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Abstract—The Internet of Medical Things (IoMT) has been
emerging as the main driver for the healthcare revolution. These
networks typically include resource-constrained, heterogeneous
devices such as wearable sensors, smart pills, and implantable
devices, making them vulnerable to diverse cyberattacks, e.g.,
denial-of-service, ransomware, data hijacking, and spoofing at-
tacks. To mitigate these risks, Intrusion Detection Systems (IDSs)
are critical for monitoring and securing patients’ medical devices.
However, traditional centralized IDSs may not be suitable for
IoMT due to inherent limitations such as delays in response
time, privacy concerns, and increased security vulnerabilities.
Specifically, centralized IDS architectures require every sensor
to transmit its data to a central server, potentially causing sig-
nificant delays or even disrupting network operations in densely
populated areas. On the other hand, executing an IDS on IoMT
devices is generally infeasible due to the lack of computational
capacity. Even if some lightweight IDS components can be
deployed in these devices, they must wait for the centralized IDS
to provide updated models, otherwise, they will be vulnerable
to zero-day attacks, posing significant risks to patient health
and data security. To address these challenges, we propose
a novel multi-level IoMT IDS framework that can not only
detect zero-day attacks but also differentiate between known
and unknown attacks. In particular, the first layer, namely the
near Edge, filters network traffic at coarse level (i.e., attack or
not), by leveraging meta-learning or One Class Classification
(OCC) based on the usfAD algorithm. Then, the deeper layers
(e.g., far Edge and Cloud) will determine whether the attack is
known or unknown, as well as the detailed type of attack. The
experimental results on the latest [oMT dataset CICIoMT2024
show that our proposed solution achieves high performance, i.e.,
99.77% accuracy and 97.8% F1-score. Notably, the first layer,
using either meta-learning or usfAD-based OCC, can detect zero-
day attacks with high accuracy without requiring new datasets
of these attacks, making our approach highly applicable for the
IoMT environment. Furthermore, the meta-learning approach
requires less than 1% of the dataset to achieve high performance
in attack detection.

Index Terms—Internet of Vehicles; Network traffic; Intrusion
Detection System; Machine Learning; Hierarchical Classifica-
tion; Flat Classification.

I. INTRODUCTION

HE Internet of Things (IoT) represents a transformative

concept where interconnected devices equipped with sen-
sors collect, analyze, and interact with the physical environ-
ment, creating networks that serve diverse applications. As
the IoT evolves and expands into many areas in our daily
lives, the Internet of Medical Things (IoMT) has emerged
as a notable application, expected to revolutionize healthcare
through remote diagnosis, patient monitoring, and enhanced
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treatment capabilities. The IoMT integrates various device
types, from wearable and implantable devices, smartphones,
to cloud-based systems to enable continuous monitoring and
management of medical conditions, offering patients improved
care and convenience. According to the report from the Knowl-
edge Based Value’s report [1]], the IoMT market is predicted
to exceed 20.4% compound annual growth rate (CAGR) and
reach $588.9 billion by 2030.

While IoMT provides significant healthcare advancements,
the rapid expansion of IoMT also introduces significant cyber-
security challenges due to vulnerabilities in device security,
data transmission, and storage, posing risks to patient safety
and healthcare infrastructure. Specifically, since IoMT net-
works comprise resource-constrained devices, e.g., wearable
sensors, smartphones, and personal digital assistants (PDAs),
that continuously collect and transmit patient data for analysis
and diagnosis [2]], they are susceptible to a range of cyber-
attacks, including denial-of-service (DoS), ransomware, data
hijacking, spoofing, and social engineering [3]]. It is reported
that ransomware attacks in the US alone incur $21 billion
burden annually, and 21% of ransomware attacks in the world
target IoT/IoMT devices [4]. Addressing these challenges
requires robust security mechanisms and compliance with
data protection frameworks such as HIPAA and GDPR to
ensure the safety, privacy, and efficiency of IoMT systems [5]].
Moreover, the sensitive nature of medical data and the critical
functionalities of IoMT devices magnify the potential risks,
making robust cybersecurity mechanisms a necessity [6].

In this context, Intrusion Detection Systems (IDSs) based
on machine learning (ML) are a key line of defense in safe-
guarding IoMT networks from malicious activities. However,
traditional centralized IDS architectures may be unsuitable
for IoMT considering the distributed nature of this network.
Firstly, these systems require transmitting all sensor data to
a central server, which introduces privacy concerns, increases
response time, and is inefficient for resource-constrained IloMT
devices [7]. Additionally, centralized processing creates single
points of failure and network congestion bottlenecks, which
are particularly problematic in time-critical medical scenar-
ios. Secondly, such architectures often rely heavily on large
datasets for training machine learning models, which are
infeasible to process locally on IoMT devices due to due to
their memory constraints, processing power, and battery life
limitations [8]. Moreover, these systems are ill-equipped to
handle zero-day attacks, which exploit unknown vulnerabilities
and present significant risks to patient health and data security.

Given these challenges, there is a pressing need for an
intrusion detection framework tailored for ToMT environments
that can efficiently detect zero-day attacks while addressing
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privacy and computational constraints. Medical devices are
susceptible to cyberattacks, especially during communication
with Near Edge devices, which themselves receive network
traffic from Far Edge nodes. To safeguard medical devices, it is
essential to deploy IDS at the Near Edge nodes. These systems
can monitor and detect potential threats before they reach
the medical devices. While ideally, medical devices should
also incorporate IDS, their resource constraints often make
this impractical [8]. Therefore, both Near Edge and Far Edge
devices should be equipped with IDS capabilities. However,
Near Edge devices are also resource-limited and may not
possess sufficient attack data to train traditional supervised
machine learning or deep learning models effectively. To en-
able these devices to independently run IDS and train models
without relying on a centralized system, a semi-supervised
learning approach or lightweight supervised models requiring
minimal training data should be considered. In addition, Near
Edge nodes are the first line of defense and must be capable
of detecting zero-day attacks. Traditional supervised models,
while effective at recognizing known threats from historical
data, are typically inadequate for identifying previously unseen
attacks [9]. This highlights the need for more adaptive and
data-efficient IDS solutions at the edge level.

