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Abstract

Malware detection in modern computing environments demands models that
are not only accurate but also interpretable and robust to evasive techniques.
Graph neural networks (GNNs) have shown promise in this domain by model-
ing rich structural dependencies in graph-based program representations such as
control flow graphs (CFGs). However, single-model approaches may suffer from
limited generalization and lack interpretability, especially in high-stakes secu-
rity applications. In this paper, we propose a novel stacking ensemble framework
for graph-based malware detection and explanation. Our method dynamically
extracts CFGs from portable executable (PE) files and encodes their basic blocks
through a two-step embedding strategy. A set of diverse GNN base learners, each
with a distinct message-passing mechanism, is used to capture complementary
behavioral features. Their prediction outputs are aggregated by a meta-learner
implemented as an attention-based multilayer perceptron, which both classifies
malware instances and quantifies the contribution of each base model. To enhance
explainability, we introduce an ensemble-aware post-hoc explanation technique
that leverages edge-level importance scores generated by a GNN explainer and
fuses them using the learned attention weights. This produces interpretable,
model-agnostic explanations aligned with the final ensemble decision. Experimen-
tal results demonstrate that our framework improves classification performance
while providing insightful interpretations of malware behavior.

Keywords: Graph Neural Networks, Malware Detection, Control Flow Graphs,
Stacking Ensemble Learning, Explainable AI.
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1 Introduction

Malware, or malicious software, continues to pose a significant threat to modern com-
puting environments, particularly in enterprise systems, critical infrastructure, and
cloud platforms. As malware evolves in complexity and evasion techniques, conven-
tional signature-based detection methods struggle to keep pace. To address these
limitations, researchers have turned to machine learning and deep learning techniques,
which offer the potential to detect novel or obfuscated malware through behavioral
and structural analysis [1]. However, the effectiveness of such models largely depends
on the quality of features and the representation of program behavior, necessitating
advanced techniques capable of capturing the intricate dependencies within program
execution.

Graph Neural Networks (GNNs) have recently emerged as powerful tools for learn-
ing from graph-structured data and have demonstrated considerable success in a range
of cybersecurity tasks, particularly malware detection [2–7]. Unlike traditional neu-
ral networks, GNNs are specifically designed to operate on graph data by iteratively
aggregating information from neighboring nodes and edges, allowing them to cap-
ture intricate structural and relational dependencies across the graph. This capability
makes GNNs especially well-suited for modeling software behavior, which is often nat-
urally represented as a graph [8]. In malware detection, GNNs have been applied to
various graph-based representations of programs, including function call graphs [9],
API call graphs [10], and most importantly, control flow graphs (CFGs) [11], each
of which captures different behavioral characteristics. Among these representations,
CFGs are particularly valuable because they illustrate the execution flow of a program
in a structured and analyzable form. A CFG models basic blocks of instructions as
nodes and the possible control transfers between them as directed edges. This abstrac-
tion captures both high-level logic and low-level execution patterns, enabling the
identification of structural anomalies and irregular control paths that are often indica-
tive of malicious behavior.When combined with GNNs, CFGs enable the extraction of
rich representations that capture both local execution behaviors and global structural
context, thereby improving the detection of sophisticated and evasive malware.

While individual GNN models have shown promising performance, leveraging
ensemble learning can further improve generalization, robustness, and predictive per-
formance [12–16]. Ensemble techniques combine the outputs of multiple base learners
to reduce variance and avoid overfitting [17]. Among these methods, stacking stands
out as a powerful strategy that trains a meta-learner to combine the predictions of
multiple base GNN models. Each GNN in the ensemble may capture different aspects
of the input graph due to architectural or training diversity, and the meta-learner can
synthesize these diverse outputs into a more accurate and reliable prediction. This
hierarchical learning paradigm has been underexplored in malware detection with
GNNs and offers a promising direction for improving detection accuracy and resilience
against evasive techniques [18–22].

In addition to achieving high classification performance, the explainability of
malware detection models has become a critical research focus, particularly for appli-
cations in high-assurance systems where transparency and trust are essential [23, 24].
Understanding which parts of the CFG contribute most to a detection decision not
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only helps validate the model’s outputs but also provides actionable insights for secu-
rity analysts and incident responders. GNNs, while effective in modeling structural
patterns in program behavior, often lack interpretability due to their complex archi-
tecture. To address this, eXplainable Artificial Intelligence (XAI) techniques such as
GNNExplainer [25], PGExplainer [26], SubgraphX [27], and CaptumExplainer [28]
have been proposed to highlight influential nodes, edges, or subgraphs that drive
predictions. When applied to a stacking ensemble (SE), explanation becomes more
challenging, as the meta-learner integrates outputs from multiple base models, each
potentially capturing different aspects of the graph.

