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ABSTRACT

Intrusion detection systems (IDS) are facing challenges in
generalization and robustness due to the heterogeneity of net-
work traffic and the diversity of attack patterns. To address
this issue, we propose a new joint-dataset training paradigm
for IDS and propose a scalable BERTector framework based
on BERT. BERTector integrates three key components: NSS-
Tokenizer for traffic-aware semantic tokenization, supervised
fine-tuning with a hybrid dataset, and low-rank adaptation
(LoRA) for efficient training. Extensive experiments show
that BERTector achieves state-of-the-art detection accuracy,
strong cross-dataset generalization capabilities, and excellent
robustness to adversarial perturbations. This work establishes
a unified and efficient solution for modern IDS in complex
and dynamic network environments.

Index Terms— 1DS, LLM, Hybrid-dataset SFT, LoORA

1. INTRODUCTION

With the continuous evolution of network attack methods, the
key technology of network security defense IDS [1-3] has
gradually transitioned from traditional rule matching [4, 5]
and statistical analysis to intelligent detection driven by ma-
chine learning (ML) [6] and deep learning (DL) [7]. Charles
et al. proposed FSNID, which used information theory indi-
cators the deep neural network classifier for supervised train-
ing, and achieved attack traffic detection [8]. Although ML
and DL methods have improved the ability to detect anoma-
lous traffic, they still suffer from serious generalization and
robustness issues in attack scenarios with highly diverse traf-
fic formats, protocol types, and attack types. Models trained
on a single data have insufficient generalization capabilities
and are difficult to directly migrate to new scenarios. There-
fore, they usually need to be retrained from time to time to
adapt new scenarios.

In recent years, large language models (LLMs) have pro-
vided a new paradigm for deep understanding and abnormal
traffic detection with their powerful semantic modeling ca-
pabilities [9]. By modeling the global dependencies of traf-
fic sequences, LLMs have the potential to capture complex
attack patterns and potential threats. Alaeddine et al. pro-
posed a BART and BERT-based network intrusion prediction

framework, which accurately classifies network data pack-
ets in IoT networks and detects malicious activities in ad-
vance [10]. However, there are still three major challenges
in directly applying LLM to network security: Firstly, net-
work traffic is not a natural language, its structural features
and protocol semantics are difficult to be effectively tokenized
by a general tokenizer; secondly, standard dialogue model has
a large number of parameters, and the deployment and fine-
tuning costs are huge; thirdly, the model is trained on a single
data, and its generalization ability and cross-domain adapt-
ability are insufficient. To address above issues, we propose a
scalable BERTector framework based on LLM.

As shown in figure 1 A, in our threat model, attackers
evade detection systems through diversified traffic formats
and adversarial perturbations, making IDS ineffective under
new or variant attacks [11]. To address these challenges, our
design goals include: (1) Proposing a dedicated tokenizer
NSS —Tokenizer for network traffic to accurately tokenize
protocol and structural semantics as well as avoid information
redundancy and expression distortion; (2) We select BERT as
the base model, which contains a small number of parameters
but has excellent language understanding ability, (3) We use
parameter-efficient low-rank adaptation (LoRA) [12] to re-
duce the time and computational resource cost of fine-tuning;
(4) We construct a multi-source joint-dataset, exploring a
new paradigm of IDS training, improving the cross-dataset
generalization capabilities of IDS, and forming a unified and
scalable detection framework.

In summary, our key contributions are as follows.

* We propose NSS — Tokenizer, a tokenizer designed
specifically for network traffic.

* We pioneer a new paradigm for intrusion detection sys-
tems based on joint-dataset supervised fine-tuning.

* We use this joint-dataset method to LoRA-fine-tune
BERT, which outperforms baseline IDS methods.

* We perform extensive experiments to demonstrate that
BERTector has strong generalization and robustness.
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Table 1. Comparison Between N.SS — Tokenizer and FullTokenizer

FullTokenizer

Pred. Time (s)
NSS-Tokenizer

Tokenize Time (s)
FullTokenizer =~ NSS-Tokenizer

MAX Length (tokens)

FullTokenizer ~NSS-Tokenizer
NSL-KDD 123 41
KDD9%9 111 38
UNSW-NB15 163 43
X-MoTID 331 65
NSL-KDD-Poission 129 41
NSL-KDD-Uniform 487 41
NSL-KDD-Gaussian 485 41
NSL-KDD-Laplace 485 41

25 14 4.3274 0.0160
21 13 3.9819 0.0120
34 16 6.6414 0.0120
74 26 11.5066 0.0120
28 15 4.8898 0.0208
118 30 20.5115 0.0120
117 30 21.1695 0.0240
117 30 21.1055 0.0285
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Fig. 1. Thread model and the overview of BERTector.