To address these issues, this paper proposes a novel hierar-
chical intrusion detection system, leveraging meta learning and
One Class Classification (OCC) based on the usfAD algorithm,
to identify attacks without requiring extensive training datasets
in the Near Edge. Specifically, our hierarchical IDS enables
medical end devices (i.e., Near Edge nodes) to locally identify
network traffic as anomaly that might be known/historical or
zero-day attacks. Then, Far Edge nodes can further determine
identified threats as known or unknown attacks so that the
admin can arrange training of model. Finally, Cloud nodes are
able to classify specific historical or known attack categories
as well as attack sub-categories. By doing so. our distributed
approach can enhance intrusion detection accuracy, ensure
real-time response, and optimize resource utilization. Our
contributions are summarized below.

o Develop the hierarchical IDS framework tailored for
IoMT networks, consisting of multiple attack detection
levels spanning from Near Edge and Far Edge nodes to
the Cloud. By doing so, our proposed framework can
leverages resources at different layers in IoMT simulta-
neously, thus mitigating the point-of-congestion problem
in traditional flat IDSs.

o Propose Anomaly Detection at the Near Edge Layer
that enables medical end devices (such as smartphones
and PDAs) to detect anomalous traffic locally by lever-
aging meta learning and usfAD-based OCC. While OCC
can effectively detect anomalous traffic by training mod-
els to recognize normal traffic patterns without attack
samples, the meta-learning can achieve high detection
accuracy with a small amount of data. Since neither
approach requires retraining or fine-tuning, our solution
reduces computational overhead and eliminates frequent
model updates, enhancing medical device practicality
through real-time, on-device threat detection.

o Develop the Zero-day Attack Detection at the Far
Edge Layer that deploys OCC based on usfAD algorithm
at the edge nodes to identify zero-day attacks, thus
effectively balancing computational demands and real-
time response while maintaining high detection accuracy.

« Evaluate the proposed solution comprehensively. Com-
prehensive experiments were conducted using the CI-
CIoMT2024 dataset, a multi-modal protocol dataset de-
signed for IoMT security solutions. These experiments
demonstrated the effectiveness of the proposed frame-
work in detecting zero-day attacks, highlighting its supe-
rior performance compared to traditional learning meth-
ods.

The remainder of this paper is organized as follows: Section
discusses related work in the field of IoMT security and
intrusion detection systems. Section [[II| describes the proposed
framework, including its architecture and learning algorithms.
Section presents the experimental setup and results, fol-
lowed by a detailed performance evaluation. Finally, Section
[V] concludes the paper and outlines future research directions.

II. RELATED WORKS

With the explosion of IoMT, developing an adaptive and
effective ML-based IDS for IoMT networks has attracted
enormous attention from academia and industry since these
systems often handle sensitive and life-critical medical traffic.
However, existing IoMT IDS solutions face several critical
limitations that hinder their practical deployment. First, re-
garding architectural design, most existing works consider cen-
tralized IDS architectures for IoMT networks [10]-[36]. This
centralized approach makes their solutions less suitable for
IoMT networks due to resource limitations of IoMT devices
as well as the point-of-congestion problem. Second, from an
evaluation perspective, many works are evaluated on either
non-IoMT datasets (e.g., NSL-KDD and ToN-IoT [10]-[14])
or simulated datasets (e.g., [28]—[30]]). Thus, these approaches
may not achieve the same performance in practical IoMT
networks, which often consist of heterogeneous resource-
constrained devices. Third, concerning functionality limita-
tions, many studies (e.g., [10], [12[l, [15]-[22], [24]-[27])
only consider binary classification, which determines whether
traffic is attack or normal. As such, these IDS solutions are
unable to provide adequate information to help IoMT systems
make further mitigation decisions.

To mitigate shortcomings of the centralized IDS archi-
tecture, other works consider a hierarchical/distributed IDS
architectures for IoMT networks [37]-[40]]. Specifically, the
work in [37] proposes a multi-layer IDS that deploys multiple
agents. These agents are categorized into three layers: sensors,
management, and databases. The first layer employs a Support
Vector Machine (SVM)-based anomaly detector to examine
the traffic to find potential attack. The second layer uses a
signature-based IDS, aiming to further identify the type of
attack. Then, the potential malicious traffic is examined at
the third layer by a hybrid IDS that consists of an anomaly-
and signature-based IDSs, attempting to correct the missed
classification in the previous layers. The major weakness of
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this solution is that it was evaluated with the NSL-KDD
dataset, which is not a IoMT dataset. Additionally, the second
rule of the framework operation (i.e., “If anomaly detection
detects an attack and misuse detection does not detect any
attack, then it is not an attack.”’) makes the system unable to
detect zero-day attacks.

Similarly, [38] proposes a mobile agent-based IDS that
distributes agents across layers, i.e., sensor and cluster head.
In this framework, sensor agents first identify a traffic as
benevolent or malicious. Then, a cluster head agent will share
this information with other cluster head agents to make the
decision based on a majority. Here, sensor and cluster head
agents use traditional machine learning algorithms (e.g., SVM,
Decision Tree, and K-Nearest Neighbour). The shortcomings
of this study are using a simulated dataset for evaluation and
deploying a binary classification for agents. Additionally, zero-
day attacks are not considered.

Differently with [37]], [38]], the hierarchical deep learning-
based IDS for IoMT networks is considered in [39]]. In
particular, each edge nodes maintain its local DL model,
whose architecture is shallow (e.g., 2-3 layers) while the model
in cloud is deeper (e.g., more than ten layers), aiming to
achieve higher detection accuracy. To speed up the training
time of cloud models, the authors propose a method for
merging and aggregating layers of trained edge model to
build a partly pre-trained cloud model. The main drawback
of this work [39] is that both edge and cloud models only
perform the binary classification task, i.e., attack or benign
classes. Additionally, although the framework is able detect
zero-day attacks, it cannot differentiate whether attacks are
known or unknown types. Similar to [39], the study [40]]
develops a hierarchical deep learning-based IDS that leverages
dew computing. Specifically, this framework deploys federated
learning on distributed dew servers of the IoMT system, which
can be referred to as Near Edge nodes in our work. As this
IDS considers binary classification and uses a dataset that not
for IoMT (i.e., TON-IoT and NSL-KDD), this work shares the
shortcomings with many above works, e.g. [[10], [12]], [15]-
[22]], [24]-127]I, [137]-139]l.

Recently, [41] proposes a hierarchical machine learning
model for a [oMT IDS. This model consists of multiple com-
ponents, each leverages on machine learning algorithm, i.e.,
Decistion Tree (DT), Random Forest (RF), AdaBoost, Naive
Bayes, Multilayer Perceptron (MLP), and XGBoost. Firstly,
this framework uses the bat algorithm to optimize parameter
of weak learners, including DT, RF, AdaBoost, NN, and MLP.
Subsequently, XGBoost is used as the meta-learner (which is
more accurately an ensemble method) to produces the final
ensemble prediction. In fact, this study [41]] has terminological
problems, confusing readers. Specifically, it uses ensemble
learning/stacking, which is not meta-learning. Meta-learning
refers to “learning to learn” across multiple tasks (like MAML
or Reptile that is leveraged in our work), not combining
multiple models on a single task. Moreover, although detecting
zero-day attacks is considered in this framework [41]], the
detection performance of zero-day attacks is not conducted,
making the evaluation incomplete.

