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Abstract: DDoS attacks have become a major threat to the security of IoT devices and can cause severe damage to the network 
infrastructure. IoT devices suffer from the inherent problem of resource constraints and are therefore susceptible to such 
resource-exhausting attacks. Traditional methods for detecting DDoS attacks are not efficient enough to cope with the dynamic 
nature of IoT networks, as well as the scalability of attacks, diversity of protocols, high volume of traffic, and variability in device 
behavior, and variability of protocols like MQTT, CoAP, making it hard to implement security across all the protocols. In this paper, 
we propose a novel approach, i.e., the use of Transformer models, which have shown remarkable performance in natural 
language processing tasks, for detecting DDoS attacks on IoT devices. The proposed model extracts features from network 
traffic data and processes them using a self-attention mechanism. Experiments conducted on a real-world dataset demonstrate 
that the proposed approach outperforms traditional machine learning techniques, which can be validated by comparing both 
approaches’ accuracy, precision, recall, and F1-score. The results of this study show that Transformer models can be an 
effective solution for detecting DDoS attacks on IoT devices and have the potential to be deployed in real-world IoT 
environments.  
  
1 Introduction  

The rapid growth of home automation systems has provided numerous entry points for hackers to exploit. Internet-connected 
devices such as smart refrigerators, smart watches, smart fire alarms, smart door locks, medical sensors, fitness trackers, 
wireless lamps, surveillance equipment, and smart thermostats with attached sensors offer hackers significant opportunities to 
access these systems. While IoT has made daily tasks easier to manage, it is needed to ensure that hackers cannot take 
advantage of these vulnerabilities[1]. As the amount of data generated by these devices increases with the lightning growth of 
the 5G network, it is essential to ensure that the data is secured to prevent it from being stolen for financial gain or potentially 
risking people’s lives[2]. In 2018, around 50% of the most significant global exploits targeted IoT devices, with IP cameras 
accounting for the majority of these attacks[3]. Even defense mechanisms like cameras are susceptible to such attacks. With 
2.98 billion cyber-attacks registered in the first half of 2019, the number of cyber-attacks on IoT devices surged more than three 
times compared to the second half of 2018[4]. In 2020, there were about 30 billion IoT devices online; by 2025, that number is 
expected to rise to 75 billion[5]. Evidence of this need can be seen in the fact that investments in IoT security climbed by more 
than 25% to reach 2.5 billion US dollars in 2020. This shows the need to outfit IoT devices with adequate security[6] 
appropriately. One such vulnerability is Distributed Denial of Services (DDoS), which employs compromised IoT devices to 
attack their targets by infecting them with a Botnet[53],[54]. Flooding threats known as distributed denial of service (DDoS) 
prevent genuine users from using the service they have paid for. According to current market data, it is one of the most common 
cybersecurity threats. Therefore, it is crucial to recognize and comprehend the various DDoS threats[7], [54]. There are primarily 
two types of DDoS attacks: reflection-based and exploitation-based. Each DDoS attack fits into one of these two categories. 
Reflection-based DDoS attacks are ones in which the hacker conceals his identity by utilizing tools and components from a third 
party[8]. Data packets, including the source and IP address of the victim or target, are sent to a reflector server to start the 
attack. These attacks are carried out using the User Datagram Protocol (UDP), Transport Control Protocol (TCP), or both 
simultaneously through the Application layer protocol. NTP, TFTP, MSSQL, and SSDP are examples of TCP-based attacks.DNS, 
LDAP, NETBIOS, and SNMP are examples of TCP/UDP-based combination attacks[9]. Reflection-based and Explosion-based 
attacks require third-party software and components to maintain anonymity when the attack is launched. It has both TCP- and 
UDP-based attacks. SYN Flood is a component of TCP-based attacks, while UDP-based attacks include UDP-Flood and 
UDP-lag. The hacker starts the UDP threat by delivering a massive number of UDP packets at a very fast rate on the target 
machine’s random ports, which causes the bandwidth to run out and ultimately causes the system to crash. UDP lag slows down 
users by interfering with client-server connections, which are handled by hardware switches or software that uses up network 
capacity. The TCP three-way handshake, which includes sending SYN packets continually until the machine collapses, is 
exploited in SYN attacks[10].  



