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Abstract. Malware analysis involves analyzing suspicious software to
detect malicious payloads. Static malware analysis, which does not re-
quire software execution, relies increasingly on machine learning tech-
niques to achieve scalability. Although such techniques obtain very high
detection accuracy, they can be easily evaded with adversarial examples
where a few modifications of the sample can dupe the detector without
modifying the behavior of the software. Unlike other domains, such as
computer vision, creating an adversarial example of malware without al-
tering its functionality requires specific transformations. We propose a
new model architecture for certifiably robust malware detection by de-
sign. In addition, we show that every robust detector can be decomposed
into a specific structure, which can be applied to learn empirically robust
malware detectors, even on fragile features. Our framework ERDALT is
based on this structure. We compare and validate these approaches with
machine-learning-based malware detection methods, allowing for robust
detection with limited reduction of detection performance.
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1 Introduction

Malware infection is a major cybersecurity threat that evolves quickly. According
to the French National Agency for the Security of Information Systems (ANSSI),
there were 144 successful ransomware attacks in France alone in 2024. This threat
is fought with malware analysis techniques developed by industry and academia.

These techniques can be broadly categorized into two types: static analysis
and dynamic analysis. On the one hand, dynamic analysis executes the code in
a controlled sandbox. This technique requires more equipment and time, but
the malware cannot easily hide its malicious payload when activated. However,
malware can evade dynamic analysis by verifying whether it is running in a vir-
tual machine or any monitoring environment. On the other hand, static analysis
relies on descriptive features such as section description, control-flow graph, and
opcodes n-grams without running the program. This analysis is widely used be-
cause it is fast and inexpensive. For these reasons, our article focuses on the
static analysis of malware targeting Windows, the most popular and targeted
desktop operating system.
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Many traditional detection techniques used by antivirus are based on pat-
tern matching, relying on indicators of compromise from threat intelligence (file
hashes, IP addresses of command-and-control servers, suspicious domains, etc.).
However, these techniques are difficult to scale up and cannot reliably detect
new variants or malware families. Machine learning techniques have been very
useful in addressing these two issues: these methods can achieve very high accu-
racy [13]. However, they are vulnerable to attacks called adversarial examples.
Adversarial examples are samples with intentional perturbations optimized to
make the model give an incorrect prediction. While first identified in the field
of computer vision [I7] such adversarial examples have been found in many do-
mains, including malware analysis [16].

Several methods have been proposed to improve the robustness of machine
learning models against adversarial attacks, such as [84], but they do not take
advantage of domain specificity. The key constraint in designing adversarial sam-
ples for evading malware detection comes from the discrete nature of malware
and the highly constrained set of transformations the attacker can use to evade
malware detectors. Besides, most of the methods with guaranteed robustness
assume that the perturbation is small. They are not applicable here, since mal-
ware attackers only need the perturbation to conserve functionality, and the
magnitude of perturbation itself is insignificant.

Based on this assessment, we propose a framework where the attacker’s ca-
pability is not limited by the magnitude of perturbation but by the limited set
of transformations they can apply to the binary. We propose a robust-by-design
malware detector that relies on features that an attacker cannot arbitrarily mod-
ify, no matter how many transformations they use. We extend this proposition by
characterizing certifiably robust malware detectors as a combination of a prepro-
cessing function and a monotonically increasing function, from which we derive
a new model architecture, leading to a new defense against adversarial examples:
the framework ERDALT (”Empirically Robust by Design with Adversarial Lin-
ear Transformation”). This framework extracts knowledge about the attacker’s
capability from examples of adversarial attacks, leading to an empirically robust-
by-design malware detector. Experiments show the trade-off between robustness
and detection performances for various models with several defenses.

The contributions of this paper can be summarized as follows:

— a characterization of certifiably robust detectors;
— ERDALT, a framework to learn empirically robust detectors.

The paper is structured as follows. Section [3| presents our analysis of certifi-
able robust malware detectors by design. The application to empirically robust
malware with the ERDALT framework is presented in Section[d] Section[5|details
our experiments. Section [6] concludes the article.