In this study, we address the challenge of graph-based malware detection and inter-
pretability through a SE learning framework. The approach begins with the dynamic
extraction of CFGs from Portable Executable (PE) files. Each basic block within the
CFG is then embedded using a two-step feature representation process. For the classi-
fication task, we employ a GNN-based SE in which the base learners consist of diverse
GNN models, each utilizing a distinct message-passing strategy to ensure represen-
tational diversity. The prediction outputs of these base models serve as inputs to a
meta-learner, implemented as a multi-layer perceptron (MLP) enhanced with an atten-
tion mechanism. This meta-learner not only performs the final classification but also
produces attention scores that reflect the relative contribution of each base learner to
the final decision. For model explainability, we adopt a post-hoc explanation approach
by integrating a state-of-the-art GNN explainer to assign importance scores to nodes
and edges within each base model. These individual explanations are then aggregated
using the attention scores from the meta-learner, leading to the development of a novel
explanation method tailored for the stacking framework. The main contributions of
this study are as follows:

• We propose a novel SE framework for graph-based malware detection, where
diverse GNN base learners capture complementary structural and semantic
information from control flow graphs extracted from PE files.

• A meta-learner equipped with an attention mechanism is introduced to aggre-
gate predictions from base learners, enabling both accurate classification and
interpretable attribution of each model’s contribution to the final decision.

• We develop a new post-hoc explanation method that combines state-of-the-art
GNN explanation techniques with the attention scores from the meta-learner to
generate enhanced, ensemble-aware interpretations of malware predictions.

The remainder of this paper is structured as follows: Section 2 reviews prior
work on GNN-based malware detection, ensemble learning, and explainable GNNs.
Section 3 presents the proposed SE framework, including the dynamic CFG extrac-
tion process, node feature embedding, base learner architecture, meta-learner design,
and the aggregation-based explanation method. Section 4 reports the experimental
setup, datasets, performance evaluation, and explainability analysis. Finally, Section 5
concludes the paper and discusses directions for future work.
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2 Related Works

Recent research has increasingly focused on advancing malware detection through
graph-based learning techniques, particularly those that model program behavior using
CFGs. GNNs have shown strong performance in capturing the structural dependen-
cies within such graphs, enabling robust classification of malicious software. At the
same time, ensemble learning approaches, particularly stacking-based frameworks,
have been explored to combine the strengths of multiple models for improved robust-
ness and accuracy. As these models grow in complexity, the need for explainability
has become more pronounced, especially for deployment in security-critical systems.
This section reviews prior work across three major areas: GNN-based malware detec-
tion, stacking-based ensemble methods for malware analysis, and explainable GNN
frameworks for interpreting malicious behavior.

Several studies have leveraged GNNs for malware detection using CFGs as input
representations. Peng et al. [3] introduced MalGNE, a node embedding framework that
begins by encoding assembly instructions using a rule-based vectorization scheme to
handle the out-of-vocabulary issue. It employs aggregation and attention-based bidi-
rectional LSTM layers to capture the sequential and semantic structure of instructions
within basic blocks. These representations are then passed to a GNN for classifica-
tion. In a related effort, Zhang et al. [11] proposed a few-shot malware classification
model based on a triplet-trained graph transformer. Their method processes each mal-
ware sample as a CFG and learns embeddings that capture structural and semantic
relationships among basic blocks. Using triplet loss, the model is trained to place sim-
ilar samples closer in the embedding space while distancing dissimilar ones, thereby
improving generalization in data-scarce scenarios.

In addition to GNN-based methods, several studies have employed SE techniques
to enhance detection performance and address challenges such as data imbalance and
feature redundancy. Li et al. [18] proposed a hybrid detection approach that combines
information gain and principal component analysis (IG-PCA) for feature selection,
followed by an SE framework. The model uses an attention-based meta-learner to
integrate diverse base classifiers and adaptively weight their contributions. Similarly,
Naeem et al. [19] presented a malware detection technique that transforms memory
dumps into images and extracts handcrafted features, which are then classified using
an ensemble of convolutional neural networks. A fully connected neural network serves
as the meta-learner, enhancing the final decision. Another example is SEDMDroid [20],
which combines static and dynamic features—such as permissions, API calls, network
behavior, and system activity—using an SE of decision trees, support vector machines,
and random forests, with a neural network acting as the meta-classifier. Vasan et
al. [21] further explored ensemble learning for cross-architecture malware detection on
IoT devices. Their method extracts opcode sequences from binaries compiled for vari-
ous architectures, converts them into images, and processes them using deep learning
models. The final predictions are aggregated using a fully connected neural network
to improve detection performance across platforms.