2. METHODOLOGY

2.1. NSS-Tokenizer

The commonly-used BERT FullTokenizer is designed for
natural language, and its tokenization strategy is difficult to
capture the structured protocol features and semantic bound-
aries of network traffic, resulting in excessive information re-
dundancy, long sequence length, and inefficient model learn-
ing. To this end, we propose the NSS — Tokenizer shown
in subgraph B of Figure 1, which is specifically designed for
traffic flow formats. This tokenizer uses dynamic window to
control the number of tokens as Equation 1, where f rep-
resents the network traffic flows, and Dy.,;, denotes training
set. The tokenization strategie of NS.S — Tokenizer bases
on feature boundaries (isolated by special symbols such as
commas and exclamation marks) that accurately extract pro-
tocol fields and traffic features, reduce the generation noise of
invalid tokens, and significantly shorten the input sequence,
thereby improving BERT’s ability to understand traffic se-
mantics. In addition, the N.SS — Tokenizer can uniformly
tokenize multi-source heterogeneous traffic with different di-
mensions, keep the model input consistent, and provide a uni-
fied feature expression for subsequent supervised fine-tuning

of joint datasets. As shown in Table 1, NSS — Tokenizer
is significantly better than F'ullT okenizer in terms of token
length, model inference latency, and tokenization cost.

window = min (max ({len(f)} | f € Dyain),512) (1)

2.2. Joint-dataset construction

In order to improve the generalizability of the model in mul-
tiple scenarios, we screen a batch of publicly available traffic
datasets from actual network security threats. For the feature
fields of different data sets, we use a special symbol that does
not appear in the traffic data to separate them to ensure the
integrity of the data structure and feature information. In this
process, there is no need to worry about the inconsistency of
the number of features in different data sets, because LLM
can treat it as a continuous data stream for modeling. With
the help of the special symbol segmentation mechanism of
NSS — Tokenizer introduced in Section 2.1, each feature
value is divided into an independent token, and the traffic is
parsed from the perspective of language modeling, which not
only maintains semantic integrity but also flexibly aligns label
information. This design fully utilizes the advantages of LLM
over ML or DL methods, laying the foundation for building a
high-quality joint-dataset and achieving unified training.

2.3. LoRA-SFT

Supervised Fine-tune (SFT). As shown in subgraph B of
Figure 1, to further improve the perception of model’s task
and the cross-dataset generalization, we SFT the BERT on
a joint-dataset, combined with label-sensitive cross-entropy
loss, to finely align traffic samples and attack categories. Dur-
ing the fine-tuning process, dropout (p=0.1) and early stop-
ping were combined to improve noise resistance and avoid
overfitting. With the help of joint-dataset training, SFT en-
ables the model to perform well on multiple datasets, allow-
ing the model to accurately detect various types of attack in
heterogeneous and complex actual network traffic, and signif-
icantly expanding model’s generalization and practicality.

h=Wzx+ AWz =Wax + BAx 2)



Low-Rank Adaptation (LoRA). Although full parameter
fine-tuning can maximize the performance of BERT, the high
training cost greatly limits its practical application. We in-
troduce LoRA and low-rank matrix decomposition to the
weights of BERT’s fully connected layer. As shown in Equa-
tion 2, where A € R"*% and B € R*" are the trainable
low-rank matrices, with » < min(d, k) being the rank. The
update term is defined as AW = BA, where the rank of
AW satisfies rank(AW) < r. During training, only the
parameters of A and B are updated, while the original weight
matrix W remains frozen. In the evaluation stage, the com-
bined matrix W + BA is used directly, with no additional
computational overhead. By training on multi-source mixed
datasets, LoRA can reduce training time while effectively
learning the effective features of the joint dataset.

3. EXPERIMENTS

3.1. Experimental Setup

Datasets. In order to verify the versatility and cross-domain
adaptability, we construct a joint-dataset M IX, which in-
tegrates four commonly used classic datasets: (1) KDD-
99 [13], (2) NSL-KDD [14], (3) UNSW-NBI15 [15] and (4)
X-IoTID [16]. After preprocessing, each dataset is uniformly
converted to net-flow format and semantically tokenized at
the flow level using NS'S — Tokenizer. The M1X dataset
samples 100,000 records from each source set and was split
into training and validation sets with a 4:1 ratio to ensure
diversity and coverage, while every test set contains 10,000
non-repeat records from each of four datasets for evaluation.

Metrics. In order to fully access the performance of BERTec-
tor, we use the following four indicators: Accuracy, Precision,
Recall, and F1-Score to evaluate the detection results of IDS,
which take into account the overall accuracy and the practi-
cality and robustness of the model in attack detection.