2 Related work

While most commercial anti-viruses rely on a database of known signatures to
recognize malware, the surge of machine learning in recent decades allows de-
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tectors to identify unseen malware that would not correspond to any signature.
Feature extractions for malware analysis are generally split into static and dy-
namic categories. We focus on static analysis. Static features are extracted from
the binary without executing it. It is fast and harmless, but obfuscating tech-
niques (such as packing) can hide part of the content of the malware. The static
features proposed in EMBER [2] are widely used in machine learning models.

Deep learning models have been adopted in many applications, including
malware analysis [18]. Evasion attacks have also gained attention among both
researchers and practitioners [§]. Two types of techniques have been proposed to
craft adversarial examples: black-box attacks that have only access to the output
of a detector and white-box attacks that know the architecture and weights of
the target model. Various research works have successfully performed adversar-
ial attacks to evade malware detectors and show how vulnerable some classifiers
are [I1]. Two families of evasion attacks have been encountered: attacks on prob-
lem space and attacks on feature space [12]. Attacks on problem space seek to
directly create new binaries that evade classifiers, while attacks on feature space
seek to create features that evade classifiers. This distinction is irrelevant, e.g.,
for computer vision, where the feature extraction is reversible, so it is trivial to
transpose an attack on an image file to an attack on image features, and vice
versa. However, static and dynamic feature extractions in malware analysis are
generally neither reversible nor differentiable. So, even if the attacker crafts an
adversarial features vector, it is not trivial to construct a malware sample with
the corresponding features. Attack on problem space (i.e., on binaries) is almost
always black-box attacks due to the non-invertible and non-differentiable feature
mappings that make classical white-box evasion attacks like FGSM impossible.

General defense methods against adversarial attacks have been proposed
[14], such as adversarial training, regularization approach, gradient masking,
and adversarial example detection. For Android malware analysis, [7] proposes
a Lipschitz-bounded linear classifier to improve the robustness. For Windows
malware analysis, [9] uses randomized smoothing to improve the robustness,
but it significantly lowers the detector’s accuracy. Similarly, [3] proposes a cer-
tification scheme for dynamic malware detectors. However, these methods are
limited to perturbations with a small magnitude, which is not realistic for mal-
ware adversarial examples. Some work on malware analysis avoids assuming the
perturbation has a small magnitude, such as [I0] who relies on monotonic models
to be robust against some attacks, at the cost of a significant detection perfor-
mance loss.Our work expands on their idea of using the monotonicity property
to provide robustness against adversarial examples.

3 Certifiable robust detector by design

In domains like computer vision, the typical assumption in adversarial attacks
is that the perturbation is small, i.e., within an e-ball [I]. This assumption is
depicted in Figure [1] (left part), where any picture P’ within a e-ball centered
around P is an adversarial example candidate for P. For example, a spam that
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poses as an official bank message could include a bank logo to appear legitimate.
Spam detectors detect such impersonation by verifying the consistency between
logos and source email domains. An attacker could craft an adversarial example
so that the spam detector does not recognize the bank logo properly. Since the
magnitude of the perturbation is small, the logo would still look genuine to the
user, and the impersonation would be successful. However, this hypothesis does
not hold in malware analysis. Because the attacker’s target won’t ”look” at the
binary content of the malware, the utility of the modified malware does not
decrease significantly with the size of the perturbation.
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Fig.1: (a) Adversarial per- (b) Adversarial perturbation in the problem and
turbation in the im- the feature spaces. The crosshatched part of the
age problem space. space cannot be reached by perturbation.

However, attackers still require the modified malware to function properly
(i.e., stealing credentials, encrypting disks, etc.). So, adversarial attacks against
malware analysis are generally performed in the problem space (i.e., the space of
executable binaries) instead of the feature space, as it is the case for computer
vision. Such attacks generally rely on elementary binary transformations to alter
the malware in the problem space. This is depicted in the middle part of Figure
where the set of adversarial example candidates (in white) is the set of bina-
ries with the same behavior. In this example, a program P is transformed into a
functionally equivalent program P’ with the transformation 7. Plenty of mod-
ifications are available to the attacker, and they do not all have the same cost.
For example, off-the-shelf tools can automatically add sections to a binary, mak-
ing such adversarial transformations easy to automate [0], but modifications like
static import removal require access to the malware source code, which may not
be the case in the malware-as-a-service business. However, almost any feature
collected in malware static analysis can be modified by bloating the malware,
such as adding useless sections or system call.