As model interpretability becomes increasingly important, recent studies have pro-
posed explanation techniques tailored for GNN-based malware classifiers. Herath et
al. [29] presented a model-agnostic framework that identifies influential subgraphs
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within CFGs and ranks node importance using a surrogate model trained on node
embeddings. This approach helps visualize which parts of the graph contribute most to
classification. Building on this line of work, the study in [2] introduced a dynamic CFG-
based malware detection framework that employs a hybrid node embedding method
combining rule-based encoding with autoencoder-derived features. After classification
via a GNN, the framework applies various explanation techniques, including GNNEx-
plainer, PGExplainer, and Captum with different attribution strategies. The authors
also proposed a new explanation method, RankFusion, which aggregates scores from
multiple explainers to generate more stable and informative attributions.

3 Proposed Method
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Fig. 1: Proposed framework for explainable malware detection using a stacking ensem-
ble of GNNs.

This section presents our proposed framework for explainable malware detection
using a GNN-based SE approach. The overall architecture is illustrated in Figure 1.
Our method consists of four key components. First, CFGs are dynamically extracted
from PE files, and a two-step embedding strategy is applied to encode semantic and
structural features of each basic block. Second, multiple GNN models with distinct
message-passing mechanisms are used as base learners to capture complementary
aspects of the graph data. Third, the outputs of these base learners are fed into an
attention-enhanced MLP that serves as the meta-learner, responsible for final classi-
fication and generating model-level attribution scores. Finally, we introduce a novel
post-hoc explainability method that aggregates the edge-level explanation from indi-
vidual base models, weighted by the attention scores produced by the meta-learner, to
produce ensemble-aware interpretations. The following subsections provide a detailed
description of each component.
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3.1 Dynamic CFG Extraction and Node Feature Embedding

CFGs model the execution flow of a program, where nodes represent basic blocks,
which are sequential groups of instructions with a single entry and a single exit point.
Edges indicate possible transitions in control between these blocks. Static CFGs,
constructed through disassembly, often miss important execution paths due to obfus-
cation, indirect jumps, or dynamic code loading. In contrast, dynamic CFGs are
generated by tracing the actual runtime behavior of a program, capturing execution
paths that may not be visible through static analysis. This makes them more effective
for analyzing advanced or evasive malware. In our framework, we extract dynamic
CFGs from PE files to build accurate graph representations for downstream feature
embedding and classification.

To prepare each node in the dynamically extracted CFG for downstream learning,
we employ a two-step feature embedding strategy, illustrated in Figure 2. The first
step involves rule-based encoding of assembly instructions within each basic block, and
the second step applies unsupervised dimensionality reduction using an autoencoder
to obtain compact representations.
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Fig. 2: The two-step node feature embedding process, including rule-based instruction
encoding and autoencoder-based dimensionality reduction.

Each basic block consists of a sequence of x86-64 assembly instructions. Following
a modified version of the approach proposed in [3], each instruction is decomposed into
up to seven components: prefix, opcode, ModRM, SIB, displacement, immediate, and
an option flag that indicates the presence of these fields. Each component is encoded
using a fixed-length binary or one-hot representation, depending on its value space.
For example, the opcode is encoded using a 256-dimensional one-hot vector, ModRM
and SIB components are broken into subfields and encoded accordingly, and the dis-
placement and immediate values are represented as 64-dimensional binary vectors.
The concatenation of all encoded components results in a 439-dimensional feature
vector for each instruction. This fine-grained encoding ensures full coverage of the x86-
64 instruction set and resolves the out-of-vocabulary problem often encountered with
text-based instruction embeddings.

Since a basic block may contain multiple instructions, we apply an aggrega-
tion function over their encoded vectors to produce a unified high-dimensional
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representation for the node:

e
(k)
node = AGG

(
e
(1)
instr, e

(2)
instr, . . . , e

(nk)
instr

)
(1)

where nk is the number of instructions in the k-th node (basic block), e
(i)
instr ∈ R439

is the encoded vector of the i-th instruction, and AGG(·) denotes an aggregation

function such as mean or max pooling. The result e
(k)
node ∈ R439 is the aggregated

high-dimensional representation of node k.
To reduce the dimensionality of these vectors while preserving essential informa-

tion, we train an autoencoder in an unsupervised manner. The autoencoder consists
of an encoder-decoder architecture and is optimized using the mean squared error
(MSE) loss:

LMSE =
1

M

M∑
i=1

∥∥∥e(i)instr − gϕ(fθ(e
(i)
instr))

∥∥∥2 (2)

where fθ and gϕ denote the encoder and decoder functions, respectively, and M is the
number of instruction samples used for training.