Research Gap and Challenges

Given the above, existing approaches suffer from several
critical limitations: (i) architectural inefficiencies that cannot
scale to IoMT’s distributed nature [10]-[33]], (ii) evaluation
with non IoMT or simulated datasets [10]—[14], [28]]-[30]],
[37], (iii) coarse-grained classification that cannot distinguish
between attacks types [10], [12], [15]—[22]], [24]-[27]], and (iv)
insufficient classification granularity or even lack of zero-day
attack detection and classification [10]-[42]. These limitations
create significant security gaps in IoMT environments, neces-
sitating a new approach tailored to medical IoT constraints

To address these gaps, we propose a novel hierarchical
intrusion detection framework that accurately detects both
known and zero-day attacks by strategically distributing spe-
cialized classifiers across different oM T network layers. This
hierarchical approach can reduce computational overhead on
resource-constrained medical devices while maintaining high
detection accuracy and enabling real-time threat response In
the next section, we will discuss our proposed IDS in detail.

III. THE PROPOSED HIERARCHICAL IDS MODEL
A. Proposed IDS Model for Zero-day Attack Detection

Our analysis of the current state-of-the-art research reveals
that most studies on IDS in IoMT rely on conventional flat
and centralized multi-class classification approaches. As such,
these models may suffer from bottleneck issues at central
processing points, and they does not scale effectively across
distributed IoMT networks. Furthermore, supervised models
are built on historical data, and thus this limits their effective-
ness in detecting zero-day attacks because the model can only
learn the behaviors of normal and historical attacks. In fact,
zero-day attacks (which are increasingly prevalent in modern
networks) often differ from the historical attacks.

To address these challenges, we recommend a hierarchical
intrusion detection system designed to detect cyberattacks
at multiple levels in IoMT using meta learning or OCC
and conventional supervised classifiers. Figure [I] illustrates
the proposed framework, which begins with a pre-processed
dataset serving as input for training and testing. At the root
level of the hierarchy, we suggest to employ meta learning or
OCC to detect anomaly. Here, meta learning leverages very
minimal training data for detecting anomaly effectively. On
the other hand, if we use OCC such as usfAD or other semi-
supervised models, we only require benign network traffic to
train the model which can address the class imbalanced issue.
Lightweight models are recommended at the root level for
deployment on Near Edge nodes due to their computational
efficiency and adaptability are critical.

To train the meta learning-based classifier at root level,
we divide the dataset into smaller datasets, each consisting
of normal traffic and one attack type (e.g., DDoS). Then,
we create multiple similar classification tasks in which each
task is to recognize one attack type. For example, Task;
is to classify the traffic as DDoS or Normal, Tasky is
to classify the traffic as Spoofing or Normal, and so on.
Here, we apply a lightweight meta-learning algorithm called
Reptile [43] (which is presented in Algorithm [I) to train
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Fig. 1: The proposed zero-day detection enabled IDS frame-
work.

the root classifier with these tasks. By doing so, the root
classifier can generalize across different attack patterns and
thus effectively detect zero-day/unknown attacks. Note that our
proposed meta-learning classifier only requires less than 1% of
the CICIoMT2024 dataset while still achieving high detection
performance, thus significantly reducing the computing and
storage overhead. Once deployed, the meta learning classifier
determines whether an input is normal or indicative of an
attack. The key advantage of meta learning is its ability to
detect zero-day/unknown attacks without requiring retraining
or new datasets.

As shown in Fig. [T] at the root level, if a network traffic is
classified as normal, no further action is taken. If a network
traffic is classified as an anomaly/attack, it is passed to the
next layer of the IDS for further analysis to determine if
it is a known or unknown attack. In this work, we also
suggest to use a specific model called usfAD at the root
level to detect anomaly. The advantage of using this model
is that there needs only benign or normal network traffic
to train it. Our experiment shows that usfAD at the root
level achieves higher accuracy than other OCC models and
meta learning. At the second level/layer, for detecting known
and unknown attack types, we propose training a one-class
classifier. This layer distinguishes known attacks and directs
them to supervised classifiers for detailed categorization in
the Far Edge nodes. Then, unknown attacks are collected and
analyzed by the security analyst. Unknown attacks are labeled
based on their characteristics and used to retrain the supervised
model. In the Cloud (i.e., the third layer), multiple supervised
classifier are used to identify subcategories of known attack

Algorithm 1 Meta learning-based Classifier

1: Initialize ©, the initial parameters of a Deep Neural
Network (DNN)

2: for iteration 1 = 1,2,3,... do

: Randomly sample a task 7" from the set of anomally
detection tasks 7; = {T1,T5,...}

4: Perform k steps of Stochastic Gradient Descent (SGD)
on task T, starting with parameters ©;, resulting in
parameters §2;

5: Update: @i+1 +— 0;+ G(QZ — @z)
meta-learning rate

6: end for

7: return O;

> € is the

types (e.g., Spoofing, DoS, DDoS). Once the specific attack
type is identified, a reporting mechanism is triggered to log the
incident and initiate appropriate responses. Given the above,
our proposed hierarchical IDS can effectively capture zero-day
attacks, provide insights about attack patterns, and update its
knowledge accordingly.

Our hierarchical design combines the strengths of meta-
learning or OCC at the root level for general detection with
supervised classifiers for granular attack classification in the
subsequent layers. This approach ensures efficient and accurate
detection, especially in resource-constrained environments like
medical end devices, while addressing the critical challenge of
detecting zero-day attacks in distributed networks. The details
of our proposed approach are presented in Algorithm 2]

The data processing steps are briefly described below.

o Dataset: We utilized the CICIoMT2024 dataset [34], a

comprehensive multi-protocol dataset, to train and test a
hierarchical IDS for IoMT devices. This dataset, sourced
from the Canadian Institute for Cybersecurity, contains
data from both Wi-Fi-enabled IoMT devices and simu-
lated MQTT-based devices. In order to form the dataset,
a range of cyberattacks was executed against IoMT
devices. The dataset provider encompassed five main
attack categories named as DDoS, DoS, Reconnaissance,
Spoofing, and MQTT-based attacks. Each category is
further divided into 18 specific attack subtypes, offering
a detailed and diverse dataset for analysis. To ensure the
dataset’s suitability for our experiments, we meticulously
preprocessed the provided training and testing data, align-
ing it with the requirements of our intrusion detection
framework.
Table [ shows the distribution of classes in the dataset
[34]. 11.19% of the records are normal, while the remain-
ing records represent various types of attacks. Ping Sweep
records have the smallest contribution, accounting for less
than 0.01% of the total records. The highest percentage
of records belong to DDoS ICMP class (20.12%).