From this analysis, we propose a new set of features manually selected to
be difficult to change for an attacker with no access to the malware source
code. They contain indicators of adversarial transformation, such as DOS stub
modification and signature removal, as well as features that are difficult to reduce
automatically, like the number of sections, the total entropy of a section, the
number of statically imported functions, and the number of keywords used in
imported functions. There are only 40 features, which is very limited compared
to classical feature mapping like EMBER, which contains several thousands of
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features. In the following, we will use this set of features as a baseline for how
robust and accurate classifiers are when learned with a feature mapping designed
with adversarial examples in mind.

We rely on the following formal definitions of adversarial attacks and robust
detectors to prove that monotonic models can lead to robust-by-design detec-
tors. We also prove the converse is true: any robust detector can be decomposed
as a monotonic detector on a latent feature space. We introduce M, the trans-
formations available in a threat model. From this set, we define the preorder
= in the space of programs such that P =<j; P’ if the program P can be
transformed into P’ with transformations available in M. We can remark that
this preorder is reflexive and transitive, but it is generally not complete (we may
have P; Ay P> and P, Ay Pp) nor anti-symmetric (we may have Py <pr P>
and Py <p; P;). We can formally define a robust detector for such a preorder as
a detector whose decision cannot be modified from ”malicious” to ”benign” by
applying transformations from M on the original program.

As mentioned by [12], the notions of problem space and feature space are
prevalent in malware analysis. By far, the most common approach in machine
learning for malware analysis is to extract features from programs. Let ¢ be a
mapping from the problem space P to the feature space F4. We propose the
following definition:

Definition 1. Let M be a set of transformations, ¢ : P — F a feature mapping,
f+F — R a classifier and 7 its decision threshold. f is said to be robust
against adversarial attacks if, for any program P and P’ such that P <; P’,

f(o(P) 2z 7= f(o(P')) > 7.

This definition allows us to reason separately about the feature mappings ¢,
generally standardized within the domain, and the classifiers f, which can be
based on many machine learning techniques. Indeed, the classifiers are typically
general-purpose algorithms and models that cannot exploit the specific structure
of the problem space of binaries. This is the role of the feature mapping, written
by malware experts, to extract relevant data. For this reason, we argue that the
adversarial examples issue should also be solved in the feature mapping itself.

Following this guideline, we identify two ways for obtaining robust classifiers:
1) only extract features that are hard for the attacker to modify and use any
classifier, and 2) only extract monotonic features, i.e., that the attacker can only
increase, and use a monotonic classifier. As discussed previously, almost every
feature is easy for the attacker to modify, at least partially, so the first strategy is
moot for malware analysis. The second strategy is based on a monotonic feature
mapping that ensures that, if P <, P’, then ¢(P) < ¢(P’).This second strategy
is illustrated in Fig. [} with a monotonic feature mapping ¢, any transformation
T in the problem space is mapped to a transformation that cannot decrease the
value of any feature. So, given some binary P, the attacker can only produce
an adversarial example in the first quadrant relative to P. It is straightforward
that the monotonicity of ¢ and f are indeed sufficient for f to be robust.
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Proposition 1. Let M be a threat model, ¢ a feature mapping and f a classifier.
If ¢ is monotonically increasing w.r.t. <Xpr and if f is monotonically increasing
w.r.t. <, then f is robust against adversarial attacks for the threat model M.

The feature mapping we propose, discussed earlier, is monotonic when the
attacker has no particular capability. Therefore, robustness is guaranteed when
such a feature set is used with a monotonic classifier (this claim is experimentally
assessed in Section. Remark that some common feature engineering strategies,
such as histograms, are typically not monotonic. For example, the EMBER, fea-
tures set [2] contains bytes histograms of readable strings. However, even though
it is difficult for the attacker to remove readable strings, they can easily reduce
the proportion of one byte by adding new strings with other bytes. For this
reason, such features are fragile and should be avoided.

In the following, we show that such monotonic classifiers are not just yet
another tool to obtain robustness against adversarial examples. In fact, with the
proper feature post-processing, every robust classifier can be interpreted as a
monotonic classifier, as shown by the following proposition:

Proposition 2. Let M be a threat model, ¢ a feature mapping and f a classifier
such that f is robust against adversarial attacks for the threat model M. There
exist g and h such that fo¢ = (foh)o(go¢) and f o h is monotonically
mcreasing.

