al. [6]. We summarize
all attack configurations using programs scraped from
Chocolatey as content inject in Fig. 4a and Fig. 4b,
and we report the results of attacks using Windows 10
programs in Fig. 4c and Fig. 4d. In general, as we expect,
GAMMA finds more effective manipulations starting from
out-of-distribution malware samples (dashed lines in all
plots), since not only the TPR of models is lower in this
condition, but also the attack is likely to produce samples
deviating from the original training distribution. Also, the
usage of Windows 10 benign sections results in smaller
adversarial manipulations, since these programs are also
smaller in size (on average) w.r.t. the Chocolatey ones,
leading to lower evasion rates against SVM and GBDT,
as shown in Fig. 4c and Fig. 4d. Instead, for SVMf and
GBDTf systems, the trend holds for the first two points (10
and 20 section manipulations), but larger manipulations
show a clear divergence from Fig. 4a and Fig. 4b. This

https://www.virustotal.com/gui/home/search


(a) (b)

(c) (d)

Figure 4: Detection rates of SVM, GBDT, SVMf System, and GBDTf System injecting Chocolatey (Fig. 4a and Fig. 4b)
and Windows 10 (Fig. 4c and Fig. 4d) benign sections. Detection rates are reported based on the number of kilobytes
injected (which varies according to sections parameter of GAMMA) and the source of malware samples. We report
detection rates of adversarial EXEmples originated from Tp and Tf malicious samples with solid lines and dashed
lines respectively.

phenomenon is caused mainly by two facts. The first
reason is due to the inability of GAMMA of removing
the patterns detected by rules from adversarial EXEmples.
Hence, when untainted malware samples trigger a certain
number of YARA rules, the corresponding adversarial
EXEmple also triggers the same rules. The second rea-
son is caused by GAMMA injecting particular strings
that trigger rules, making the manipulation ineffective for
evading the AI system. We clearly see this evidence in
Fig. 4a and Fig. 4b: when injecting 10 and 20 sections
the detection rate decreases or remains approximately
the same, while when injecting 30 and 50 benign sec-
tions, this trend inverts. Examining the phenomenon in
depth, we notice that a particular benign sample is in-
cluded in 30 and 50 sections attacks, and when GAMMA
crafts adversarial EXEmples using that goodware sections,
Typical_Malware_String_Transforms12 rule is
always fired. We note that this YARA rule does not
activate when tested on the original benign sample (which
is a telemetry application), since it has been crafted to
avoid such false positive. However, when GAMMA injects
fragments of the sample, this condition is no longer met,

12. https://github.com/Neo23x0/signature-base/blob/master/yara/gen
transformed strings.yar

leading to a significant number of attacks being blocked.
We remark that, while previous work remarked that at-
tackers should always remove false positives from their
sources during content-injection attacks [6], the artifacts
we detect in this work could not be foreseen in advance.
That would have required the evaluation of each YARA
rule by splitting their triggering conditions in all the
single conditions chained with and/or operators, and re-
evaluating them (and all their combinations) on benign
samples owned by the attackers. This would introduce a
combinatorial problem into the selection of legitimate pro-
grams to use for content-injection attacks, increasing the
complexity of the attack setup. Lastly, our experimental
analysis reports an unsteady trend of GBDT, which can
be attributed to (i) a reduced set of considered sections
(which in the original formulation of the attack is 75); and
(ii) the randomness behind the genetic algorithm used to
implement the attack itself. While SVM is characterized
by a smooth decision function, easier to explore, GBDT
models produce piece-wise constant decision regions that
requires more random sampling performed by the opti-
mization algorithm to find meaningful directions. Also,
this can be seen in Fig. 4b, since the attack reduces the
detection rate with a small amount of bytes, and then
keeps roughly the same results for increasing strength of

https://github.com/Neo23x0/signature-base/blob/master/yara/gen_transformed_strings.yar
https://github.com/Neo23x0/signature-base/blob/master/yara/gen_transformed_strings.yar


the attack. Finally, we observe that AI systems tend to be
more robust than regular machine learning models, even
when sections from Windows 10 utilities are injected. As
previously mentioned, this is caused by the effectiveness
of the blocklist, that can still effectively detect malware
even after such manipulations.

Take-home Message 2: AI Systems are more
robust to adversarial EXEmples due to the pres-
ence of rules. Also, content-injection attacks might
include malicious patterns that trigger YARA rules,
without being extracted by false positives of
signature-based detection.