 

 
Fig. 1: Top attack vectors in Quarter 4 2023  

Figure 1, which was derived from a recent post by Cloudflare about 2023, illustrates that DNS Flood attacks are the most 
prevalent, making up over half of the recorded network-layer DDoS attacks, followed by SYN Flood attacks, which constitute 
nearly a fifth of the attacks. According to research by Krebson security [11], each DDoS attack may have cost the owners of the 
affected devices $323,973.75 in addition to additional costs for the excessive use of power and bandwidth. The severity of the 
situation makes it one of the main issues with internet security, and several statistical detection techniques, such as 
wavelet-based, port entropy-based, destination entropy-based, etc., can be discovered in the various literature. However, given 
the constantly evolving nature of the internet, these techniques are often very time-consuming. As a result, several researchers 
have explored using machine learning and artificial intelligence techniques to identify DDoS attacks as a solution to these 
problems[46], [51]. Finding the most recent and accurate DDoS data set that correctly reflects IoT-specific behavior is the most 
challenging issue in developing a machine learning model to identify DDoS attacks [11], [47]. UNSW-NB15 and BoT-IoT are the 
most well-known and recent datasets in the area that encompass IoT devices using both simulated and actual data [12]. For 
tasks involving network security, such as DDoS detection, deep learning models are widely used [13], [49], [52]. Given its ability 
to spot long-term connections in sequential data, the Transformer architecture, one of these models, has garnered a lot of 
attention [14]. Moreover, transformer-based methodologies use parallel processing, enabling them to capture all the long-range 
dependencies within less time than traditional ML models [15]. Also, it overcomes the scalability issue; the traditional methods 
provide good results for small-scale IoT networks, but when the network is magnified, the accuracy drops significantly [16]. 
DDoS attacks usually involve a significant amount of dynamically changing network traffic, making it a strong option for detecting 
them [17], [48], [50]. [50] addresses the critical issue of communication security within the Internet of Things (IoT) ecosystem, 
focusing on preventing Distributed Denial of Service (DDoS) attacks. The authors analyze the security challenges inherent in IoT 
networks and propose a lightweight defensive algorithm designed to mitigate the risks of DDoS attacks. The paper emphasizes 
the need for effective security measures due to the widespread deployment of IoT devices, which are often susceptible to 
various cyber threats. [46] presents a novel, time-efficient approach for detecting Distributed Denial of Service (DDoS) attacks in 
Internet of Things (IoT) networks by leveraging Software-Defined Networking (SDN). The authors focus on addressing the 
challenges of real-time DDoS detection in IoT environments, where traditional detection mechanisms may be ineffective due to 
the resource constraints and dynamic nature of IoT devices. The paper proposes a hybrid detection model that integrates 
signature-based and anomaly-based detection methods to enhance the accuracy and efficiency of DDoS detection. [18], [19], 
[20] These papers justify through their results the benefits of using the Transformer model in IoT networks. Looking into the 
several benefits of the transformer model for detecting DDoS attacks, we aim to use a DDoS detection-based model. Utilizing an 
existing learned language model, our approach changes it to match the network traffic data of IoT devices. We compare our 
approach to other cutting-edge DDoS detection methods using a real-world data set. The results of the studies indicate the 
efficacy of our strategy, giving us more accuracy and fewer false positives when compared to other methods. The computational 
analysis supplements the result and highlights the practicality of the proposed system. This study helps to develop reliable and 
efficient DDoS detection systems for IoT devices, which would increase the security of IoT networks. The following is the list of 
our prominent contributions to this paper:  

• Comprehensive Dataset Fusion: The study combines UNSW-NB15 and BoT-IoT datasets, providing a diverse and 
comprehensive dataset for training and evaluation.  
• Advanced Transformer-Based Model: Utilizes a state-of-the-art Transformer model for DDoS attack detection, demonstrating 
significant improvements over traditional methods.  
• Efficacy of Transformer model: Comparison of various Transformer models for accuracy, F1 score, type of classification head, 
and encoding technique.  
• Computational Analysis: Comparison based on LSTM and Transformer model computational parameters.  
 



 