Proof. Let P the set of executable binaries and Dy the codomain of ¢. Consider
the following complete preorder <4 defined on Dy x Dy: ¢(P) <4 ¢(P’) if and
only if f(¢(P)) < f(¢(P')). Since f o ¢ is robust by assumption, this preorder
satisfies the property: P < P’ = ¢(P) <4 ¢(P’'). Denote k the dimension
of the feature space and g any strictly monotonically increasing function from
(Dg, =) into (Dy, <), where Dy = g(Dy) C R*. So, if v1 <4 v2, then g(v1) <
g(v2). Remark that g is surjective (by definition of its codomain) but generally
not injective: indeed, two programs P, and P, such that ¢(P;) <4 ¢(P>) and
d(P2) =4 ¢(P1) will be mapped to the same vector due to the anti-symmetry of
<. Let h be a function defined on Dy such that h(v) € g~*(v) (the latter is a
set because g is generally not injective). Let us show that fo¢ = fohogo¢.
Let P € P, let v; = ¢(P) and vy = h(g(v1)). Due to the definition of g and h,
g(v1) = g(ve). Since =< is a complete preorder, there are only three possibilities:
v1 <¢ v2 (but in that case, g(v1) < g(v2)), va <4 v1 (but in that case, g(vs) <
g(v1)), or v1 ~4 va. Only the last case is possible. Due to the definition of <,
we can conclude that f(v1) = f(v2), i.e., f(¢(P)) = f(g(h(¢(P))). Therefore,
fogp= fohogo@. Let us now show that f oh is monotonically increasing. Let
v1,v2 € Dy such that v1 < ve. By definition of h and g, h(v1) =¢ h(v2). Due
to the definition of <y, it implies that f(h(vi)) < f(h(v2)). Therefore, f o h is
monotonically increasing, concluding the proof.

So, if there exists a robust classifier f with good performances, then with
the correct feature post-processing g, one can learn a monotonic detector on the
features go¢ and obtain the same performances as f while keeping the certifiable
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robustness. Such monotonic classifiers have been proposed for malware analysis
[10]. Our work shows that 1) this idea stems from the asymmetrical cost of
the transformations in the problem space, 2) such classifiers can be certified
to be robust with respect to a threat model, and 3) all robust classifier can be
expressed as a monotonic classifier with some change to the feature mapping. The
next section shows how we leverage Proposition [2| to propose a new framework,
ERDALT, that learns feature post-processing alongside a monotonic classifier to
obtain a more robust classifier.

4 ERDALT: an empirically robust by-design malware
detector

The method described in Section [3]is certifiably robust, assuming the risk analy-
sis is correctly updated as attacker capabilities evolve. In this Section, we propose
a new detector that is not certifiably robust but only empirically robust. Indeed,
it requires adversarial examples to learn the set of transformations the attackers
can use and, therefore, is limited by its training dataset.

Since any robust classifier can be decomposed into a post-processing function
g and a monotonic function f o h, we propose to learn these two functions g and
foh jointly to obtain a robust classifier. To perform this learning, we assume we
have access to adversarial examples alongside original samples so the model can
learn what the attacker can (and cannot) do. This assumption is akin to what
requires other protection techniques, such as adversarial training.

To illustrate this idea, suppose the attacker can replace API calls with equiv-
alent ones, such as replacing CreateFile with CreateFileEx. In that case, the
two features that count the number of CreateFileEx and CreateFile calls are
not monotonically increasing, but the effect of the transformation on the features
is linear. Intuitively, the post-processing g could build a feature that counts the
occurrences of either CreateFileEx or CreateFile. This feature would not be
affected by the transformation and could be used with a monotonic classifier.

In this section, we call perturbation vector the difference of features between
the transformed software and the base software, i.e., any ¢(T(P)) — ¢(P) for
any T and P. For example, if a feature is unchanged by T, then its value is 0
in the perturbation vector. In the previous example of the transformation by
substitution, the perturbation vector will be 1 for the count of CreateFileEx,
-1 for the count of CreateFile, and 0 for the rest of the vector.