After training, the encoder maps each node’s high-dimensional vector into a lower-
dimensional latent space:

x(k) = fθ(e
(k)
node) (3)

where x(k) ∈ Rd, with d ≪ 439, represents the compact embedding of the k-th node.
This two-step embedding process enables the generation of expressive and compact

node features, which are well-suited for downstream graph learning tasks, particularly
in settings where node-level supervision is unavailable.

By collecting the embeddings of all nodes, we construct the node feature matrix
X ∈ RN×d, where N is the total number of nodes in the graph. Each row of this
matrix corresponds to one node’s embedding:

X =


x(1)

x(2)

...

x(N)

 ∈ RN×d (4)

3.2 Graph Neural Networks as Base Learners

GNNs are a class of neural models designed to learn from graph-structured data. In
our setting, the input is a CFG in which each node represents a basic block with an
associated feature vector x(i) ∈ Rd, and edges reflect control-flow relationships. GNNs
operate through a process known as message passing, in which each node iteratively
updates its representation by aggregating information from its neighbors.

The general message passing framework for a GNN layer is expressed as:

h
(l)
i = UPDATE(l)

(
h
(l−1)
i ,AGG(l)

({
h
(l−1)
j : j ∈ N (i)

}))
(5)
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where h
(l)
i denotes the representation of node i at layer l, N (i) denotes the set of neigh-

boring nodes of i, and AGG(·) and UPDATE(·) are differentiable functions responsible
for aggregating and updating node features. At the initial layer, h

(0)
i = x(i), the input

node feature vector.
In this work, we leverage multiple types of GNN models as base learners to

introduce representational diversity, which is essential for the effectiveness of the
SE. Different GNN architectures adopt distinct aggregation and update strategies,
resulting in varied learning biases and node embeddings. By combining these diverse
models, the meta-learner can learn complementary patterns that improve malware
classification performance.

Among the many GNN variants proposed in the literature, three widely recog-
nized and influential models are the Graph Convolutional Network (GCN) [30], Graph
Isomorphism Network (GIN) [31], and Graph Attention Network (GAT) [32]. These
models serve as prominent examples, each characterized by a distinct message passing
mechanism, as outlined below.

Graph Convolutional Network (GCN)

GCN applies a normalized aggregation of neighboring features followed by a linear
transformation:

h
(l)
i = σ

 ∑
j∈N (i)∪{i}

1√
didj

W (l)h
(l−1)
j

 (6)

where h
(l)
i is the embedding of node i at layer l, di and dj denote the degrees of

nodes i and j, respectively, W (l) is the learnable weight matrix at layer l, and σ(·) is
a non-linear activation function such as ReLU.

Graph Isomorphism Network (GIN)

GIN is designed for high discriminative power and follows an MLP-based aggregation
scheme:

h(l)
v = MLP(l)

(1 + ϵ) · h(l−1)
v +

∑
u∈N (v)

h(l−1)
u

 (7)

where h
(l)
v is the embedding of node v at layer l, u ∈ N (v) refers to the neighbors of

node v, ϵ is either a learnable parameter or a fixed scalar, and MLP(l)(·) denotes a
multi-layer perceptron. The use of summation ensures injective aggregation, making
GIN highly expressive in distinguishing graph structures.

Graph Attention Network (GAT)

GAT introduces attention mechanisms to learn the importance of neighboring nodes:

h(l)
v = σ

 ∑
u∈N (v)

α(l)
vuW

(l)h(l−1)
u

 (8)
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where α
(l)
vu is the attention coefficient between node v and neighbor u, computed

based on their features, and W (l) is a learnable weight matrix. The attention mech-
anism enables the network to assign varying influence to different neighbors during
aggregation.

After several rounds of message passing, node embeddings capture local structural
and feature information. To perform graph classification, a readout function is applied
to aggregate node-level embeddings into a single graph-level vector. Common readout
strategies include global mean pooling, max pooling, sum pooling, and more advanced
techniques such as Set2Set or attention-based pooling. The resulting graph embedding,
denoted as hG, serves as a compact representation of the entire graph.