Environment. All experiments are carried out on a Windows
10 system equipped with a NVIDIA GeForce RTX 4090 GPU
(24GB VRAM), and an i9-13900kf CPU (48GB RAM). The
learning rate was set to 2 X 10~5, with a batch size of 64 and
10 training epochs. L2 regularization was applied and early
stopping was employed to prevent overfitting.

3.2. Comparison with Baselines

We conduct comprehensive comparative experiments against
comparison methods, including classical ML models like RF,
DT, LR, GBM, and XGBoost [17], and DL models such as
DNN, RNN, and LSTM [18]. A fair comparison was ensured
by applying appropriate feature engineering and hyperpa-
rameter optimization to all models, allowing each method to
perform optimally. As shown in Table 2, BERTector demon-
strates outstanding performance, achieving an accuracy of

Table 2. Comparison experiments on NSL-KDD

Accuracy Precision Recall Fl-score
RF 0.9498 0.9885 0.9181  0.9520
DT 0.8447 0.9293 0.7725  0.8437
ML LR 0.9394 0.9412  0.9475 0.9443
GBM 0.8911 0.9835 0.8129  0.8901
XGBoost 0.9307 0.9935 0.8779  0.9322
DNN 0.9912 0.9904 09934 0.9919
DL RNN 0.9916 0.9932 09913  0.9922
LSTM 0.9918 0.9915 0.9934  0.9924
Ours BERTector 0.9928 0.9880  0.9989  0.9934

Table 3. Cross-datasets Generalization Testing of BERTector
NSL-KDD KDD99 UNSW-NBI5 X-IloTID

BERT+SFT 0.9822 0.8496 0.1196 0.3960
BERT+SFT+LoRA 0.9157 0.5112 0.0820 0.5174
BERT+SFT+NSS 0.9980 0.8473 0.7744 0.4520
BERTector 0.9928 0.9304 0.7056 0.5748
BERTector-MIX 0.9903 0.9887 0.9610 0.9987

0.9928 and an F1-score of 0.9934, illustrating exceptional
detection capability. Compared to baselines, BERTector indi-
cates a superior balance between precision and recall. These
results suggest that our method performs better when pro-
cessing complex, multi-dimensional network traffic patterns.

3.3. Generalization Testing

To systematically evaluate the generalizability of the model,
we jointly trained BERTector on M IX. Through unified to-
kenization and joint-dataset training, BERTector learns vari-
ous traffic features rather than adapting to a specific dataset.
After training, we test it on each single dataset separately
to verify the model’s migration capabilities under different
traffic domains and protocol types. As shown in Table 3,
BERTector — MIX shows strong generalization perfor-
mance on all four test sets, especially on KDD99, UNSW-
NB15 and X-IIoTID, with accuracies of 0.9887, 0.9610, and
0.9987 respectively, far exceeding the models trained on a sin-
gle dataset. In contrast, BE RTector that do not use hybrid
training have good results on specific datasets, but its migra-
tion capability on other datasets are limited. The experimental
results verify that joint training of hybrid datasets can effec-
tively improve the model’s cross-domain detection capabili-
ties and the versatility of application scenarios.

3.4. Robustness Testing

To verify the robustness of BERTector under adversarial per-
turbations, we introduce four types of classical distribution
perturbation on the NSL-KDD test set: Poisson, Uniform,
Gaussian, and Laplace [19-22]. Each perturbation is used to
simulate the attacker’s numerical interference on the original
traffic, aiming to test the detection stability of the model in the