To simplify the learning and help the generalization, we propose to introduce
an assumption that would still allow to tackle this kind of transformations by
substitution: we assume perturbation vectors related to one transformation does
not depend on the modified software itself. This is the case for the previous
example: the perturbation vector does not depend on the original software. This
hypothesis can be mathematically formalized as follows: for a threat model M,
the feature mapping ¢ is such that the set of perturbation vectors, i.e. {¢(T'(P))—
®(P) | T € M, P € P}, is finite. We denote this set of perturbations vectors Ay.
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Fig.2: ERDALT framework. [; minimize the detection error, [l ensures the per-
turbations positivity and I3 encourages the linear layer to be a diagonal matrix.

We propose the deep learning architecture presented in Figure [ to learn
an empirically monotonic feature mapping from examples of attacks. It is com-
posed of a linear layer (corresponding to the post-processing function g) and a
monotonic classifier (corresponding to f o k). The linear layer must be a linear
function, without any bias nor activation function. It is fitted such that, when
the input is the perturbation vectors, its output is always positive. Such behav-
ior is enforced with the [5 loss. This constraint guarantees the monotonicity of
the feature post-processing. The upper layers should be monotonic. Its loss [y
is any typical loss function used for classification. This framework is robust by
design, as shown by the following proposition. We name it “Empirically Robust
by Design with Adversarial Linear Transformation” (ERDALT for short).

Proposition 3. Let M be a threat model and ¢ a feature mapping such that
Ay = {d(T(P)) —d(P) | T € M,P € P} is finite. If Apr is known during
training, then ERDALT is robust.

Proof. Let us decompose the architecture in two parts: the first dense layer L,
that have no bias nor activation, and the upper layers L’. The first layer is
constrained such that, for all perturbation vector § € Ay, L($) > 0. The upper
layers have a monotonicity constraint, so if v; < vg then L'(vy) < L'(vs). Let us
show that L’ o L is robust. Let P and P’ be two programs such that P <, P’.
It means there exists a succession of n transformations 17,75, ..., T, such that
P =(T,o...0oTyoTy)(P)=(O}_,T)(P). So:

¢(P') = ¢(P) = ¢(( O Ti)(P))

k=n
= 6l(O TP+ 3 0l(O TIP) = L a((O T(P)) ~ o(P)



Certifiably robust malware detectors by design 9

>4 TP) = 3 él(O T(P)

1 =0

<
I

-

<¢<<k§>j 7)(P) - ¢<<k_<;>_lTk><P)>)

J

-

<¢<Tjo<k_§>_ T(P) = 9(( O T@(P)))

1

J

We can remark that this last sum only contains elements of Ap;. Let us
denote them ¢;. Due to the linearity of L: L(¢(P')) — L(¢(P)) = L(>,0:) =
> L(8;) > 0. So, L(¢(P)) < L(¢(P')). Since L’ is monotonically increasing,
L'(L(¢(P))) < L'(L(¢(P"))). This proves the robustness of L' o L.

The linear layer of ERDALT can make linear combinations of its input but
will also drop the features that cannot be made monotonic with respect to the
threat model. In this sense, it also serves as an automatic feature selection. The
advantage of this method is that it does not require expert knowledge: as long
as adversarial examples are available, possibly by using off-the-shelf tools or
adversarial examples found in the wild, this method can be used. Its structure
also makes it more explainable than adversarial training.

5 Experiments

In this section, we experimentally assess the contributions on robust classifiers,
including the framework ERDALT. We seek to answer the following research
questions: What is the impact of the features on the detection performances and
the robustness performances? What protection method allows for the best trade-
off between detection performances and robustness? How does each component
of ERDALT contribute to its performances? How do the PV feature selection
and the linear layer of ERDALT compare?

There are no standard PE executable datasets for malware analysis. Windows
malware datasets, like EMBER2017, EMBER2018 or SOREL-20M, do not con-
tain actual executable samples but only features. We cannot use these datasets
since we compare methods with various feature sets. So, we rely on the dataset
of [5] containing 670 families of malware, each one with 100 different samples,
for a total of 67000 malware. The goodware dataset contains 16611 samples,
collected from Windows default installation and various online repositories like
Chocolatey. In the following, we create a balanced training dataset containing
120 families of malware (so 12000 samples) and 12000 goodware. The testing set
is composed of 4611 goodware and 550 families of malware (so 55000 samples).