This graph-level representation is then fed into a classifier, which is typically imple-
mented as a simple MLP. For binary classification tasks such as malware detection,
the final layer of the MLP outputs a two-dimensional logit vector z = [z(1), z(2)] ∈ R2,
where each component corresponds to one of the two classes (benign or malicious).
A softmax function is subsequently applied to convert these logits into a probability
distribution y = [y(1), y(2)], where y(1) and y(2) indicate the predicted probabilities for
the benign and malicious classes, respectively. The final predicted label corresponds
to the class with the higher probability.

Using different GNN architectures as base learners enriches the feature space avail-
able to the meta-learner. Each GNN type captures distinct structural and semantic
patterns due to differences in aggregation functions, update mechanisms, and learn-
ing biases. For malware detection, where subtle behavioral variations in control flow
graphs can be indicative of malicious activity, such architectural diversity enhances
both robustness and classification performance. The meta-learner can leverage these
complementary perspectives to improve generalization and decision accuracy.

3.3 Attention-Based Stacking Ensemble Architecture

Stacking ensemble (SE) learning is a powerful strategy for improving prediction accu-
racy and robustness by leveraging the complementary strengths of multiple models.
Rather than relying on a single model’s output, stacking combines the predictions
of several base learners through a secondary model, known as the meta-learner, to
produce a more reliable final decision. This approach enhances generalization and
reduces overfitting by mitigating individual model biases and variances. In our work,
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we adopt an SE framework that integrates multiple GNN-based base learners with an
attention-based meta-learner. The training procedure consists of three main phases: (i)
independently training each base learner using cross-validation, (ii) generating a new
meta-training dataset from the base learners’ validation predictions, and (iii) training
the meta-learner using this aggregated information. The overall process is illustrated
in Figure 3.

Let Dtrain denote the original training dataset, and suppose we use 5-fold cross-
validation. The dataset is partitioned into 5 non-overlapping subsets D(1), . . . ,D(5).
Let GNNi represent the i-th base learner. The following steps are applied to construct
the training set for the meta-learner:

1. Fold-wise training: For each base learner GNNi, and each fold f = 1, . . . , 5, a
model is trained on training set Dtrain\D(f) and evaluated on validation set D(f).

2. Prediction on validation fold: The trained model GNN
(f)
i produces predicted

probability vectors for samples in D(f). Let:

Ŷ
(f)
i = GNN

(f)
i

(
D(f)

)
∈ R|D(f)|×2 (9)

3. Row-wise aggregation: After all 5 folds, the predictions are stacked row-wise
to form the complete prediction matrix for i-th base learner :

Yi =


Ŷ

(1)
i

Ŷ
(2)
i
...

Ŷ
(5)
i

 ∈ R|Dtrain|×2 (10)

After constructing Ŷi for all n base learners, we horizontally concatenate them to
form the input matrix for the meta-learner:

Y = [Y1 ∥Y2 ∥ · · · ∥Yn] ∈ R|Dtrain|×2n (11)

Each row of Y is the concatenation of predicted probabilities from all base learners
for a single sample, and serves as input to the meta-learner.

After hyperparameter tuning and construction of the meta-training dataset
through 5-fold cross-validation, each GNN base learner is retrained on the entire orig-
inal training set Dtrain (i.e., the union of all folds) to produce its final model. These
final models are then used to generate predictions on the test set for evaluation by the
meta-learner.

Let the input vector for a given sample be denoted as:

y = [y1 ∥ y2 ∥ · · · ∥ yn] ∈ R2n (12)

where yi ∈ R2 is the prediction vector from base learner GNNi.
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Fig. 4: Post-hoc explainability process for interpreting GNN predictions.

Each yi is passed through a learnable linear transformation to compute an attention
score:

si = w⊤
i yi + bi, for i = 1, . . . , n (13)

where wi ∈ R2 and bi ∈ R are learnable parameters. These scores are normalized via
softmax to obtain attention weights:

αi =
exp(si)∑n
j=1 exp(sj)

(14)

The final attention-aware input is constructed as:

Ψ = [α1y1 ∥α2y2 ∥ · · · ∥αnyn] ∈ R2n (15)

This vector Ψ is then passed through an MLP, which outputs a two-dimensional logit
vector ẑ ∈ R2, followed by a softmax operation to yield the predicted class probabil-
ities ŷ ∈ R2. The learned attention weights αi offer interpretability by indicating the
relative contribution of each base learner to the ensemble’s final decision.