o Data Scaling: We apply Min-Max normalization that
eliminates the impact of different feature’s value in the
datasets on the performance of machine learning algo-
rithms. Min-Max approach scales each feature’s values to
a range between 0 and 1. The min-max normalisation for-
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TABLE I: Class distributions in the dataset

Class Records | Percentage
Benign 1048575 11.19
Spoofing | ARP Spoofing 717791 0.19
- Ping Sweep 926 0.01
S Recon VulScan 3207 0.03
&’ OS Scan 20666 0.22

Port Scan 106603 1.14
e Malformed Data 6877 0.07
I DoS Connect Flood 15904 0.17
g DDoS Publish Flood | 36039 038

DoS Publish Flood 52881 0.56

DoS TCP 462480 4.94
2 DoS ICMP 514724 5.49
&) DoS SYN 540498 5.76

DoS UDP 704503 7.51
- DDoS SYN 974359 10.39
o DDoS TCP 987063 10.53
8 DoS ICMP 514724 5.49

DoS UDP 1998026 21.3
Total 9378297 100

mula is follows: X,,0rm = %, where X,,0rm.»

Xomins Xmaz are the normalized value, the minimum
value, and the maximum value of X, respectively.

o Dataset Partition: Stratified cross-validation is used to
divide the dataset into folds while maintaining the pro-
portional distribution of each class within each fold.
This method provides a reliable estimate of model
performance, especially when dealing with imbalanced
datasets where one class has significantly more samples
than others [44]. In this study, our hierarchical model
is trained and evaluated using stratified 10-fold cross-
validation. Specifically, the dataset was split into ten
folds of equal size, with each fold preserving the class
proportions. This process was repeated for all ten folds,
and the average classification performance was reported.
By utilizing stratified cross-validation, both models (meta
learning and OCC) achieve more accurate and dependable
performance evaluations.

B. Distributing the Proposed Hierarchical IDS in IoMT

The IoMT is continually exposed to emerging threats,
including zero-day attacks, which places patients’ data at
constant risk of privacy and security breaches. A main rea-
son is that the IoMT comprises heterogeneous devices, e.g,
wearable sensors, medical end devices (such as mobile phones
and PDAs), Edge nodes, and Cloud servers. The typical
IoMT network presented in Fig. [2f consists of different layers
or levels called Sensors, Near Edge, Far Edge and Cloud
layers to provide real-time health monitoring and data analysis
in a distributed and resource-efficient manner [45]]. Medical
devices transmit health data to the Cloud via the Near and
Far Edge layers, while also receiving network traffic from
upper layers through the Near Edge nodes. To protect patient
data, an IDS should be deployed in medical devices. However,
medical devices are typically resource-constrained and cannot
support such systems locally. The nearest devices to these
medical devices (e.g., smartphones, PDAs, and user computers
that collectively referred to as the Near Edge) offer a feasible
alternative. As such, deploying IDS at the Near Edge enables

Algorithm 2 Hierarchical Intrusion Detection System (H-IDS)
for Detecting Known and Zero-Day Attacks

Require: Preprocessed dataset D
Ensure: Classification of each instance x € D as Normal,
Known Attack, or Unknown Attack
1: Training Phase:
2: Train Moo (€.g., usfAD) on normal instances from D >
Root-level anomaly detector
3: Train Mgy using known attack instances
known vs unknown attack
4: Train supervised classifiers for each attack category:
Mpos, Mppos, Mspoot, €tC.

> Verifies

6: Detection Phase (for each incoming instance x):
resultioor — Moot ()

7: if result;oo, == Normal then

8: return Normal > No further action needed

9: else

10: resultverify < Mverify(zli)

11: if resultyeriry == Known Attack then

12: type < detect attack category of x

13: subtype < Myype(x) > Classify into subtype

14: Log incident and trigger response

15: return subtype

16: else

17: Forward x to security analyst for manual inspec-
tion

18: Label x as Unknown Attack and store for fu-
ture retraining

19: return Unknown Attack

20: end if

21: end if

rapid detection of potential attacks and helps safeguard the
medical devices. However, leveraging conventional supervised
learning models (e.g., Random Forest) is not a viable solution
as they may be ineffective at detecting zero-day attacks.
Moreover, these supervised models require large volumes of
labeled benign and attack data for training, which Near Edge
devices typically do not possess. Therefore, it is very important
to effectively detect known and zero-day attacks at NEAR edge
devices to protect both patients and their data.

To address this issue, we devise a hierarchical IDS approach
that aligns well with the IoMT’s hierarchical architecture,
allowing different components to be strategically deployed
across various layers. By doing so, our approach can optimize
computational resources and enhance scalability in [oMT [46].
Figure [2] illustrates our proposed hierarchical architecture for
an IDS designed for the Internet of Medical Things (IoMT). It
showcases how IDS components are distributed strategically
across the different layers of the IoMT infrastructure to ensure
robust security while maintaining efficiency.

o Sensors Layer: This is the bottom-most layer, consisting
of patients, medical wearable devices, and IoMT sensors.
Devices such as fitness trackers, heart rate monitors, and
GPS-enabled devices collect real-time data from patients.
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Fig. 2: The proposed architecture of IDS enabled Internet of
Medical Things

These devices forward network traffic to the upper layers
for further analysis and security checks.

o Near Edge Layer: This layer is positioned above the
Sensors layer. In our proposed hierarchical IDS, the
trained root classifier (based on meta learning or OCC) of
the hierarchical framework is deployed at the Near Edge
layer, within medical end devices such as smartphones
or local IoMT hubs. This root classifier distinguishes be-
tween normal and malicious data (i.e., anomaly), enabling
immediate detection and response to cyber threats. By
processing data locally, this setup reduces delays caused
by communication overhead and ensures rapid decision-
making, reducing latency and dependency on centralized
servers. Note that the root classifier does not determine
whether the detected malicious or anomalous instances
correspond to known attacks or previously unknown
threats (e.g., zero-day attacks).

o Far Edge Layer: Far Edge layer acts as an intermediary
layer, connecting the NEAR Edge Layer with the Cloud
Layer. FAR Edge devices are high-performance nodes
(e.g., 5G servers) compared to Near Edge nodes and
capable of handling more computationally intensive tasks.
Given that, we suggest the Far Edge layer for deploying
the second-level classification model. Specifically, the Far
Edge layer aggregates and processes data from multiple
medical devices, enabling the classification of threats
into broader categories such as zero-day and known
attacks. In this work, a One-Class Classification (OCC)
model is leveraged to distinguish between known and
unknown (i.e., zero-day) attacks. If an attack is identified
as known, a subsequent supervised classifier at the Cloud

layer further categorizes the specific type of attack. This
intermediate layer significantly enhances the system’s
ability to manage diverse data sources while ensuring
timely and accurate threat analysis.

e Cloud Layer: The top-most layer is the Cloud that
provides the computational resources needed for tasks re-
quiring high processing power, such as model training and
large-scale data analysis. As such, we recommend Cloud
layer for deploying the top-level classification models
that detect detailed attack subcategories and serves as the
central hub for training and retraining the hierarchical
classification model. This top level ensures that intrusion
detection models deployed across the IoMT network
remain up-to-date and capable of addressing evolving
threats. This top level ensures that intrusion detection
models deployed across the IoMT network remain up-
to-date and capable of addressing evolving threats.