We use the classical area under the ROC (or ROC AUC for short) metric to
compare the detection performances. The ROC AUC is the area under the curve
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Model ‘ Manual features ‘ EMBER
‘ ROC Robustness‘ ROC Robustness

Baseline network 89.9% 100% 91.6% 82.0%
Monotonic network 69.0% 100% 87.4% 71.5%
Random Forest 94.6% 98.5% 96.2% 81.0%
k-nn 83.7% 93.5% 88.6% 0%

Monotonic gradient-boosted trees| 76.2% 100% 92.7% 73.5%
Gradient-boosted trees 92.3% 99.0% 97.5% 75.0%

Table 1: Comparing the performance (ROC AUC and robustness) of different
models over the two features set without specific adversarial protection

that plots the false positive rate against the true negative rate with respect to
a decision threshold. ROC AUC typically ranges from 0.5 (random classifier)
to 1 (perfect discrimination) in binary classification. We evaluate two groups of
models: 1) classical models widely used in machine learning: neural networks,
k-nn, random forests and gradient-boosted trees, 2) monotonic models: mono-
tonically increasing gradient-boosted trees and monotonic neural network [I5].
The implementation is available onlindﬂ

We experiment with four protection methods against adversarial attacks: ad-
versarial training, feature selection, our framework ERDALT, and a hybrid be-
tween ERDALT and adversarial training. Remark that all these methods require
adversarial examples so they can be fairly compared. Each method has access
to 1033 adversarial examples.We propose to compare ERDALT with another
approach based on feature selection. Given a dataset of perturbation vectors A,
this procedure identifies all features with non-negative perturbation, i.e., that
are monotonic with respect to this set of attacks. When used jointly with a
monotonic model, such models should be robust, as shown by Proposition [T} We
call this method “perturbation-vectors-based features selection”, or PV feature
selection for short.

The adversarial attacks rely on the secml-malware package developed by [6].
These attacks are black-box functionality-preserving transformations on Win-
dows malware aiming at evading static analysis. They are very effective at evad-
ing detectors, even with minimal modifications.

5.1 What is the impact of the features set on robustness and
performances?

In this experiment, we evaluate the robustness and the detection performances of
various models applied to both feature sets. For each experimental setup, we ran
the eight attacks on 200 malware samples correctly identified as malware. Each
attack has a 60-second timeout for scalability’s sake. The robustness is defined
as the proportion of decisions evaded by at least one attack. Table[] presents the
overall robustness and detection performances. Most models using EMBER have

3 https://github.com/PFGimenez/certifiably-robust-malware-detectors—by-design
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Protection |Model \ EMBER
‘ ‘ ROC Robustness
PV feature selection Random Forest 95.2% 100%
Mono. gradient-boosted trees| 86.7% 100%
Gradient-boosted trees 93.8% 100%
Adversarial training Random Forest 97.6% 94.5%
Mono. gradient-boosted trees| 92.7% 95.5%
Gradient-boosted trees 97.6%  96.5%
ERDALT |Neural network 193.0%  96.0%
ERDALT & adversarial training‘Neural network ‘ 85.5% 100%

Table 2: Comparing the performance of different models with PV feature selec-
tion, adversarial training, ERDALT, and ERDALT with adversarial training

a good AUC (higher than 90%), which is typical in malware detection. However,
these models are generally vulnerable to adversarial attacks. k-nn is the most
vulnerable model (all attacks succeeded). The other models models can resist
some attacks. The baseline neural network is the most robust model on EMBER
by a slight margin. It has a lower ROC AUC than non-deep models. This is a
common observation in malware static analysis.

Our manually selected features yield more robust models: they all have at
least 93% robustness, and some of them were never evaded. Remark the signifi-
cant impact of feature mapping on the robustness: k-nn classifier is typically not
robust (all malware have successfully evaded the detectors based on EMBER),
but its robustness with manual robustness is 93.5%. Besides, as expected, us-
ing the manual features with a monotonic model allows for 100% robustness,
although the classification performance is much lower. The best trade-off be-
tween ROC AUC and robustness is, in our opinion, the random forest model
with manual features, with 94.6% AUC and 98.5% robustness.

