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Avstract. We investigate the impact of (possible) deviations of the probability distribution of

key values from a uniform distribution for the information-theoretic strong, or perfect, message

authentication code. We found a simple expression for the decrease in security as a function of

the statistical distance between the real key probability distribution and the uniform one. In a

sense, a perfect message authentication code is robust to small deviations from a uniform key

distribution.

I. INTRODUCTION

Perfect security is an important property of data protection systems, which has attracted the

attention of cryptography researchers since C. Shannon described it in his famous paper [1],

where he also showed that the so-called one-time pad cipher possesses this property. Several

perfectly secure cryptographic methods are currently known, which include the information-

theoretically secure (i,e. the perfectly secure) message authentication code (MAC), which is
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popular and well-studied, cf. [2], [3]. This MAC, as well as the one-time pad, use secret keys,

i.e., binary words of a certain length, which must obey a uniform distribution.

It is worth noting that MACs and related cryptographic primitives are under intensive devel-

opment by many authors [2], [3], [4], [5], [6], [7], and there are currently some differences in

terminology. In this article, all definitions are given according to [2].

In this paper, we consider the problem when the actual probability distribution of key is

different from uniform one i.e., there is a small difference between the actual key distribution

and the uniform distribution. We found estimates of the reduction in MAC persistence with non-

uniformly distributed keys by measuring the deviation using the so-called statistical distance,

which is a popular measure of the difference of distributions [2]. The estimate found is, in a

sense, a generalization of the case of uniformly distributed keys.

To the best of our knowledge, this problem for MAC has not been solved yet, and the results

presented are new.

One informal observation is that the perfect security property of MAC is robust to small

deviations from key randomness.

The rest of the paper is as follows. Part 2 contains a general definition of MAC and a

description of perfect, or information-theoretically secure, MAC. The third part is devoted to

the description of the so-called statistical distance and its some properties, while the fourth part

contains the proof of the main results about MAC security for the case when the key probability

distribution is slightly different from the uniform distribution.

II. MESSAGE AUTHENTICATION CODES (MAC)

A. General description of MAC

We consider two participants, Alice and Bob, connected by a communication line, and Alice

sends messages to Bob from time to time. A third participant, Eve, can spoof (distort) these

messages, and the problem Alice and Bob are considering here is the so-called message integrity

check: Bob receives message m from Alice and wants to make sure that the message has not been

altered by Eve during transmission. This is a message authentication problem, and a common
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scheme for solving it is as follows: Alice computes a short message authentication code (tag) t

that allows Bob to verify that the message came from Alice (authentication check) and was not

tampered with by Eve (integrity check). More precisely, Alice sends Bob a pair (m, t). Upon

receiving this pair, Bob checks t according to a certain algorithm and rejects the message if t

fails the check. If t passes the check, Bob is sure that the message came from Alice and was

not changed during transmission.

We also assume that Alice and Bob share a secret key, which is used by Alice in computing

t and in verifying the integrity of the message by Bob.

Definition 1. A MAC system I = (S, V ) is a pair of algorithms S and V , where S is called the

algorithm for computing t and V is called the algorithm for verifying message integrity, i.e., the

algorithm S is used to generate authentication code messages and the algorithm V is used to

verify (m, t). The values m, k, t refer to the sets M,K, T respectively. It is assumed that S is a

probabilistic algorithm t := S(k,m), where k is the authentication key, m is the message, and

t is the authentication code (tag). V is an algorithm that is denoted as r := V (k,m), where

r is a Boolean variable that takes the values “accept” or “reject”. It is required that the tags

generated by S are always accepted by V , i.e., MAC must guarantee that for all keys k and all

messages m, Pr{V (k,m, S(k,m) = ”accept”} = 1. Thus, we consider a system in which the

verification method is defined as V (k,m, t) = “accept” if S(k,m) = t, and “reject” otherwise.

B. MAC security

The MAC security assessment is based on the following attack game:

Definition 2. Attack Game. The game involves two participants, called challenger C and

adversary A. Let there be MAC system I = (S;V ), m ∈ M,k ∈ K, t ∈ T. The attack game

runs as follows:

1. The challenger picks a random k from K.

2. Adversary A generates message a and sends it to challenger C. C computes t0 = S(k, a)

and sends it to A.
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3. A outputs a candidate forgery pair (b; tA1 ), b ̸= a, and sends b, tA1 to C

A wins this game if V (k; b; tA1 ) = accept and the advantage of A with respect to I is given

as follows: Adv [A, I] = Pr{Awins}.