Unlike traditional centralized flat classification models (e.g.,

[10]-[33]]), which rely on a single point of processing and
cannot be distributed across IoMT network layers, our pro-
posed hierarchical model leverages the [oMT’s layered archi-
tecture to distribute tasks strategically and efficiently. Although
hierarchical models can involve additional classifiers and
higher complexity, they offer significant advantages (including
enhanced scalability, reduced communication overhead, and
improved adaptability) that can outweigh these limitations
in distributed IoMT environments. This hierarchical archi-
tecture enables strategic distribution of system components
across network tiers, ensuring robust intrusion detection while
maintaining the lightweight functionality required for medical
devices operating under resource constraints.

IV. RESULTS AND DISCUSSION

This section will evaluate the effectiveness of the hier-
archical model for IoMT in terms of accuracy, precision,
recall and Fl-score. We target to optimize resource usage
by delegating tasks to the most appropriate layer of IoMT
based on computational requirements and urgency. In fact, this
architecture can be easily adapted to handle more devices and
attack scenarios by distributing the workload across layers.
By detecting zero-day attacks at the NEAR Edge layer and
refining classifications at higher layers, the system ensures
quick and accurate responses.

A. Experimental Setup and Implementation

Our experimental study was performed on an Intel Xeon
E5-2670 CPU (8 cores, 16 threads), 128GB DDR3 RAM, 2x
Nvidia GTX 1080 Ti. Python 3.9 was used to execute our code.
This study utilized meta learning, OCC based usfAD [47],
Random Forest and primarily relied on Pandas and NumPy
libraries for data pre-processing. Since the framework was
developed using Python, the widely recognized Scikit-learn
toolkit was utilized to leverage its wide range of algorithms
and resources for data scientists, including effective accuracy
and precision estimation metrics. In this work, we employed
machine-learning algorithms from Scikit-learn and usfAD
algorithm [47].
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B. Performance Metrics

In this study, we used accuracy, precision, recall, and F1-
score that are essential for assessing the performance of an
IDS model. However, their significance can vary depending on
the system’s specific objectives and requirements. Specifically,
accuracy quantifies the proportion of accurate classifications
made by the IDS. However, relying solely on accuracy is
not the most suitable performance metric for IDS as this
might not accurately reflect the system’s capability to identify
attacks that belong to a minority class within the dataset. On
the other hand, precision refers to the proportion of genuine
positive detection out of all positive detection. High precision
is essential in IDS in order to minimize false negatives (normal
transactions are incorrectly detected as attack), which can
result in false alarms. Differently. recall measures the system’s
ability to reliably identify all instances of a particular class of
attack. Low recall suggests that the system is missing many
attacks, which can pose a significant security risk. The F1-
score is a combination of precision and recall that quantifies
the proportion of true positive identification relative to the
total number of positive instances in the dataset. F1-score is
a valuable metric for IDS because this considers both false
positives and false negatives and provides a balanced score
between precision and recall.

The accuracy, precision, recall and Fl-score are calculated
as follows.

TP + TN
Accuracy = % 100,
TP + TN + FP + FN
Precision = 1
recision TP+FP x 100,
Recall = 1
eca TPrEN x 100,

Fl-score — 2 x Precision x Recall

100
Precision + Recall ~ ’

where TP = true positive, TN = true negative, FP = false
positive, and FN = false negative.

In our experiment, we used Stratified cross-validation which
can effectively address the imbalance in test datasets by
maintaining balanced class distributions across folds, thus
ensuring accurate evaluation metrics such as precision, recall,
and F1-score. This approach guards against biased evaluations
driven by dominant classes and enhances model robustness to
dataset variability. Overall, it provides reliable estimates of
generalization performance for models trained on imbalanced
data, crucial for real-world applications. In the subsequent
sections, we present the performance of our hierarchical IDS
model in IoMT.

C. Root Level Classifier’s Performance to Detect Attacks

In this section, we compare the performance of meta-
learning and several OCC algorithms in detecting normal and
attack instances. For the meta-learning model, we use both
normal and different attack categories from the dataset for
training the model. Our approach involves creating multiple

sub-datasets for training the root classifier, where each sub-
dataset consists of 128 instances from one attack type and 128
instances from benign data. We then define multiple similar
classification tasks for meta-learning, with each task designed
to recognize one specific attack type. For example, T'ask; is
to classify the traffic as DDoS or Normal, T'ask, is to classify
the traffic as Spoofing or Normal, and so on. Here, we adopt
a lightweight meta-learning algorithm, namely Reptile [43], to
train the root classifier across these tasks, enabling it to gen-
eralize across different attack patterns and effectively detect
zero-day/unknown attacks. The hyperparameters are similar to
those in [43], e.g., K = 5. Our framework leverages a simple,
small-footprint DNN model with only three layers, with the
hidden layer consisting of 64 neurons. To simulate zero-day
attack scenarios, we train and test the models multiple times.
Each time, we systematically exclude one attack type from
the training process, treating it as an unknown attack. For
instance, in one scenario, we train the root classifier with all
tasks except DoS, making DoS completely unknown to the
model during testing. To evaluate the effectiveness of the meta-
learning approach, conventional Stochastic Gradient Descent
(SGD), a well-known algorithm for training DNNs [48], is also
employed under the same experimental setup. By doing so, this
experimental setup demonstrates the meta-learning algorithm’s
capability to detect anomalies, including zero-day/unknown
attacks.

We used the following models for the OCC, all of which
were trained using only normal instances.

o Unsupervised Stochastic Forest-based Anomaly Detector
(usfAD): This is a robust anomaly detection algorithm
based on an unsupervised stochastic forest. Aryal et al.
[47] demonstrated the effectiveness of this approach in
detecting anomalies across various cybersecurity datasets.

e Local Outlier Factor (LOF): This algorithm assigns a
degree of outlier-ness to each data object, referred to as
the local outlier factor (LOF). The LOF is local in nature
and reflects the level of isolation of a data object within
its neighbourhood. Breunig et al. [49] demonstrated the
success of this algorithm in identifying local outliers.

