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Abstract 

False Data Injection Attacks (FDIAs) pose a significant threat to smart grid 

infrastructures, particularly Home Area Networks (HANs), where real-time monitoring and 

control are highly adopted. Owing to the comparatively less stringent security controls and 

widespread availability of HANs, attackers view them as an attractive entry point to manipulate 

aggregated demand patterns, which can ultimately propagate and disrupt broader grid 

operations. These attacks undermine the integrity of smart meter data, enabling malicious 

actors to manipulate consumption values without activating conventional alarms, thereby 

creating serious vulnerabilities across both residential and utility-scale infrastructures.  

This paper presents a machine learning-based framework for both the detection and 

classification of FDIAs using residential energy data. A real-time detection is provided by the 

lightweight Artificial Neural Network (ANN), which works by using the most vital features of 

energy consumption, cost, and time context. For the classification of different attack types, a 

Bidirectional LSTM is trained to recognize normal, trapezoidal, and sigmoid attack shapes 

through learning sequential dependencies in the data. A synthetic time-series dataset was 

generated to emulate realistic household behaviour. Experimental results demonstrate that the 

proposed models are effective in identifying and classifying FDIAs, offering a scalable solution 

for enhancing grid resilience at the edge. This work contributes toward building intelligent, 

data-driven defence mechanisms that strengthen smart grid cybersecurity from residential 

endpoints. 
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 Introduction 

The modernization of power systems into smart grids has introduced a wide range of 

advantages through smart metering, automation, and two-way communication between 

consumers and energy providers. Integration at the residential level of smart meters and Home 

Area Networks (HANs) has supported real-time energy monitoring, dynamic tariffs, and better 

demand management. However, this enhanced digitalization and utilization of communication 

protocols have made these systems vulnerable to cyber threats. Cyber-attacks on advanced 

power systems have become a critical concern, particularly following the first-of-its-kind 

cyber-attack on Ukraine’s power grid on December 23, 2015[1]. In response to such attacks, 

considerable efforts have been channelled toward detecting, preventing, and mitigating 

industrial cyberattacks, including time synchronization attacks, replay attacks, denial-of-

service (DoS) attacks, man-in-the-middle (MITM) attacks, and false data injection attacks 

(FDI) [2],[3]. These attacks compromise energy data’s integrity, potentially leading to incorrect 

billing, false estimations of load, and broader system-level instabilities. 

There is a large body of literature available on detecting and mitigating FDIAs in smart 

grid networks using machine learning and model-based techniques [4]. These works presume 

extensive synchronized data from Phasor Measurement Units (PMUs) and concentrate on 

securing centralized state estimation processes. In contrast, very few works address FDIA 

detection in decentralized and resource-constrained environments such as Home Area 

Networks (HANs) [5]. HANs, consisting of smart meters, appliances, and local controllers, are 

especially vulnerable due to limited computational capacity, lack of supervision, and direct 

end-user access to devices [6].  With the increasing data-driven residential systems, addressing 

FDIA threats in HANs is crucial to ensure end-to-end grid security. 

 In addition to technical disruption, FDIAs create regulatory, financial, and privacy 

concerns through user-level device targeting and exploitation of weak authentication protocols 

in distributed networks such as Home Area Networks (HANs) [7]. Moreover, attackers may 

exploit temporal patterns or economic signals—such as time-of-use pricing—to design 

context-aware attacks coinciding with consumption peaks or DER scheduling patterns. To 

resolve this, the utilization of machine learning techniques has gained prominence, allowing 



 

data-driven models to identify anomalous patterns that deviate from normal grid behaviour [8]. 

Recent works on fault location and network reconfiguration in distribution and transmission 

systems have similarly emphasized the need for structural adaptability and fault-resilient 

topology management, reinforcing the urgency for real-time intelligent solutions in smart grid 

security [9], [10]. 