Note that this definition applies to the perfect MAC, where the secret key k is used only once.

C. Perfect MAC

Here we describe the perfect MAC from [2]. Let p be a prime number and Zp be the ring of

integers modulo p (note that |Zp| = p). We consider the set of messages M = Z l
p, where l is

an integer equals the maximal length of the messages, the set of the keys K is Z2
p , that is any

k can be presented as k = (k1, k2), where k1, k2 ∈ Zp.

Let us consider a message m = (a1, a2, ..., aν), ai ∈ Zp, i = 1, ..., ν, ν ≤ l. The MAC is

defined as follows:

S((k1, k2),m) = (kl+1
1 + a1k

v
1 + a2k

v−1
1 + ...+ avk1) + k2 , (1)

where S is the algorithm for computing t and V (k,m, t) = “accept” if S(k,m) = t, and “reject”

otherwise, see the definition 1 (In (1) all operations over the ring Zp). We denote this MAC as

P .

It is proven in [2] that for all adversaries A (even inefficient ones)

Adv [A,P] ≤ (l + 1)/|Zp| . (2)

(Recall that the key (k1, k2) is uniformly distributed over Z2
p .)

Here we consider a case where the set of keys and messages are based on the set Zp, but the

considered perfect MAC can be based on differen sets. For example, the other popular basis is

the set of remainders after division by an irreducible polynomial [2].

III. SOME PROPERTIES OF THE STATISTICAL DISTANCE

Statistical distance is one of the most popular measures of deviation of probability distributions

[2]. Its definition is as follows.
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Definition 3. Let there be a set A = {a1, ..., n}, n ≥ 1, and some probability distributions P

and Q on A. Then the statistical distance ∆ is as follows

∆(P,Q) =
1

2

n∑
i=1

|P (ai)−Q(ai)| . (3)

Let U be the uniform distribution, i.e. U(a) = 1/n for any a ∈ A. The next task will be

interesting later. Let P be the probability distribution on A and ∆(P,U) = δ. Suppose that s is

an integer, 1 ≤ s < n, and define

P s
max(P, δ) = max

{P :∆(P,U)=δ}

s∑
i=1

P (ai) . (4)

(max here exists, because it is easy to see that {P : ∆(P,U) = δ} is compact set.) The following

statement provides a concise expression for P s
max.

Lemma 1.

P s
max(P, δ) =

δ + s/n if s ≤ n(1− δ)

1 if s > n(1− δ)

(5)

Proof. Suppose that for some δ and a distribution P

P s
max(P, δ) =

s∑
i=1

P (ai) . (6)

Our goal is to prove (5). First we define subsets

A+ = {a : P (a) > 1/n}, A− = {a : 0 < P (a) < 1/n},

A1/n = {a : P (a) = 1/n}A0 = {a : P (a) = 0}. (7)

Taking into account that
∑

a∈A P (a) = 1, we can see that∑
a∈A+

P (a)− |A+|/n = δ,
∑

a∈A−∪A0

P (a)− (|A0|+ |A−|)/n = −δ . (8)

For any probability distribution P we define three transformations To, T+ and T− as follows:

To(P ) numbers letters of A in such a way that P (a1) ≥ P (a2 ≥ ... ≥ P (an). T+(P ) can be

applied if |A+| > 1. If it is so, then, first, To is applied and we obtain P ′ = To(P ), then we
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calculate P ∗(a1) = P ′(a1) + (P ′(a2) − 1/n), P ∗(a2) = 1/n, P ∗(a3) = P ′(a3), ..., P
∗(an) =

P ′(an), Note that the set A+ decreases when T+ is applied and ∆(P,U) = ∆(P ∗, U).

The transformation T−(P ) can be applied if |A−| > 1. If it is so, take some ai, aj ∈ A− and

let P (i) = 1/n− τ1, P (j) = 1/n− τ2, τ1 ≤ τ2. Then we define

P ′(k) = P (k) if k ̸= i, k ̸= j,

P ′(i) = 1/n, P ′(j) = 1/n− (τ1 + τ2) if τ1 + τ2 ≤ 1/n

P ′(i) = 0, P ′(j) = 2/n− (τ1 + τ2) if τ1 + τ2 > 1/n (9)

Then T−(P ) = To(P
′). Note that the set A− decreases when T− is applied and ∆(P,U) =

∆((T−(P ), U).