« Isolation Forest (IF): While many model-based anomaly
detection algorithms rely on building a profile of normal
instances, the Isolation Forest (iForest) isolates anomalies
without requiring such a profile. iForest makes effective
use of sub-sampling and has been shown by Liu et al.
[50] to perform well on high-dimensional datasets with
many irrelevant features, as well as on datasets lacking
labelled anomaly instances.

The results in Table [[I| present the performances of the root
classifier with different algorithms in detecting normal and
attack at the root level. The usfAD outperforms the other
OCC and meta-learning models with a higher accuracy (i.e.,
99.77%) and near-perfect precision, recall, and Fl-scores for
both normal and attack classes. This demonstrates a well-
balanced and robust performance of the OCC based usfAD.
Additionally, its high Macro and Weighted Average F1-scores
further confirm its reliability for scenarios requiring accurate
detection of both normal and attack instances.
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TABLE II: Performance comparison of One Class classifiers and Meta Learning to detect attacks

Root Classifier Accuracy | Detail Precision | Recall | Fl-score
Normal 934 98.2 95.74
Attack 99.95 99.81 99.88
usfAD P77 Macro Avg | 96.68 99 9781
Weighted Avg | 99.78 99.77 99.77
Normal 88.24 91.5 89.84
. Attack 99.77 99.67 99.72
Local Outlier Factor (LOF) 99.46 Macro Avg o7 95353 9478
Weighted Avg | 99.47 99.46 99.46
Normal 11.51 85.65 20.3
. Attack 99.53 82.55 90.55
Isolation Forest (IF) 82.34 Macro Avg 3555 8305 3573
Weighted Avg | 97.22 82.34 90.74
Normal 98.01 95.52 96.69
. . Attack 97.65 97.56 97.51
Meta-learning Classifier (MLC) 98.27 Macro Avg 9783 9654 9710
Weighted Avg | 97.66 97.51 97.50
Normal 27.44 5.44 6
. . Attack 0.33 0.32 0.065
Stochastic Gradient Descent (SGD) 1.241 Macro Avg 1389 7883 303
Weighted Avg | 1.05 0.45 0.22
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Fig. 3: The learning process of meta-learning

The second OCC model, i.e., Local Outlier Factor (LOF),
also performs well with high accuracy of 99.46% and strong
attack detection metrics but slightly struggles in identifying
normal instances, as reflected by its lower precision and
recall for the normal class compared with those of usfAD.
However, the third OCC model, i.e., Isolation Forest (IF)
exhibits significant weaknesses, with poor detection of normal
instances (F1-score: 20.3%) and an overall accuracy of only
82.34%, making it unsuitable for imbalanced detection tasks.

Interestingly, thanks to its “learn to learn” ability, the meta-
learning model achieves good accuracy (98.27%) using less
than 1% of the total dataset. On the other hand, it clearly
shows that the traditional deep learning algorithm (i.e., SGD)
is unable to detect anomalies as well as zero-day attacks
when trained with a small dataset. Additionally, Fig. 3] shows
that MLC quickly achieves a high overall performance after
175 iterations. While MLC’s accuracy is lower than those
of usfAD and LOF, it significantly outperforms IF. Notably,
meta-learning surpasses all OCC models in detecting normal
instances, clearly demonstrating its potential for zero-day

attack detection.

Given these results, usfAD emerges as the most effective
and reliable classifier for detecting attack instances. On the
other hand, the meta-learning algorithm offers distinct ad-
vantages that make it more suitable for resource-constrained
environments: lower training complexity and minimal data
requirements. This efficiency is particularly valuable for Near
Edge devices, where large datasets may not be available for
retraining. By deploying meta-learning on such devices, we
can effectively detect unknown attacks while addressing the
time and resource constraints of low-profile devices.

D. OCC'’s Performance for Detecting Unknown(Zero-day) and
Known Attack

Although we recommend that the meta-learning algorithm
can be deployed on Near Edge devices to detect both historical
(known) and zero-day (unknown) attacks, it faces a fundamen-
tal limitation in distinguishing between known and unknown
attacks, a distinction that is critical for model retraining and
threat intelligence. This limitation arises from the binary
classification nature of our meta-learning approach, which is
designed to distinguish only between normal traffic and attack
instances, without further categorizing attacks as known or
unknown. More critically, training the meta-learning model
with actual zero-day attack data would violate the fundamental
principle of zero-day attacks—that they are previously unseen
and unavailable during training.

Given the resource constraints of Near Edge devices, a
simple binary classifier is appropriate for this layer. In this
context, the OCC is a promising solution. Since OCC is
trained exclusively on known attack instances, it can identify
anomalous or previously unseen (unknown) attacks effectively.
Therefore, this work leverage the OCC in the Far Edge layer,
where it can distinguish unknown attacks from historical
ones, thereby supporting targeted model retraining and further
improving detection accuracy.

Table presents the performance of the one-class clas-
sifiers (including usfAD, LOF, and IF) in detecting known
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TABLE III: One Class Classifiers’

performance to detect known and unknown attack types

Attack Type Class usfAD LOF L
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1
DoS Unknown 96.17 86.42 91.03 54.39 8.84 15.20 15.25 1.02 1.92
Known 84.52 95.57 89.70 43.50 90.45 58.74 42.08 92.68 57.88
MQTT Unknown 82.42 95.49 88.48 4.23 2.10 2.81 78.55 98.76 87.50
Known 98.95 95.41 97.15 80.18 89.26 84.48 99.70 93.92 96.73
DDoS Unknown 72.04 52.84 60.96 18.49 10.01 12.99 1.56 0.50 0.76
Known 90.91 95.83 93.30 83.27 91.03 86.98 82.22 93.54 87.51
Recon Unknown 69.44 98.64 81.51 21.71 26.84 24.01 42.63 57.11 48.82
Known 99.89 96.53 98.18 94.04 92.27 93.15 96.48 93.86 95.15
Spoofing Unknown 16.13 70.97 26.29 1.18 10.75 2.12 13.20 94.82 23.18
Known 99.70 96.27 97.95 99.02 90.87 94.77 99.94 93.69 96.72
and unknown attack types, focusing on detecting zero-day Accuracy
attacks as the second-level detection in the framework. In
this experiment, we trained and tested the models multiple 122
times. Each time, we assumed a particular attack unknown 50
and all other attacks known. For example, we make DoS 70
attack unknown by removing the instances of DoS from sg
the training set but retraining this attack and other attack 20
instances in the testing set. Then, we repeat this process with 30
other attack types, i.e., MQTT, DDoS, Recon, and Spoofing. 20
Across the five attack categories, usfAD demonstrates superior 12
overall performance in both known and unknown (zero-day) Dos marT DDos Recon Spoofing

attack detection, achieving high precision, recall, and F1-
scores, particularly excelling in detecting unknown attacks.
For instance, usfAD achieves an Fl-score of 91.03% for
DoS attacks when it is unknown and 88.48% for unknown
MQTT attacks, significantly outperforming LOF and IF in
these scenarios.