Furthermore, attackers design dynamic, shaped injections—such as trapezoidal or 

sigmoid profiles—that mimic natural load variations and reactive power compensation 

dynamics, and therefore are difficult to distinguish from legitimate fluctuations [11],[12]. 

Identifying not only the presence but also the nature of FDIA is essential to facilitate adaptive 

countermeasures and perform targeted forensic analysis. Sparse like and evasive FDIA that 

affect only subsets of system measurements but can induce catastrophic errors if not detected 

in time. Consequently, there is a growing need for architectures that support distributed 

intelligence, adaptive learning, and lightweight anomaly classification—especially for HAN 

gateways, micro-PMUs, and residential inverters [13].  

Given these needs, we present a dual-stage framework that first detects FDIAs using an 

Artificial Neural Network (ANN) and then classifies attack patterns (normal, trapezoidal, 

sigmoid) with a Bidirectional Long Short-Term Memory (BiLSTM) network. The models are 

trained on synthetically generated yet behaviorally accurate residential data, incorporating 

temporal and cost-based features, offering a practical solution for real-time HAN-level cyber-

resilience. 

1.1 False Data Injection Attack 

False Data Injection Attacks (FDIAs) are a very malicious and destructive class of 

cyberattacks posing serious threats to the integrity of smart grid infrastructure, inflicting severe 

consequences. The main aim of FDIAs is to compromise the accuracy of measurement data 

essential for real-time monitoring, state estimation, and regulation in cyber-physical power 

systems. Unlike traditional anomalies, FDIAs are carefully crafted to evade traditional Bad 

Data Detection (BDD) mechanisms by systematically injecting forged but believable data into 

the system. This sophisticated tactic allows attackers to manipulate the operating dynamics of 

the grid without triggering alarm systems, thus creating opportunities for financial gain, privacy 

loss, or even large-scale power disruptions [8]. 

Within Home Area Networks (HANs), False Data Injection Attacks (FDIAs) have the 

potential to compromise both network-level and device-level components. At the device level, 



 

attackers can use vulnerable smart meters to create or manipulate energy readings, leading to 

erroneous reporting and consumption pattern distortion. At a network level, attackers can 

capture and manipulate communication traffic using tactics such as the Man-in-the-Middle 

(MITM) attack, which makes it possible for attackers to inject forged measurements into the 

sensor network directly. This can include data tampering, distortion, or injection of false 

signals, greatly threatening the trustworthiness and transparency of the grid [2], [11].  

 

Figure 1:  FDI Attack in Smart Grid [15] 

               Outside the residential domain, undetected FDIAs originating from HANs can 

propagate to distribution and transmission networks, which leads to incorrect system state 

estimations, destabilized grid operations, financial losses, and potential blackouts.  By 

distorting state variables, FDIAs may lead to false control and destabilize power flow. 

Attackers can manipulate pricing mechanisms by targeting specific buses, influencing 

locational marginal prices (LMPs) and real-time market signals [16]. Studies have shown that 

compromised estimations can disrupt economic dispatch algorithms and alter optimal power 

generation schedules [17]. In more advanced cases, attackers may exploit these vulnerabilities 

for financial gain by launching sustained FDIAs that manipulate bidding behaviors and market 

settlements. Research in [18] has demonstrated that virtual bidding strategies enabled by false 

data injection can result in continuous financial gains, ultimately undermining market fairness 

and stability. The growing sophistication of FDIAs, combined with the decentralization of the 



 

smart grid, highlights the urgent need for intelligent, data-driven detection mechanisms capable 

of operating effectively in real-time HAN environments. 

 Related Work 

 Recent smart grid cybersecurity developments have focused intensely on the 

identification and classification of False Data Injection Attacks (FDIAs) due to their capability 

to compromise metering data without triggering conventional alarms like bad data detection 

(BDD) mechanisms. Early research [19] demonstrated that blind attacks can be crafted with 

the knowledge of the measurement Jacobian matrix, which renders state estimators ineffective. 