This experiment shows the drastic effect of the features set on both the detec-
tion performances and the robustness of the models: even models that are easy
to attack can become robust with manually selected features. However, detection
performances and robustness are in a trade-off regarding features set: EMBER
has many features, helping both the detection by containing more information
and the attacker who can rely on more fragile features to evade detectors. Finally,
our manually selected features required a risk analysis and a good knowledge of
attacker capability, so this approach could not be transposed to another domain
without the help of an expert.

5.2 How do the defense mechanisms compare?

In this experiment, we compare the several defense mechanisms, namely PV
feature selection, adversarial training, ERDALT, and ERDALT combined with
adversarial training. The results are shown in Table 2] As we can see, the PV
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‘PV feature selection‘ERDALT selection‘Intersection

Byte 0% 84.9% 0%

Strings 1.9% 94.2% 1.9%
General 30.0% 60.0% 30.0%
Header 77.4% 83.9% 64.5%
Section 55.2% 76.5% 40.8%
Imports 44.5% 66.5% 22.2%
Exports 100% 49.2% 49.2%
Data directories 46.7% 90.0% 43.3%

Table 3: Features kept by two features selection techniques and their intersection

feature selection approach yields the most robust models but with some detection
performance penalties. In fact, this method shows that with access to adversarial
examples, the automatic extraction of non-fragile features can yield performances
comparable, and even better, to the manual extraction by an expert. Adversarial
training can be used to get models that are quite robust (about 95% of attacks
failed) without performance penalty compared to the results from Table [1] So,
compared to the PV feature selection, they are slightly less robust but more
effective at discriminating malware from goodware. Our framework ERDALT
provides similar results in terms of robustness as adversarial training. However,
these similar results should not be interpreted as ERDALT working similarly to
adversarial training: as shown by the last line in Table [I} both methods can be
combined to obtain an even more robust model (in fact, no attack succeeded),
at the cost of some performance penalty.

5.3 How do the feature selection methods compare?

EMBER features can be regrouped into several categories. The proportion of
features kept for each category is detailed in Table [3] By looking at the inter-
section between both feature sets, we can conclude that the features selected by
ERDALT are approximately supersets of the features selected by the PV fea-
ture selection. This result shows that ERDALT retrieve similar features and can
exploit more features by linear combinations. This is typically the case for byte
and strings: the PV feature selection considers these features to be fragile, but
by combining them, ERDALT is able to create non-fragile features. Remarkably,
some features are dropped, notably the Exports features. This is probably be-
cause these features are not useful for discriminating goodware from malware.
Since ERDALT learns jointly the linear layer that selects features and the mono-
tonic model that performs the detection, it can drop irrelevant features.

5.4 Ablation study of ERDALT

The results of the ablation study are summarized in Table[4] The baseline neural
network has an AUC of 91.6% and a robustness of 82.0%, as seen in the previous
section. With the linear layer, the robustness is increased to 91.0%. This is con-
sistent with our previous conclusion: the linear layer acts as a feature selection
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Linear layer ‘ Monotonicity ‘ ROC AUC ‘ Robustness

X X 91.6% 82.0%
v X 94.3% 91.0%
X v 87.4% 71.5%
v v 93.0% 96.0%

Table 4: ROC AUC and robustness of ERDALT with some components removed

and can ditch fragile features. The neural network with the monotonicity con-
straint has a far lower ROC AUC: 87.4%, and its robustness is also low: 71.5%.
This is consistent with the result of other monotonic models when used on EM-
BER. The model with both linear layer and monotonic constraints, as proposed
in Figure [2| has a much higher robustness (96.0%), and its ROC AUC is close to
the baseline model, demonstrating how the joined effect of the linear layer and
the monotonic constraints enable the detector to be accurate and robust.

6 Conclusion and future work

This article focuses on the robustness of machine-learning models against black-
box adversarial attacks in the context of malware analysis. In this domain, adver-
sarial attacks are not required to rely on imperceptible perturbations but need
to preserve the semantics of malware. Such attacks typically rely on semantics-
preserving transformations, like API call addition or n-grams modification. We
propose to use manually selected features with a monotonic model to obtain a
robust by design classifier. We also characterize robust classifiers and deduce a
framework named ERDALT that can use adversarial examples to train a linear
layer that selects non-fragile features. This model is empirically robust by design,
meaning that with enough adversarial examples, it converges to a robust classi-
fier. In future work, we will adapt ERDALT to other security-related data, such
as robust classifiers of network packets or robust malware dynamic analysis.
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