Table 4. Robustness Test Results on NSL-KDD

Methods Models Accuracy Precision Recall Fl-score
RF 0.8026 0.8781 0.7386  0.8023
DT 0.7329 0.7447  0.7723  0.7583
LR 0.8172 0.8596  0.7924  0.8246
GBM 0.8279 0.9621 0.7107 0.8175
Poission XGBoost 0.8218 09317  0.7246  0.8152
DNN 0.6582 0.6463  0.8169  0.7217
RNN 0.6617 0.6817  0.7058  0.6935
LSTM 0.6805 0.6923  0.7399  0.7153
BERTector  0.9374 0.9209 09677  0.9437
RF 0.6327 0.7014  0.5621  0.6241
DT 0.6033 0.6470  0.5913  0.6179
LR 0.6067 0.6557  0.5787 0.6148
GBM 0.6107 0.7148  0.4696  0.5668
Uniform XGBoost 0.6277 0.7281  0.5006  0.5932
DNN 0.5323 0.5544  0.7017  0.6194
RNN 0.5304 0.5669  0.5684  0.5677
LSTM 0.5304 0.5668  0.5697  0.5682
BERTector  0.7678 0.7463  0.8663  0.8019
RF 0.6549 0.7329  0.5723  0.6427
DT 0.6043 0.6495  0.5874  0.6169
LR 0.6433 0.6917  0.6176  0.6526
GBM 0.6465 0.7952  0.4690  0.5900
Gaussian  XGBoost 0.6440 0.7663 0.4945  0.6011
DNN 0.5386 0.5584  0.7140  0.6267
RNN 0.5317 0.5675  0.5741  0.5708
LSTM 0.5404 0.5751  0.5848  0.5799
BERTector  0.7336 0.7055  0.8733  0.7805
RF 0.6534 0.7486  0.5435  0.6298
DT 0.5936 0.6385  0.5778  0.6067
LR 0.6685 0.7198  0.6366  0.6757
GBM 0.6517 0.8341 0.4467 0.5818
Laplace XGBoost 0.6297 0.7658  0.4570  0.5725
DNN 0.5424 05616  0.7131  0.6283
RNN 0.5391 0.5754  0.5736  0.5745
LSTM 0.5444 0.5791 0.5861  0.5826
BERTector  0.7407 0.7115  0.8779  0.7860

face of adversarial perturbations. We selected traditional ma-
chine learning methods, deep learning methods and this solu-
tion BERTector for comparison. All models are trained on the
basis of normal samples, and perturbations are only applied
during the test phase to objectively evaluate their recogni-
tion capabilities under different perturbations. Table 4 shows
the experimental results that BERTector performs significant
robustness advantages under all types of disturbances. Un-
der Poisson disturbance, BERTector achieved an accuracy of
93.74% and an F1 score of 0.9437, far exceeding other com-
parison methods. Even under the Poission, Uniform, Gaus-
sian and Laplace distributions with higher interference inten-
sity, BERTector still maintained accuracies of 0.9374, 0.7678,
0.7336 and 0.7407, and the F1 scores were all higher than
0.78. In contrast, classical ML and DL methods showed sig-
nificant performance degradation under various disturbances,
especially in strong noise environments such as Uniform and
Gaussian, where the accuracy was generally lower than 65%.
These results verify that BERTector has strong adaptability in
traffic expression and discrimination through the joint opti-
mization of NSS — Tokenizer, LoRA, and SFT, and can ef-
fectively combat various types of adversarial disturbance and

Table 5. Ablation Test Results on NSL-KDD

SFT NSS LoRA ‘ Time (s) Accuracy Precision Recall Fl-score
X X X - 0.3095 0.1965  0.0883  0.1219
v X X 2015 0.9822 09776  0.9899  0.9837
v v X 813 0.9980 0.9971  0.9993  0.9982
v X v 1530 0.9157 0.8717  0.9904  0.9272
v v v 586 0.9928 0.9880  0.9989  0.9934

ensure the stability and security of the detection system.

3.5. Ablation Study

Table 5 show the results of ablation experiment that each
component of BERTector makes an important contribution.
Although SFT (BERT + SFT) alone achieves an accuracy
of 0.9822 on NSL-KDD, its performance on other datasets is
poor, especially on UNSW-NB15 and X-IIoTID, where the
accuracy is only 0.1196 and 0.3960, respectively, indicating
that SFT is significantly overfitting to a single dataset. Af-
ter the introduction of LoORA (BERT + SFT + LoRA),
although the accuracy in NSL-KDD drop to 0.9157, the im-
provement in X-IIoTID is more significant, reflecting that
efficient fine-tuning of parameters is conducive to transfer
learning. NSS — Tokenizer (BERT + SFT + NSS)
bring a significant improvement to UNSW-NB15 of 0.7744,
verifying the generalizability of the dedicated tokenization of
structured traffic on heterogeneous data. The fully configured
BERTector demonstrates robust performance on NSL-KDD,
fully demonstrating the synergy between NSS-Tokenizer,
LoRA, and SFT, which can significantly improve the model’s
detection capabilities while reducing training time.

4. CONCLUSION

We propose a new training paradigm based on joint-datasets,
which effectively solves the problem of generalization and
adaptability of IDS in cross-protocol and cross-dataset appli-
cations. The BERTector framework we designed combines
NSS — Tokenizer, LoRA, and SFT, and uniformly trains
on a joint-dataset consisting of NSL-KDD, KDD99, UNSW-
NB15, and X-IIoTID, so that the model does not need to be
re-tuned each time for a specific dataset, and has stable cross-
domain detection capabilities. The experimental results ver-
ify the significant advantages of this paradigm in improving
model generalizability and robustness, and demonstrate the
application potential of LLM-based intrusion detection sys-
tems in multi-source heterogeneous network environments.
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