To alleviate this, several works explored data-driven approaches, namely the use of machine 

learning (ML) for attack detection and classification. 

Support Vector Machines (SVM) and K-Nearest Neighbours (KNN) have most 

frequently been utilized for binary detection of FDIAs. In [20], a comparison between 

supervised and unsupervised models showed that SVMs can detect FDIAs from statistical 

deviations in measurement vectors. These models are, nevertheless, restricted in scalability and 

do not model temporal dependencies. 

To go beyond such limitations, Artificial Neural Networks (ANNs) have been 

employed to learn nonlinear feature relationships with more flexibility to noisy and high-

dimensional data [21]. Further enhancement has been achieved by deep learning architectures 

such as Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks. 

Such architectures exploit temporal sequences in the load and voltage measurements for 

detecting stealthy attacks with high sensitivity and specificity [22], [23] 

Recent studies have also been on federated learning [24], semi-supervised methods 

[25], and graph-based architectures [26] to support distributed environments and reduce the 

reliance on labelled data. Federated deep learning architectures have specifically been proposed 

for privacy-conscious FDIA detection on decentralized smart grid assets. In another direction, 

heuristic feature selection techniques such as Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), and Binary Cuckoo Search (BCS) have been used to reduce computational 

complexity without compromising classification performance [12]. 

On the classification side, multiclass models have been suggested for classifying 

different attack strategies. For instance, [27] proposed a multi-label deep learning model for 



 

categorizing different kinds of FDIA, while [28] used predicted residuals from load estimators 

for anomaly classification.  

 Methodology 

This section outlines the data generation process and the two-stage machine learning 

framework employed for False Data Injection (FDI) detection and classification in residential 

smart grid data. 

A. Synthetic Data Generation 

To develop and evaluate supervised machine learning models for False Data Injection 

(FDI) detection and classification in Home Area Networks (HANs), we generate a high-

resolution synthetic dataset that simulates both normal and attack conditions. The residential 

electricity demand profile is modelled using a bottom-up approach inspired by Muratori et al. 

[29], which captures occupant behaviour, appliance usage, and HVAC operations at 10-minute 

intervals over a full calendar year. This realistic modelling enables fine-grained emulation of 

household energy usage variability across time. 

The significance of using two distinct attack types—trapezoidal and sigmoid—is to 

expose AI models to varied and realistic adversarial patterns. The trapezoidal attack mimics 

sharp, peak-hour falsifications typically used to maximize economic disruption. This includes 

a flat-top region, time-aligned with high-tariff hours, and a superimposed ripple to simulate 

camouflaged but malicious activity. On the other hand, the sigmoid attack models a gradual, 

long-duration deviation in load, common in stealthy cyber-physical intrusions. These attacks 

increase slowly over time and include engineered spikes to emulate spoofed events such as 

unauthorized electric vehicle charging. 

In our simulation, the year-long load profile is divided into three temporal blocks: six 

months of normal data, three months of data modified with trapezoidal attacks, and three 

months with sigmoid attacks. Electricity prices are modelled using a time-of-use structure with 

higher rates during peak hours. Each data record is labelled in two formats to support different 

learning tasks. For multi-class classification, we assign: 0 for normal, 1 for trapezoidal, and 2 

for sigmoid attacks. For binary detection, both attack types are grouped as class 1 (attack), and 

normal data is labelled 0. This dual labelling ensures that the dataset is compatible with both 

binary anomaly detectors and multi-class classifiers. 

B. ANN Architecture for FDI attack detection model 



 

           An Artificial Neural Network (ANN) is implemented to detect False Data Injection 

(FDI) attacks in residential smart grid data. The network architecture includes four input 

neurons corresponding to energy consumption, cost, hour of the day, and day of the month. 

These attributes are holistically combined with an input layer of 100 neurons, followed by one 

output neuron for binary classification: normal (0) or FDI attack (1). The artificial neural 

network (ANN) is realized using the Multilayer Perceptron (MLP Classifier) in the scikit-learn 

package, and the data is split in the ratio 80/20 for training and testing, respectively. 