4. Conclusions

We now discuss the limitations of our methodology,
by also highlighting the future lines of research that can
take our work as a basis.
Limitations. While our analysis represents a step forward
in understanding the properties of AI systems, we note the
following limitations. First, the YARA rules used in this
work were collected from public online repositories, and
we did not filter them based on their precision on the
training set. Although this filtering might have improved
the performance of the AI systems, it could also have un-
fairly skewed the comparison in their favor. Moreover, our
investigation would benefit from a broader model selection
since we only considered one kernel for the SVM, and we
did not fully explore the parameter space for the GBDT.
Furthermore, we did not include complex deep neural
architectures such as the one by Harang et al. [23]. We
also tested the models’ robustness only through content-
injection attacks implemented by injecting sections with
GAMMA, and did not consider other techniques proposed
in the state of the art. In fact, other attacks might create
different artifacts inside samples that might be detected
by rules as well as the anomalies left by GAMMA.
Nevertheless, we believe that the results showcased in
Sec. 3 are valid, as we employed previously analyzed
technologies that can be considered state of the art in this
domain [9, 14, 15].
Future Work. While expanding our analysis to include
more models and attacks is straightforward, we can further
improve this investigation by exploring dynamic malware
analysis, which collects the behavior of samples through
execution in controlled environments (sandboxes). In par-
ticular, we could leverage signature-based detection in
this context as well, for example by deploying CAPA13

which identifies specific behavior patterns from sandbox
reports. Moreover, regardless of the type of analysis, we
could adapt the technique proposed by Scano et al. [24],
which consists in training a linear model on the outputs
of rules, thus weighting their answers to reduce false
positives while maximizing the detection rate. Another
improvement in our methodology could be using class
weights at training time: tested models could benefit from
this technique, possibly overcoming the problem of the
unbalanced dataset.

13. https://github.com/mandiant/capa/

Final Remarks. In this work, we investigated AI Systems
for malware detection, showing that these can match
the performance of models trained on larger corpus of
data while improving robustness, with a fixed amount of
false alarms caused by rules themselves. Aligned with the
upcoming recommendations from the EU Commission,
we believe that extensive research should be conducted
on developing and evaluating AI systems, moving away
from the “in vitro” evaluation of isolated machine learning
models. Hence, we believe that the preliminary results
we collected on AI systems for malware detection could
pave the way for further research, ultimately leading to the
development of novel training and evaluation pipelines tai-
lored to these technologies, which would also be compli-
ant with emerging international guidelines and standards.

Acknowledgments

Andrea Ponte acknowledges the support of Rina Con-
sulting S.p.A. for his doctoral scholarship and research
work. The authors acknowledge Matous Kozak’s help with
data collection. This work was partially supported by
projects SERICS (PE00000014) and FAIR (PE00000013)
under the NRRP MUR program funded by the EU -
NGEU.

References

[1] European Commission. European ai act.
https://digital-strategy.ec.europa.eu/en/policies/
regulatory-framework-ai, 2024. Accessed: February
2025.

[2] ESET Technology. The multilayered
approach and its effectiveness. https:
//www.eset.com/fileadmin/ESET/US/docs/about/
ESET-Technology-Whitepaper.pdf, 2017. Accessed:
February 2025.

[3] Avira. Nightvision – using machine learning
to defeat malware. https://www.webassetscdn.
com/avira/prod/cache-buster-1598423379/assets/
oem.avira.com/resources/to%20delete/whitepaper
NightVision EN 20170704.pdf, 2017. Accessed:
February 2025.

[4] Microsoft. Evolution of malware prevention.
https://info.microsoft.com/rs/157-GQE-382/images/
Windows%2010%20Security%20Whitepaper.pdf,
2017. Accessed: February 2025.

[5] Apple. Protecting against malware in
MacOS. https://support.apple.com/guide/security/
protecting-against-malware-sec469d47bd8/web.
Accessed: April 2025.

[6] A. Ponte, D. Trizna, L. Demetrio, B. Biggio, I. T.
Ogbu, and F. Roli. Slifer: Investigating performance
and robustness of malware detection pipelines. Com-
puters & Security, 150:104264, 2025.

[7] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and
A. Armando. Explaining vulnerabilities of deep
learning to adversarial malware binaries. In ITASEC
CEUR Workshop Proceedings, 2019.