3.4 Aggregation-Driven Explainability for Stacked GNNs

Post-hoc GNN explainability methods aim to interpret the predictions of trained GNN
models by identifying important substructures in the input graph. These methods
typically consist of three core components: (i) a pre-trained GNN model whose predic-
tions are to be explained, (ii) a score generation mechanism that produces importance
scores over graph elements (nodes, edges, or features), and (iii) an objective function
that guides the explainer to identify input elements that most significantly influence
the model’s prediction. A variety of explanation techniques have been proposed in
the literature, including perturbation-based methods, gradient-based approaches, sur-
rogate modeling techniques, and decomposition-based methods, each offering distinct
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advantages in terms of fidelity, interpretability, and computational cost. An overview
of this process is illustrated in Figure 4.

In this work, we focus on edge-level explanations and utilize a post-hoc GNN
explainer as base explainer to obtain importance scores for edges in each input graph.
Let βi,k denote the importance score assigned by the explainer to the k-th edge of
a given sample as interpreted by the i-th base learner, where i = 1, . . . , n and k =
1, . . . ,m (with n being the number of base learners and m the number of edges in the
sample).

To ensure consistency across base learners, we first normalize the edge scores from
each base model:

β̃i,k =
βi,k∑m
j=1 βi,j

(16)

Then, leveraging the attention weights αi ∈ [0, 1] computed by the attention-based
meta-learner, we aggregate the normalized edge scores into a unified importance score
for each edge:

βa,k =

n∑
i=1

αi β̃i,k, for k = 1, . . . ,m (17)

Here, βa,k represents the aggregated edge importance for the k-th edge, capturing both
the local importance from base learners and their global contribution to the ensemble
decision through αi.

This aggregation-driven approach provides a unified and interpretable explanation
aligned with the ensemble model’s final prediction. It highlights which edges consis-
tently contribute to base learner decisions and are emphasized by the meta-learner’s
attention mechanism.

3.5 Evaluation Metrics

To comprehensively assess both the classification performance and interpretability of
the proposed framework, we employ the following evaluation metrics:

Accuracy

Accuracy measures the proportion of correctly classified samples over the total number
of samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

where TP , TN , FP , and FN represent the number of true positives, true negatives,
false positives, and false negatives, respectively.

Precision

Precision evaluates the correctness of positive predictions, defined as:

Precision =
TP

TP + FP
(19)

A high precision indicates a low false positive rate.
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Recall

Recall (or sensitivity) assesses the model’s ability to identify all relevant instances:

Recall =
TP

TP + FN
(20)

A high recall reflects a low false negative rate, which is particularly important in
malware detection.

F1 Score

The F1 Score is the harmonic mean of precision and recall, balancing the trade-off
between the two:

F1 Score = 2 · Precision · Recall
Precision + Recall

(21)

Fidelity

Fidelity quantifies the explanatory power of a subgraph by assessing its influence on
the model’s prediction. It measures how the prediction outcome changes when either
the important or unimportant portions of the graph are removed. Fidelity is evaluated
in two complementary forms:

Fidelity+ = 1− 1

N

N∑
i=1

1
(
ŷ
GC\S
i = ŷi

)
, (22)

Fidelity− = 1− 1

N

N∑
i=1

1
(
ŷGS
i = ŷi

)
, (23)

where GS denotes the important subgraph, GC is the complete original graph, ŷi
is the model’s predicted label for the i-th sample, and yi is the ground truth label.

Fidelity+ captures the impact of the removed important subgraph by comparing
the model’s predictions on the original graph and on the graph with the important
part removed (GC\S). A higher Fidelity+ indicates that the removed subgraph had
a substantial influence on the model’s decision, thereby validating its importance in
the prediction process. Conversely, Fidelity− assesses the predictive sufficiency of the
important subgraph alone by comparing the model’s prediction on the full graph and
on GS . A lower Fidelity− implies that the identified subgraph retains most of the
critical information needed for accurate prediction, thus indicating a more faithful
and self-contained explanation. Together, these two metrics provide a comprehensive
evaluation of explanation quality by quantifying both the necessity and sufficiency of
the identified subgraph in relation to the model’s output.