Now let us define the transformation Tfinal as follows: first apply the transformation T+ until

|A+| = 1, and then apply T− until |A−| ≤ 1 (Recall that the number of applications of T+ and

T− is finite, since after any of these applications the sets A+ or A− are decreasing.). Let us

denote Tfinal(P ) = P final.

All transformations T preserve the distance ∆ and hence for any distribution ∆(P final, U) =

∆(P,U)(= δ). The following properties are true for the distribution P final by construction:

|A+| = 1, |A−| ≤ 1. From this, (8) and ∆(P final, U) = δ we can see that

P final(a1) = δ + 1/n, P final(a2) = ... = P final(ak−1) = 1/n,

P final(ak) = 1− (δn− ⌊δn⌋)/n, P final(ak+1) = ... = P final(an) = 0, k = n− ⌊δn⌋ .

The direct calculation of
∑s

i=1 P
final(ai) gives

s∑
i=1

P final(ai) =


δ + s/n if s ≤ n(1− δ)

1 if s > n(1− δ).

As we have shown, the transformations T−, T+, To do not change distance. From this, the latest

equation and (6) we obtain (5).
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IV. THE EFFECT OF SMALL DEVIATIONS FROM UNIFORM KEY DISTRIBUTION

In the second part, we described a perfect MAC based on polynomial (1). Here we consider

the case when the secret keys k1, k2 obey distributions slightly different from the uniform

distribution.

The following theorem is the main result of the paper.

Theorem 1. Let the MAC P from II-C be applied together with k1, k2 which are independent

and obey such probability distributions Pk1
and Pk2

that ∆(Pk1
, U) = δ1, ∆(Pk2

, U) = δ2 for

some non-negative δ1, δ2. Then

Adv [A,P] ≤ |Zp|P l+1
max(Pk1

, δ1)P
1
max(Pk2

, δ2) . (10)

If (l + 1) ≤ |Zp|(1− δ1) and 1 ≤ |Zp|(1− δ2) then

Adv [A,P] ≤ |Zp|(δ1 + (l + 1)/|Zp|)(δ2 + 1/|Zp|) . (11)

Proof. For brevity, for a = (a1, ..., aν) let us define

f(a, k1) = kv+1
1 + k1(a1k

v−1
1 + a2k

v−2
1 + ...+ av) , g(a, k1, k2) = f(a, k1) + k2. (12)

Let us describe the Attack Game from Part II for the MAC P.

Let C choose randomly (according to the distributions Pk1
, Pk2

) and independently the keys

kC1 , k
C
2 , and A chooses some a and sends a to C. Then C computes t0 = g(a, kC1 , k

C
2 ) and

sends it to A. Then A chooses some b and tA1 . Perhaps in doing so, A “guessed” some keys

kA1 , k
A
2 .

The adversary A can have two variants or strategies of the game:

1) A guesses b and tA1 without considering the presence of a, t0.

2) A considers the presence of a, t0 when finding the pair b, tA1 , i.e., it uses the key constraints

imposed by a, t0 when searching for b and tA1 .

Consider the first option. A somehow generates b and tA1 . It is easy to see that they correspond

to some keys kA1 , k
A
2 (Indeed, let us take any kA1 , compute f(b, kA1 ), and then define kA2 =
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tA1 − f(b, kA1 ). Obviously, g(b, kA1 , k
A
2 ) = tA1 , see (12).) Let’s proceed to estimate the probability

of winning for A. Define g(b, kC1 , k
C
2 ) = t1. Then

∀b ∈ Zp, ∀kA1 , kA2 for which g(b, kA1 , k
A
2 ) = tA1 :

Pr{A wins } = Pr{t1 = tA1 } = Pr{g(b, kC1 , kC2 ) = tA1 } =

Pr{
∑
γ∈Zp

f(b, kC1 ) = tA1 − γ & kC2 = γ}. (13)

Here and below we can assume that formally Pr{.} = Pk1
Pk2

.