[8] L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio,
A. Armando, and F. Roli. Adversarial EXEmples:
A survey and experimental evaluation of practical

https://github.com/mandiant/capa/
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://www.eset.com/fileadmin/ESET/US/docs/about/ESET-Technology-Whitepaper.pdf
https://www.eset.com/fileadmin/ESET/US/docs/about/ESET-Technology-Whitepaper.pdf
https://www.eset.com/fileadmin/ESET/US/docs/about/ESET-Technology-Whitepaper.pdf
https://www.webassetscdn.com/avira/prod/cache-buster-1598423379/assets/oem.avira.com/resources/to%20delete/whitepaper_NightVision_EN_20170704.pdf
https://www.webassetscdn.com/avira/prod/cache-buster-1598423379/assets/oem.avira.com/resources/to%20delete/whitepaper_NightVision_EN_20170704.pdf
https://www.webassetscdn.com/avira/prod/cache-buster-1598423379/assets/oem.avira.com/resources/to%20delete/whitepaper_NightVision_EN_20170704.pdf
https://www.webassetscdn.com/avira/prod/cache-buster-1598423379/assets/oem.avira.com/resources/to%20delete/whitepaper_NightVision_EN_20170704.pdf
https://info.microsoft.com/rs/157-GQE-382/images/Windows%2010%20Security%20Whitepaper.pdf
https://info.microsoft.com/rs/157-GQE-382/images/Windows%2010%20Security%20Whitepaper.pdf
https://support.apple.com/guide/security/protecting-against-malware-sec469d47bd8/web
https://support.apple.com/guide/security/protecting-against-malware-sec469d47bd8/web


attacks on machine learning for windows malware
detection. ACM Transaction on Privacy and Secu-
rity, 24(4):1–31, 2021.

[9] H. S. Anderson and P. Roth. Ember: an open dataset
for training static pe malware machine learning mod-
els. Preprint, arXiv:1804.04637, 2018.

[10] J. Saxe and K. Berlin. Deep neural network based
malware detection using two dimensional binary
program features. In International Conference on
Malicious and Unwanted Software, 2015.

[11] E. Raff, J. Barker, J. Sylvester, R. Brandon, . Catan-
zaro, and C. K. Nicholas. Malware detection by
eating a whole exe. In AAAI Conference on Artificial
Intelligence, 2018.

[12] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S.
Manjunath. Malware images: visualization and au-
tomatic classification. In International Symposyum
on Visualization for Cyber Security, 2011.

[13] L. Liu, B. S. Wang, B. Yu, and Q. X. Zhong. Auto-
matic malware classification and new malware detec-
tion using machine learning. Frontiers of Information
Technology & Electronic Engineering, 18(9):1336–
1347, 2017.

[14] D. Trizna. Quo vadis: hybrid machine learning meta-
model based on contextual and behavioral malware
representations. In ACM Workshop on Artificial
Intelligence and Security, 2022.

[15] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and
A. Armando. Functionality-preserving black-box
optimization of adversarial windows malware. IEEE
Transaction on Information Forensics and Security,
16:3469–3478, 2021.

[16] Daniel Arp, Erwin Quiring, Feargus Pendlebury,
Alexander Warnecke, Fabio Pierazzi, Christian
Wressnegger, Lorenzo Cavallaro, and Konrad Rieck.
Dos and don’ts of machine learning in computer
security. In 31st USENIX Security Symposium
(USENIX Security 22), pages 3971–3988, 2022.

[17] N. Cristianini and E. Ricci. Support vector ma-
chines. In Encyclopedia of algorithms. Springer-
Verlag, 2008.

[18] S. Shalev-Shwartz and S. Ben-David. Understand-
ing machine learning: From theory to algorithms.
Cambridge university press, 2014.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
and Others. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[20] J. H. Friedman. Greedy function approximation:
a gradient boosting machine. Annals of statistics,
pages 1189–1232, 2001.

[21] T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In ACM International Conference
on Knowledge Discovery and Data Mining, 2016.

[22] L. Oneto. Model selection and error estimation in a
nutshell. Springer, 2020.

[23] R. Harang and E. M. Rudd. SOREL-20M: A large
scale benchmark dataset for malicious PE detection.
Preprint, arXiv:2012.07634, 2020.

[24] C. Scano, G. Floris, B. Montaruli, L. Demetrio,
A. Valenza, L. Compagna, D. Ariu, L. Piras,
D. Balzarotti, and B. Biggio. Modsec-learn: Boost-
ing modsecurity with machine learning. In Interna-

tional Conference on Distributed Computing and AI,
2024.


	Introduction
	Background and Related Work
	Experimental Analysis
	Experimental Setup
	Data Filtering
	Performance and Temporal Analysis
	Robustness Analysis

	Conclusions