2 Research Gaps  

The trend of the contribution of the past research has already been discussed. In this section, the discussions are based on the 
shortcomings in past work from the perspective of the use of diverse and versatile datasets for the detection of DDoS in IoT 
environments; the basic assumption is that the DDoS solution should be scalable and can handle the sophisticated attacks and 
complex DDoS attack and therefore a careful review of the existing work in terms of the dataset, no of features and percentage 
of training and its performance has been evaluated, that has culminated in the motivation of the current research study. As we 
have used a combination of UNSW-NB15 and BoT-IoT datasets, the discussions below include past work on these datasets. 
Koroniotis et al. [32] created the BoT-IoT dataset and tested it using SVM, RNN, and LSTM. It has achieved the best accuracy of 
99.9% for SVM, but has considered only a single dataset. As the limitation in the traditional approaches is related to the 
detection of attacks in the diversity of protocols, dynamic devices' behavior, etc., the new techniques like the Transformer model 
would give an optimized solution only if the dataset used is versatile with diverse characteristics. Therefore, considering a single 
dataset is considered a research gap from the optimized detection perspective. Popoola et al. [33] used SMOTE along with 
DRNN on the BoT-IoT dataset to reduce the imbalance in the dataset, but considered only 5% of the dataset. Similarly, Churcher 
et al. [34] have implemented various ML methods like KNN, SVM, DT, NB, random forest, ANN, and LR on the BoT-IoT dataset 
and got an accuracy of 99% for KNN, considering only 2% of the dataset. It is important to observe that such a limitation has 
significant concerns about its relevance in real-time detection; the accuracy might be higher; however, due to limitations of the 
dataset, the features of the attacks are not sufficient as a scalable solution, and therefore, are considered as one of the 
drawbacks in existing research work. Shafiq et al. [35] have developed a new algorithm CorrAUC for feature selection using the 
area under the curve for a particular ML model; even though the accuracy yielded is 99.99%, the author has used only the best 5 
features train the model, using fewer features with high accuracy indicated less scalable approach, especially with new and 
sophisticated types of attacks, also it indicates the presence of less sub-class of attack vector which suffers with the drawback of 
low detection rate with sophisticated attacks, the similar limitation is observed in Khraisat et al. [36] using a hybrid IDS combining 
C5 and SVM classifier and selected only 13 features of the BoT-IoT dataset. Ibitoye et al. [37] used FNN and SNN for DDoS 
detection, which was trained on 20% of the BoT-IoT dataset. Guizani et al. [38] have incorporated RNN-LSTM on 10% of the 
UNSWNB15 dataset. Dai et al. [39] used a combination of CNN, Bi-LSTM, and attention mechanism on NSL-KDD, UNSWNB15, 
and CIC-DDoS2019 datasets, but the authors did not combine these datasets, leading to more prediction time. Similarly, Alkadi 
et al. [40] have implemented LSTM methodology on the BoT-IoT and UNSW-NB15 datasets separately; also, the computational 
cost to implement the model on such a resource IoT network was not discussed.  
To the best of our knowledge, none of the studies have worked on finding the effectiveness of the detection in versatile datasets 
along with its computational analysis, i.e., the dataset with numerous attack vectors present, which aligns with the real-world 
requirements. The versatile dataset is the closest depiction of real-world scenarios with many features and a large volume of 
data. Apart from the fusion of datasets, it is also important to highlight that the solution for detecting DDoS attacks with versatile 
datasets should consider the computational capacity and prediction time. While the mentioned studies propose different deep 
learning-based approaches for DDoS attack detection with limited dataset attributes, further research and evaluation are 
necessary to improve the detection method’s effectiveness, scalability, and robustness of the detection method for real-world 
security solutions. From the above-mentioned papers, we can summarize that there is a requirement for a solution that balances 
detection effectiveness, computational capacity, and prediction time in diverse and large datasets. also improving the scalability 
and robustness of the DDoS detection method for real-world security solutions. The main contribution of our research work is 
evaluating the transformer model in a versatile dataset, i.e., the combination of BoT-IoT and UNSWB15. The motivation behind 
evaluating the Transformer model for DDoS detection in a versatile dataset will draw the attention of the research community 
and the solution provider to implement it for real-time detection mechanisms.  

3 Research Methodology  

The research model implemented is depicted as a block diagram in Figure 2, consisting of several interchangeable blocks that 
comprise a processing pipeline. These building elements make it easier to quickly customize, train, and test our model using 
flow-based DDoS datasets like BoT-IoT datasets that capture IoT-specific behaviors. Each of these blocks will be covered in the 
sections that follow.  

3.1 Data set acquisition  

Our data ingestion component is designed to acquire datasets from various sources(e.g., NF-UNSW-NB15, NF-BoT-IoT, 
NF-CSE-CIC IDS2018). It is highly adaptable (As we are considering multiple datasets for our experimental setup) to any tabular 
data set. It seamlessly handles missing numbers or values outside the expected range. To effectively apply this component to a 
specific data set, a data set specification is required. This specification includes a list of categorical and numerical attributes in 
the data set. It also specifies the benign traffic label and the class column, which are essential for training and evaluation 
purposes to differentiate between malicious and legitimate flows. Once the data set specification is provided, our model can 
seamlessly process the data set through subsequent stages without additional code. This ensures a smooth transition from data 
ingestion to pre-processing and input encoding steps. By automating the data ingestion process and incorporating data set 
specifications, our model streamlines the handling of diverse datasets, enabling efficient data processing and analysis. There are 
around 43 features for pre-processing; some of the features are indicated in Table 1.  