4 Results and Analysis

In our experiments, we utilized malicious samples from the BODMAS [33] and
PMML [34] datasets, as well as benign samples obtained from the DikeDataset [35]. A
summary of the datasets employed in this study is provided in Table 1. For dynamic
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CFG recovery, we leveraged the Angr framework [36–38], a Python-based binary anal-
ysis tool. Angr facilitates CFG construction by combining symbolic execution with
constraint solving, allowing for precise and in-depth graph generation. All experiments
were conducted on a workstation equipped with an Intel Xeon Platinum 8253 CPU (32
cores, 3.0 GHz) and 128 GB RAM. We implemented our framework in Python using
PyTorch Geometric for model training and NetworkX v2.8.8 for graph processing and
manipulation.

Table 1: Statistics of the evaluated datasets.

Dataset #Samples Avg. Nodes Avg. Edges Label

BODMAS 122 63,226.44 66,033.72 Malware
DikeDataset 319 9,059.07 15,171.37 Benign
PMML 390 14,246.54 23,977.81 Malware

To reduce the dimensionality of the initial 439-dimensional node feature vectors,
we employed a symmetrical autoencoder that projects the data into a 64-dimensional
latent space. The encoder consists of three fully connected layers with dimensions
439 →256→128→64, each followed by a ReLU activation function. The decoder repli-
cates this architecture in reverse, using layers of size 64→128→256→ 439, also with
ReLU activations. The model was trained for 5000 epochs using the Adam optimizer
with a learning rate of 0.0001, aiming to minimize the mean squared error (MSE)
between the input features and their reconstructions. Training was terminated at 5000
epochs, as the validation MSE had stabilized below 1×10−4 for the final 1000 epochs,
indicating convergence. The resulting 64-dimensional representations from the encoder
were then used as input node features for subsequent graph learning tasks.

For the graph classification task, we experimented with three GNN architectures:
GCN, GAT, and GIN, which served as base learners. All three models shared a com-
mon architecture comprising three graph convolutional layers with 64 hidden units
each, followed by ReLU activation functions. A global mean pooling layer was applied
to aggregate node-level embeddings into a graph-level representation. This represen-
tation was then passed through a dropout layer with a rate of 0.2, followed by a
fully connected linear layer that produced class scores for binary classification. Each
base model was trained using the Adam optimizer with a learning rate of 0.0001 and
a weight decay of 0.0005. The training process used the cross-entropy loss function
over 50 epochs. These hyperparameters, including learning rate, weight decay, and the
number of training epochs, were selected through grid search.Figure 5 presents the
class-wise validation performance metrics of the base learners across all five folds.

After performing 5-fold cross-validation and generating new training data using
the base learners’ predictions, all base models were retrained on the full training set to
ensure consistency. For the meta-learner, we employed an attention-based MLP. The
architecture consists of three fully connected layers: an input layer of size equal to the
concatenated outputs of the base learners, followed by two hidden layers with 128 and
64 units respectively, each with ReLU activations and dropout (rate 0.2), and a final
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Fig. 5: Validation performance metrics (Precision, Recall, F1-Score, and Accuracy)
of the base learners (GCN, GAT, and GIN) across all five folds.

output layer for binary classification. The meta-learner was trained for 100 epochs
using the Adam optimizer with a learning rate of 0.001.

Tables 2,3,4, and 5 present the class-wise evaluation metrics, including precision,
recall, and F1-score for both benign and malicious classes, along with the overall
accuracy of each model. The results cover the performance of the base learners (GCN,
GIN, and GAT) as well as the SE model on the test dataset. Furthermore, Figure 6
provides a visual representation of these metrics using a radar plot.

Across all evaluation criteria, including precision, recall, F1-score, and accuracy, the
SE model consistently achieves the highest performance. This demonstrates that com-
bining multiple base learners through ensemble learning enhances both generalization
and robustness.

The SE model achieves the highest overall accuracy of 86.14%, along with the
best macro and weighted averages across all metrics. For the malicious class, which
is of primary concern in malware detection, the SE model obtains a recall of 91.18%
and an F1-score of 89%, outperforming each individual base learner. The high recall
is particularly critical in cybersecurity applications, where false negatives, meaning
undetected malware instances, are significantly more damaging than false positives.
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Although the GIN model exhibits the highest precision for the malicious class
(91.95%), its recall is the lowest (78.43%) among all models. This indicates that while
GIN is effective in avoiding false positives, it is more prone to missing actual malicious
instances. In malware detection, this trade-off is suboptimal, as failing to identify
threats can lead to serious security breaches. Therefore, despite its strong precision,
GIN’s low recall diminishes its practical reliability as a standalone model.

In contrast, the SE model provides a balanced performance across both classes,
achieving the highest F1-scores for benign and malicious samples. These findings
underscore the advantage of ensemble strategies that integrate the strengths of diverse
GNN architectures, resulting in a more effective and dependable detection framework.