The hidden layer uses the activation function Rectified Linear Unit (ReLU), which can 

be formulated as g(z) = max (0, z), where z is the weighted input [22]. The use of ReLU 

maintains large gradients for positive inputs, which promotes quicker and steadier 

convergence; this property is particularly suitable in detecting slight fluctuations in energy 

consumption patterns. The training process involves two main stages: forward propagation and 

backward propagation, enabling the network to learn complex consumption behavior and 

detect FDI anomalies.    

a. Forward propagation: It is the process through which input features pass through 

different layers of the network, each calculating activations over weighted inputs that 

are summed through activation functions. The output neuron then produces a 

prediction, a3, which is tested against the actual label y using the Mean Squared Error 

(MSE) loss function, given as:  

Loss =0.5*(y-a3) ^2                       

This loss quantifies the deviation between predicted and actual classes, where 

minimizing enhances the ANN’s ability to distinguish between genuine and falsified 

readings. The forward propagation process is illustrated in Figure. 2.             

 

Figure 2. ANN Forward Propagation [30] 

 



 

b.  Backward propagation: Backward propagation calculates the gradient of the loss 

function in terms of the weights using the chain rule. This provides information that is 

utilized to update the weights to minimize the error, following the Stochastic Gradient 

Descent (SGD) algorithm, which is augmented by the Adam optimizer. This iterative 

process allows the network to detect FDI attacks in terms of anomalies in consumption 

during peak and off-peak hours. A graphical explanation of backward propagation in 

terms of artificial neural networks is depicted in Figure 3.  

 

 

Figure 3.  ANN Backward Propagation [30] 

            To evaluate robustness, the model was trained on datasets of varying sizes and tested 

under several activation functions, namely ReLU, Sigmoid, and Tanh. As seen in Figure 6, 

ReLU exhibits consistently better accuracy and better generalization towards real-time fault 

detection and isolation (FDI). 

 

C. LSTM Architecture for FDI Attack Classification Model 

          The Bidirectional LSTM architecture was selected for FDI attack classification in smart 

home energy systems for its ability to learn bidirectional temporal dependencies in sequential 

energy consumption patterns, which is especially critical for distinguishing between shaped 

FDI attack profiles like trapezoidal and sigmoid curves. The model was trained on a 

synthetically generated high-resolution dataset comprising three classes—normal, trapezoidal, 

and sigmoid attacks. 

Feature engineering included time-based features (hour, day), cyclical transformations (sin/cos 

of hour and day), the energy-to-cost ratio, and a peak hour indicator. All features were scaled 

using min–max normalization to ensure scale invariance. To analyze comprehensively the 

temporal dynamics in customer usage patterns, sequences consisting of 8 overlapping time 



 

steps were generated to predict the class label for the next time step. The resulting model 

consisted of two Bidirectional LSTM layers stacked on top of one another to learn past and 

future relationships in time, dense and dropout layers, and one softmax output layer to classify 

among three classes. The model was trained using categorical cross-entropy loss to generalize 

well and the AdamW optimizer to ensure convergence stability. Early stopping and model 

checkpointing routines were applied to prevent overfitting. Model performance metrics 

consisted of overall accuracy, confusion matrix, and per-class precision and recall. Figure 4 

depicts the entire architecture. 

 

 

Figure 4. Bidirectional LSTM Architecture[31] 

 Results And Discussion 

An Artificial Neural Network (ANN) with ReLU activation was developed to detect 

False Data Injection (FDI) attacks in residential smart grid data. The model uses four input 

features: energy consumption, cost, hour, and day, selected for their relevance to typical usage 

behaviour, availability, and sensitivity to anomalies. 