LOF, on the other hand, shows limited effectiveness for
unknown attacks, with extremely low Fl-scores (e.g., 15.2%
for DoS and 2.81% for MQTT), although its performance
is good for known attacks (e.g., an Fl-score of 84.48% for
MQTT). This suggests that LOF struggles with identifying
patterns in unseen data and might be more suited for datasets
dominated by known attack instances. In contrast, IF exhibits
mixed performance, excelling in specific unknown attack
scenarios (e.g., an Fl-score of 87.5% for unknown MQTT)
but failing significantly in others (e.g., an Fl-score of 0.76%
for unknown DDoS and 23.18% for unknown Spoofing). This
variability indicates a lack of robustness across different attack
types.

Overall, usfAD emerges as the most reliable classifier for
detecting both known and unknown attacks, making it a
strong candidate for the second-level zero-day detection in
the framework. Its ability to balance precision and recall
across diverse attack types ensures robust performance. In
contrast, LOF and IF show inconsistent results, with limited
applicability for detecting unknown attacks, which underscores
the importance of selecting classifiers tailored to the detection
task at hand.

Unlike one-class classifiers, supervised classifiers like Ran-
dom Forest (RF) fail to detect unknown attacks because they
require training on specific types of instances to recognize
those patterns [9]. This means that the RF model, as a
supervised learning algorithm, is limited to the patterns seen in

musfAD mLOF mIF

Fig. 4: The accuracy of OCC to detect known and unknown
attack types

its training data and struggles to generalize beyond them. As
a result, it is not effective at identifying zero-day or unknown
attacks.

Figure [] demonstrates the accuracy of three one-class
classifiers—usfAD, LOF, and [F—for detecting known and
unknown attacks at the second level of a detection framework.
Specifically, usfAD consistently achieves the highest accuracy
across all attack types, with notable performance for Recon
(96.69%) and Spoofing (96.01%). This indicates its robustness
and ability to generalize effectively across different attack
scenarios, making it the most reliable option for distinguishing
between known and unknown attacks.

LOF shows significant variability, performing poorly for
DoS (44.49%) when DoS is unknown but achieving better
accuracy for Spoofing (90.07%) when it is unknown. IF
performs better than LOF for most attack types, with good
accuracy for MQTT (94.81%) and Spoofing (93.7%), but falls
behind usfAD overall. However, both LOF and IF exhibit
inconsistencies, highlighting their limited reliability for com-
prehensive detection tasks. Overall, usfAD stands out as the
most robust and accurate classifier for detecting both known
and unknown attacks.

E. Refined Attack Classifications at the Top Levels

Recall that in our framework, the first level filters attack
instances and passing them to the next level. Then, the second
level OCC is trained to detect known and known attack.
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TABLE IV: Performance metrics for Random Forest models

Category RF1 (Benign + Attacks) RF2 (Attacks Only)
Precision | Recall | F1-Score | Precision | Recall | F1-Score

Benign 88.73 98.56 93.39 0.00 0.00 0.00
DoS 99.97 99.97 99.97 99.97 99.97 99.97
MQTT 99.98 99.96 99.97 99.90 99.98 99.94
DDoS 99.99 99.99 99.99 99.99 99.99 99.99
Recon 99.89 99.75 99.82 97.38 99.89 98.62
Spoofing 98.32 96.20 97.25 90.99 97.12 93.96
Accuracy 99.97 99.93

Macro Avg 97.81 99.07 98.40 81.37 82.82 82.08
Weighted Avg 99.98 99.97 99.98 99.88 99.93 99.91

TABLE V: Performance metrics for Random Forest models by subcategory

Subcategory RF1 (Benign + Attacks) RF2 (Attacks Only)
Precision | Recall | F1-Score | Precision | Recall | F1-Score

Benign 88.09 98.80 93.14 0.00 0.00 0.00
ARP_Spoofing 98.37 96.35 97.35 86.31 98.20 91.87
Recon-Port_Scan 94.97 98.45 96.68 94.51 98.50 96.46
MQTT-DoS-Publish_Flood 99.95 99.97 99.96 99.95 99.98 99.97
MQTT-DDoS-Publish_Flood 99.94 99.93 99.94 99.94 99.92 99.93
Recon-OS_Scan 89.98 74.38 81.44 83.72 75.01 79.13
MQTT-DoS-Connect_Flood 100.00 99.85 99.92 99.97 99.85 99.91
MQTT-Malformed_Data 98.43 98.32 98.38 93.07 99.11 95.99
Recon-VulScan 95.35 71.93 82.00 74.14 75.44 74.78
Recon-Ping_Sweep 88.60 87.83 88.21 66.01 87.83 75.37
TCP_IP-DDoS-ICMP 99.98 99.99 99.99 99.99 99.99 99.99
TCP_IP-DDoS-TCP 99.99 99.98 99.98 99.99 99.98 99.99
TCP_IP-DDoS-SYN 99.99 99.99 99.99 99.99 99.99 99.99
TCP_IP-DoS-UDP 99.96 99.94 99.95 99.96 99.95 99.95
TCP_IP-DoS-SYN 99.98 99.97 99.97 99.97 99.97 99.97
TCP_IP-DoS-ICMP 99.96 99.93 99.95 99.96 99.94 99.95
TCP_IP-DoS-TCP 99.95 99.98 99.97 99.95 99.99 99.97
TCP_IP-DDoS-UDP 99.98 99.99 99.99 99.98 99.99 99.99
Recon-Port_Scan 99.99 100.00 99.99 99.99 100.00 99.99
Accuracy 99.89 99.84

Macro Avg 97.55 96.08 96.67 89.34 91.24 90.17
Weighted Avg 99.88 99.89 99.88 99.80 99.84 99.82

Finally, the third and fourth levels (which is deployed on the
Cloud) will further examine the suspicious traffic to identify
its attack category and sub-category, respectively. For these
top two levels, our framework leverages Random Forest (RF)
due to its effectiveness in classifying IoMT attacks [34], [36].
It is worth noting that some normal instances are misclassified
as attacks by the OCC at the root/first level, and then it will be
passed to the second layer. Similarly, if misclassified normal
instance is detected as known, it is passed to third and fourth
levels. Therefore, at the third and fourth levels, we trained
RF models using both normal and attack instances, namely
RF1 models. By doing so, these RF models can correct the
misclassified instances that were mistakenly forwarded by the
previous layer.