Given that the events kC2 = γ are incompatible at different γ and kC1 , k
C
2 are in dependent,

we obtain the following two equalities:

Pr{
∑
γ∈Zp

f(b, kC1 ) = tA1 − γ & kC2 = γ} =
∑
γ∈Zp

Pr{f(b, kC1 ) = tA1 − γ & kC2 = γ}

=
∑
γ∈Zp

Pk1
{f(b, kC1 ) = tA1 − γ)}Pk2

{kC2 = γ} (14)

The latter amount can be represented as follows:∑
γ∈Zp

Pk1
{f(b, kC1 ) = tA1 − γ)}Pk2

{kC2 = γ} =

∑
γ∈Zp

Pk1
{kC1 polynomial root of f(b, k1)− tA1 + γ = 0}Pk2

{kC2 = γ} =

∑
γ∈Zp

Pk1
(

∑
w∈{ polynomial rootsf(b,k1)−tA1 +γ=0}

f(b, w)− tA1 + γ = 0 )Pk2
{kC2 = γ} (15)

Given that the power of the polynomial f(b, w)−tA1 +γ does not exceed l+1 from the definiton

of the maxsimum sums (4) and Lemma 1 (5), we get an estimate of the last sum:∑
γ∈Zp

Pk1
(

∑
w∈{ polynomial rootsf(b,k1)−tA1 +γ=0}

f(b, w)− tA1 + γ = 0) Pk2
{kC2 = γ} ≤

∑
γ∈Zp

P l+1
max(Pk1

, δ1)P
1
max(Pk2

, δ2) = |Zp|P l+1
max(Pk1

δ1)P
1
max(Pk2

, δ2).

From this and the definition 2 of Adv [A,P] we obtain

Adv [A,P] ≤ |Zp|P l+1
max(Pk1

, δ1)P
1
max(Pk2

, δ2) . (16)
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Therefore, for the first case, the theorem is proved.

Let us now turn to the analisis of the second case, which is in some ways more natural:

A when selecting a pair of b, tA1 takes into account the presence of a, t0, i.e. when searching

for b and tA1 uses a, t0 key limits. Use Za,t0 to denote a set of key pairs k1, k2 for which

g(a, k1, k2) = t0. Then the probability of winning for A is given by the expression

∀b ∈ Zp, ∀kA1 , kA2 for which g(a, kA1 , k
A
2 ) = t0 :

Pr{A wins } = Pr{t1 = tA1 } = Pr{g(b, kC1 , kC2 ) = tA1 } =

Pr{
∑

γ∈Za,t0

f(b, kC1 ) = tA1 − γ & kC2 = γ}.

Now we can completely repeat the proof from the previous point with the replacement of Zp

with Za,t0 (starting with (13)) and get a similar estimate

Pr{A wins } ≤ |Za,t0 |P l+1
max(Pk1

, δ1)P
1
max(Pk2

, δ2) . (17)

Now let’s formally prove a rather obvious fact: |Za,t0 | ≤ |Zp|. Let’s assume the opposite:

|Za,t0 | > |Zp|. Then there is (at least one) k1 and a pair k′2, k
′′
2 are such that (k1, k′2) ∈ Za,t0 and

(k1, k
′′
2) ∈ Za,t0 . By definition Za,t0 f(a, k1)+ k′2 = a and f(a, k1)+ k′′2 = a, which contradicts

the assumption k′2 ̸= k′′2 .

From proven inequality |Za,t0 | ≤ |Zp| and (17) we get (10). Thus, (10) is proved for both

cases and the theorem is proved.

Comment. From the proof of the theorem, we see that the probability of “guessing” the correct

pair b, t1 is the same regardless of whether the A knowledge of the pair takes into account (a, t0)

or ignores it. In a sense, this is a further proof that the described system is “perfect” even with

small deviations from the uniform distribution.

Let’s take a closer look at the assessment from the statement. Suppose δi = µi/|Zp| where

µi ≥ 0, i = 1, 2. Then, from Theorem 1 and Lemma 1 we can see that Adv [A,P] ≤ ε, where

ε = |Zp|((µ1 + (l + 1))/|Zp|)((µ2 + 1)/|Zp|) = (µ1 + l + 1)(µ2 + 1)/|Zp| .
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Note that when δ1 = 0, δ2 = 0 (and, accordingly, µ1 = µ2 =0), the latter inequality coincides

with the estimate is known for the case without deviations, when the keys follow the uniform

distribution.
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