Furthermore, Figure 7 presents the ROC curves for the base learners and the SE
model. The Area Under the Curve (AUC) for the SE model reaches 0.9390, which
is higher than that of all individual base models, further confirming the superior
discriminative capability of the ensemble approach.

Table 2: Test performance of GCN model.

Metric Precision Recall F1-Score Support

Benign 0.7903 0.7656 0.7778 64
Malicious 0.8558 0.8725 0.8641 102
Accuracy 0.8313 166
Macro Avg 0.8230 0.8191 0.8209 166
Weighted Avg 0.8305 0.8313 0.8308 166

Table 3: Test performance of GIN model.

Metric Precision Recall F1-Score Support

Benign 0.7215 0.8906 0.7972 64
Malicious 0.9195 0.7843 0.8466 102
Accuracy 0.8253 166
Macro Avg 0.8205 0.8375 0.8219 166
Weighted Avg 0.8432 0.8253 0.8275 166

To evaluate explanation Fidelity, we employed Integrated Gradients (IG) and
Guided Backpropagation (GBP) as representative post-hoc gradient-based explain-
ers, both of which are widely regarded as state-of-the-art techniques for interpreting
GNN predictions. For each base learner (GCN, GIN, and GAT), both IG and GBP
were applied independently to generate explanations. In the case of the SE model, IG
and GBP were also used as base explainers, and their outputs were further processed
using the aggregation-based explanation method introduced in the previous section.
Figure 8 presents the Fidelity results for IG and GBP across the GCN, GIN, GAT,
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Table 4: Test performance of GAT model.

Metric Precision Recall F1-Score Support

Benign 0.8364 0.7188 0.7731 64
Malicious 0.8378 0.9118 0.8732 102
Accuracy 0.8373 166
Macro Avg 0.8371 0.8153 0.8232 166
Weighted Avg 0.8373 0.8373 0.8346 166

Table 5: Test performance of SE model.

Metric Precision Recall F1-Score Support

Benign 0.8475 0.7812 0.8130 64
Malicious 0.8692 0.9118 0.8900 102
Accuracy 0.8614 166
Macro Avg 0.8583 0.8465 0.8515 166
Weighted Avg 0.8608 0.8614 0.8603 166
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Fig. 6: Class-wise test performance of all models.

and SE models. The left subplot illustrates Fidelity+, while the right subplot depicts
Fidelity−.

The results demonstrate that, for both IG and GBP, our aggregation-based expla-
nation method applied to the SE model consistently achieves lower Fidelity− values
across different sparsity levels, indicating a stronger ability to identify and prioritize
influential subgraphs. Furthermore, in terms of Fidelity+, the proposed explanation
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Fig. 7: Comparison of ROC curves for base learners and SE model.

approach yields values that are comparable to, or slightly higher than, those obtained
from the base learners. This suggests that the aggregation method effectively preserves
critical information while improving interpretability. Overall, these findings confirm
the utility and robustness of the proposed explanation framework in the context of
ensemble-based GNN models.
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Fig. 8: Fidelity evaluation of IG and GBP explainers across GCN, GIN, GAT, and
SE models. For the SE model, IG and GBP explanations are further refined using the
proposed aggregation-based method.

5 Conclusion

This paper presented a novel SE framework for explainable malware detection using
GNNs on dynamic CFGs. The proposed approach integrates multiple diverse GNN
base learners with an attention-based meta-learner to enhance classification perfor-
mance and provide interpretable predictions. A two-step node embedding strategy was
employed to encode semantic and structural information from assembly instructions,
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while the meta-learner not only aggregated predictions but also offered insights into
the relative contributions of each base model.

To address the challenge of interpretability in ensemble-based GNN models,
we introduced a post-hoc explanation technique that fuses edge importance scores
from gradient-based explainers using the attention weights of the meta-learner. This
aggregation-driven approach generated ensemble-aware explanations aligned with the
model’s final decision, improving the Fidelity.

Extensive experiments on real-world malware and benign datasets demonstrated
that the proposed SE framework outperforms individual GNN models in terms of
accuracy, F1-score, and AUC, particularly for the critical malicious class. Moreover,
the explanation results revealed the capability of our method to identify influential
subgraphs.

Future work may explore the extension of this framework to multi-class malware
classification, integration of dynamic features beyond CFGs, and further investiga-
tion into explainability techniques tailored for ensemble architectures in graph-based
learning contexts.
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