In the literature, some studies (e.g., [9]]) have recommended
training supervised classifiers solely on attack instances. How-
ever, in their approaches, any misclassified normal instances
at the first level remain undetected at the subsequent levels,
thereby adversely affecting the overall accuracy of the model.
Therefore, to evaluate and compare the effectiveness of the
proposed approach (i.e., training RF with both normal and
attack traffic), in the third and fourth levels, we also trained
other RF models (namely RF2 models) using only different
known attack categories.

The left side of Tables and |V| presents the performance
of RF model trained using both normal and attack instances,

i.e., RF1, while the right side of them presents the performance
of the RF model trained only using attack instances, i.e., RF2.
These results indicate that the first level does not perfectly
distinguish between normal and attack instances. Specifically,
approximately 831 normal instances were misclassified as
attacks and forwarded to the second level. Since RF2 models
at the second and third levels were trained solely on attack
instances, they failed to correctly identify these 831 misclas-
sified normal instances. On the other hand, by training with
both attack and normal instances, RF1 models can correctly
identify normal instances that were erroneously passed from
the first level. Consequently, this solution allows the second
and third levels detect misclassifications forwarded by the first
layer effectively.

Given the above results, while the first level with meta-
learning or OCC is essential for detecting emerging attacks,
using supervised learning at the higher levels (i.e., three and
four) enhances overall accuracy and allows for the identifica-
tion and correction of misclassifications. Thus, our proposed
hierarchical approach not only improves detection rates but
also facilitates appropriate actions in response to potential
misclassifications.

FE. Comparison of the Proposed Model with Existing Models

The comparative analysis of the algorithms presented in
Table highlights the strengths and limitations of state-of-
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TABLE VI: Performance comparison of state-of-the-art literature

References | Accuracy| Recall Precision | Fl-score | Algorithm Remarks
Dadkhah et | 99.6 95.1 97.1 96.1 Random Forest Developed CIC-IoMT2024 dataset.
al. [34] Did not address zero day attack issues.
Mohammadi | 99 99 98 98 CNN Leveraged deep learning for detecting known attacks.
et al. [35] Did not address zero day attack issues.
Minh et al. | 99.56 91.28 94.59 92.62 Swarm Learning Distributed learning issue was addressed.
142] Did not address zero day attack issues.
| Sohail etal. | 95.01 - - - XGBoost Applied explainable boosting ensemble methods for multi-
133]] classification.
Did not address zero day attack issues.
Ramesh et | - 99.82 99.81 99.81 Random Forest Applied Recursive Feature Elimination with Cross Validation
al. [36] (RFECYV).
Did not address zero day attack issues.
Proposed 98.27 96.25 98.29 97.2 Meta-learning Capable of identifying historical and zero-day attacks.
Approach-1 Algorithm Requires very few samples to train and retrain.
Proposed 99.77 99 97.81 97.81 usfAD (One | Capable of identifying historical and zero-day attacks.
Approach-2 Class Classifier) Trained using normal instances only.

the-art methods with our works for root level (i.e., binary
classification-anomaly detection). None of the existing studies
specifically considered hierarchical IDSs and addressed zero-
day attacks using the CIC-IoMT2024 dataset within IoMT
networks. Still, we compare our approach with these studies
to demonstrate its advantages for detecting normal instances
and zero day attacks which is overlooked by existing works
in IoMT domain. However, we do not provide a direct perfor-
mance comparison for detecting known and unknown attacks
at the second level, as these existing methods did not focus
on detecting known and unknown attacks.

As shown in Table traditional machine learning models
like Random Forest (used by Dadkhah et al. [34] and Ramesh
et al. [36]]) show high accuracy and precision but fail to detect
zero-day attacks because they rely on supervised learning,
which requires training on specific attack instances. Similarly,
CNN, used by Mohammadi et al. [35], also performs well but
lacks the capability to detect zero-day attacks, highlighting
the limitations of deep learning models trained exclusively on
known data. Swarm Learning (Minh et al. [42]) and XGBoost
(Sohail et al. [33]]) are effective for distributed learning and
multi-class classification, but like other methods, they do not
address zero-day attacks.

In contrast, our proposed approaches, i.e., Meta-learning
Classifier (MLC) (Approach-1) and usfAD (Approach-2),
stand out due to their ability to detect both historical and
zero-day attacks. The meta-learning classifier (MLC) achieves
this by requiring only a few samples for training, making it
particularly suitable for scenarios with limited data. Similarly,
usfAD, a one-class classifier, detects unknown attacks by
training exclusively on normal instances, making it robust
in handling anomalies, including zero-day threats. Our ex-
perimental results demonstrate that our proposed approaches
can achieve comparable or even better detection performance
than traditional methods, despite the additional challenge of
handling zero-day attacks that other existing approaches [33]—
[36], [42] do not consider. These approaches showcase the
evolving capabilities of attack detection, offering a significant
advantage over traditional methods by requiring minimal train-
ing data and providing the ability to generalize to unknown
attack types while yet achieving a high accuracy.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have analyzed the current Intrusion Detec-
tion Systems (IDS) in the Internet of Medical Things (IoMT),
highlighting significant limitations in conventional flat and
centralized multi-class classification approaches. These models
fail to address the dynamic and distributed nature of IoMT net-
works and are ineffective in detecting zero-day attacks due to
their reliance on historical data. To overcome these challenges,
we propose a hierarchical IDS that strategically distributes
various classifiers on different layers of IoMT’s hierarchical
networks, offering a robust and adaptive solution. The pro-
posed system leverages meta-learning or usfAD algorithms at
the root level to detect zero-day attacks with minimal training
data or even without requiring attack instances, making it
highly efficient and adaptable for deployment in resource-
constrained environments such as medical end devices. At
subsequent levels of the hierarchy, the system incorporates
one-class and supervised classifiers to determine whether the
attack’s type is known and identify its specific subcategory.
This approach enables our system to provide detailed and
actionable insights, ensuring comprehensive defense against
evolving cyber threats Moreover, the proposed approach not
only enhances intrusion detection accuracy but also aligns
with the computational and operational constraints of modern
IoMT networks, paving the way for more secure and efficient
network infrastructures. Therefore, our proposed hierarchical
architecture can effectively mitigate the critical challenges of
scalability, communication overhead, and real-time decision-
making in distributed networks like IoMT.
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