The input data set has the features in Table 1.  

 



 

 
Fig. 2: Block Diagram of our model for detecting DDoS attacks using Transformers  

3.2 Pre-processing:  

This research used 1)NF-UNSW-NB15 and 2)NF-BoT-IoT data sets. To ensure that there is no data loss from the evaluation 
data set during Pre-processing, the pre-processing is first fitted to the training data and then applied to the entire data set. The 
data we are working with is in a flow-based format, commonly used by network managers, but requires additional processing to 
be suitable for machine learning models. This format includes categorical fields, such as TCP and UDP port numbers, which 
must be appropriately handled. For example, SSH port 22 and SMTP port 25 may have identical numerical values but represent 
different protocols. On the other hand, HTTPS is frequently used on ports 8080 and 443 despite having a higher numerical 
difference. To address these challenges, categorical data can be pre-processed using conventional methods. The 
pre-processing layer can either one-hot encode or integer encode the categorical variables, depending on the requirements of 
the input encoder. Certain machine learning models, like neural networks, benefit from representing contextual distances 
between values for optimal performance. In this case, pre-processing involves encoding the most frequent N categorical features 
using either one-hot or integer encoding and performing min-max scaling on numerical features after applying logarithm 
transformations. Custom pre-processing can be established using the fit and transform methods for numerical and categorical 
fields. The fit and transform techniques for categorical fields consider the expected categorical format (one-hot or integer 
encoded) as a parameter, allowing flexibility in switching between different pre-processing approaches based on the input 
encoding requirements. Here are the detailed changes that occur to the data after each step of pre-processing:  

Step 1: Handling Categorical Fields  

• The original dataset contains categorical fields like TCP and UDP port numbers.  
• For the N most frequent categorical features, we apply one-hot encoding or integer encoding based on the input encoder 
requirements. • One-Hot Encoding:  
1. Each categorical feature with N unique categories is replaced with N binary features.  
2. Each binary feature represents one category, and only one feature will have a value of 1 (indicating the presence of that 
category). At the same time, the rest are set to 0 (indicating the absence).  
• Integer Encoding:  
1. Each category is mapped to a unique integer value.  
2. After this step, the categorical features are transformed into a numerical format suitable for machine learning models.  
 
 
 



 

Table 1: Features and Meanings  

Features  Meaning 

IPV4_SRC_ADDR  The source IPv4 address of the network flow. 

L4_SRC_PORT  The source port number used in the transport layer (e.g., TCP or UDP) for the outgoing packets. 

IPV4_DST_ADDR  The destination IPv4 address of the network flow. 

L4_DST_PORT  The destination port number used in the transport layer (e.g., TCP or UDP) for the incoming packets. 

PROTOCOL  The network protocol used for the flow(e.g., TCP, UDP, ICMP). 

L7_PROTO  The Layer 7 (application layer) protocol is used for communication (e.g., HTTP, DNS, FTP). 

IN_BYTES  The total number of incoming bytes for the flow. 

IN_PKTS  The total number of incoming packets for the flow. 

OUT_BYTES  The total number of outgoing bytes for the flow. 

OUT_PKTS  The total number of outgoing packets for the flow. 

TCP_FLAGS  The TCP flags used in the TCP header(e.g., SYN, ACK, FIN) for TCP flows. 

ICMP_TYPE  The type of ICMP (Internet Control Message Protocol) message for ICMP flows. 

ICMP_IPV4_TYPE  The specific type of ICMP message for IPv4 packets in ICMP flows. 

Label  The label assigned to the network flow indicates whether it is a normal flow or an attack flow (e.g., "normal" 
or "attack"). 

 
 
Step 2: Handling Numerical Features  

• The original dataset contains numerical features that need pre-processing.  
• We apply logarithm transformations to the numerical features. Logarithm transformations normalize the distribution and handle 
extreme values.  
• After applying logarithm transformations, we perform min-max scaling on the numerical features. Min-max scaling scales the 
features to a specific range, often between 0 and 1, making them compatible with machine learning models.  
• After this step, the numerical features are transformed and standardized, ready for use in training the models.  

Step 3: Training and Evaluation Split  

• The preprocessed dataset is divided into training and evaluation sets.  
• We allocate 80% of the data to the training set and 20% to the evaluation set.  
• This ensures that the models are trained on a substantial portion of the data and evaluated on unseen data to measure their 
generalization performance.  

The final preprocessed dataset will have the following characteristics:  

• Categorical features replaced with one-hot encoding or integer encoding for the N most frequent categorical 
variables. • Numerical features logarithm-transformed and min-max scaled.  
• The data is split into training and evaluation sets for model development and evaluation purposes.  
• This processed data is now suitable for use with machine learning algorithms, especially neural networks, to build intrusion 
detection models or any other relevant tasks based on the research objectives.  