The ANN model for FDIA detection achieved an accuracy of 97.68%, confirming its 

strong ability to distinguish between normal and attack conditions. The model's performance 

was further validated using the Mean Squared Error (MSE) loss metric, reflecting minimal 

deviation between predicted and actual labels. With a single hidden layer of 100 neurons, the 

model balances simplicity and high performance, which makes it ideal for real-time 

deployment in resource-constrained Home Area Networks (HANs). The evaluation metrics are 

defined mathematically as follows in Table 1. 



 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐸𝑣𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐸𝑣𝑒𝑛𝑡𝑠
 

Table 1. Fault detection results 

 

 

 

Figure 5. FDI Attack Detection Confusion Matrix 

As illustrated in Figure. 6, the ReLU-based ANN consistently outperformed Sigmoid and Tanh 

activation functions across increasing dataset sizes. ReLU Activation function surpasses 96% 

accuracy on training sets of 50000 data, while the alternatives plateaued below 92%. This 

confirms ReLU’s superior generalization and learning efficiency.  

Metric Value (%) 

Accuracy 97.68 

MSE  0.0232 



 

 

Figure 6. Impact of activation function on detection accuracy across varying training dataset 

sizes 

The proposed Bidirectional LSTM model classifies three types of data categories: 

normal operation, trapezoid FDI attacks, and sigmoid FDI attacks. The training process of the 

model exhibited convergence at 67 epochs due to the usage of early stopping and checkpointing 

techniques, which were validation accuracy-dependent. The model exhibited 90.88% precision 

on the test data, showing its strong generalization power to unseen data. In addition, the 

discriminative performance of the model, shown in Figure 7, is represented in the confusion 

matrix. 

The evaluation metrics are defined mathematically as follows in Table 2. 

Table 2. Classification Results 

 

 

 

 

Metric Value (%) 

Accuracy 90.88 

MSE 0.046677 



 

 

Figure 7. FDI Attack Classification Confusion Matrix Using LSTM 

As shown, the model performs exceptionally well on normal class detection, with 

minimal false positives. For trapezoidal attacks, the classifier maintains high precision, 

misclassifying only 264 instances (8.2%) as either normal or sigmoid. Notably, sigmoid attacks 

are more challenging to detect, with ~21.4% misclassified, mainly as normal. This reflects the 

nature of sigmoid attacks—designed to mimic gradual load variations and evade abrupt 

anomaly detection thresholds. 

Despite this, the model provides better performance for all classes, a feature particularly 

useful for FDI attack defence mechanisms that call for differentiation among multiple types of 

attacks to apply effective countermeasures. Adding label smoothing and bidirectional temporal 

modelling dramatically improves the model's robustness towards noisy or uncertain data 

instances. Together, these results validate the effectiveness of using sequence-based deep 

learning models, like BiLSTM, in comprehensive FDI attack classification in smart grid Home 

Area Networks (HANs) utilizing energy data from smart meters. 

 Conclusion   

This paper introduces an intelligent FDI attack detection and classification scheme in 

smart grid Home Area Networks using machine learning. A lightweight ANN made it possible 

to detect attacks in a speedy way using key behavioral features, while a Bidirectional LSTM 

network found usage in learning temporal patterns in multi-class classifications. Choosing a 

Bidirectional LSTM comes from the fact that it can effectively capture both past and future 

temporal dependencies in energy‑consumption sequences, essential for modeling the rise–



 

plateau–decline behavior of trapezoidal and sigmoid FDI attacks, at the same time mitigating 

vanishing gradient issues common in standard RNNs. Techniques suggested in this paper 

exhibited strong discriminative and generalization ability in diverse attack scenarios. 

While the results validate the effectiveness of the approach, there is still scope for 

development and improvement of accuracy. Some of the areas for future research include 

utilizing attention mechanisms to achieve more temporal sensitivity, using ensemble methods 

for more robustness, and adding real-time streaming for actual smart grid deployment in real-

world environments. Domain adaptation and transfer learning can also promise more 

generalized performance across different grid scenarios and customer loads. 
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