3.3 Architecture of our Transformer model  

We have developed a TensorFlow Keras model of the transformer that can be independently put together and trained as 
required. This section is going to present the transformer model, which consists of three interchangeable parts:  

3.3.1 Input Encoding: is crucial in converting flow data into a fixed-length feature representation, enabling effective processing by 



 

a transformer model. Before a transformer can analyze a flow, the input encoder must transform it into a meaningful feature 
vector[55]. Flow data, a type of tabular data, consists of predefined fields that are categorized into 2 types:  
• Categorical Fields that contain discrete levels, such as port numbers. However, numerical proximity doesn’t always imply 
contextual similarity. For example, ports 22 and 25 are numerically close but serve different protocols, whereas ports 443 and 
8080 are widely used for similar services despite being numerically distant[55].  
• Numerical Fields includes metrics such as the number of packets sent, where the distance between values carries contextual 

significance[55].  

Different encoding strategies ensure that the input encoder captures categorical and numerical data. 1 commonly used method, 
as in TabTransformer, encodes categorical fields individually by converting them into continuous vectors that preserve contextual 
meaning. These vectors are combined with numerical fields to generate feature vectors suitable for machine learning models. 
However, this approach primarily focuses on encoding categorical information, treating numerical fields separately. Another 
approach involves embedding categorical and numerical fields simultaneously. This is achieved by applying one-hot encoding to 
categorical fields, concatenating them with numerical values, and passing the combined data through an encoding layer. While 
this method enables comprehensive analysis, it can lead to high-dimensional feature spaces, making certain fields more 
challenging to encode effectively[55]. By selecting an appropriate encoding strategy, the input encoder ensures that the feature 
vectors retain essential information, allowing the transformer to process the flow data accurately[55]. Here’s a brief description of 
each component of a transformer model:  

Encoder:  

• The encoder takes an input vector sequence consisting of multiple layers (L layers).  
• Each layer in the encoder contains a self-attention mechanism and a feed-forward neural network.  
• The self-attention mechanism computes weighted sums of input vectors to generate contextualized representations. • 
The feed-forward neural network introduces non-linearities and further processes the information from self-attention. • 
The encoder processes the input sequence independently and generates encoded representations for each position in 
the sequence. Output of each sublayer = LayerNorm(x + Sublayer(x))  

Self-Attention Mechanism:  

• The self-attention mechanism computes attention scores between each vector in the input sequence (query Q) and all other 
vectors (keys K and values V), which can be computed using Equation 1.  
• Query, key, and value projections are performed using learnable weight matrices.  
• Attention scores are obtained by taking the dot product of the query and key projections.  
• Attention weights are obtained by applying the softmax function to the attention scores.  
• The weighted sum of the value vectors, using the attention weights, produces the output of the self-attention mechanism.  
!   

 
(1) 

Feed-Forward Neural Network (FFN):  

• The feed-forward neural network consists of two linear transformations with a non-linear activation function in between. It is 
calculated using Equation 2.  
• It introduces non-linearities to the output of the self-attention mechanism, enhancing the model’s ability to capture complex 
patterns in the data.  

FFN(x) = max (0, xW1 + b1) W2 + b2 (2)  

Decoder:  

• The decoder, like the encoder, consists of multiple layers (L layers).  
• Each layer in the decoder contains a self-attention mechanism, an encoder-decoder attention mechanism, and a feed-forward 
neural network. • The decoder generates the output sequence based on the encoded representations produced by the encoder.  

Encoder-Decoder Attention:  

• The encoder-decoder attention mechanism allows the decoder to attend to the encoder’s output, incorporating information from 
the input sequence.  

• It computes attention scores between the decoder’s query and the encoder’s keys, allowing the decoder to focus on relevant 
parts of the input.  

In summary, a transformer model uses the encoder to process the input sequence independently, producing encoded 
representations. The decoder then generates the output sequence, leveraging the encoded representations and attending to the 
input sequence when necessary. The self-attention mechanism and feed-forward neural networks are the core components that 
capture dependencies and non-linear relationships within the data, making transformers effective in various natural language 
processing tasks.  



 

3.3.2 Classification Head Options: Transformers are sequence-to-sequence models; therefore, we must transform the sequential 
output into a classification result to accomplish our goal. We have identified alternate methods that can be more effective than 
directly feeding all the transformer outputs into the MultiLayer Perceptron (MLP) for classification. One often employed technique 
is “flattening, " which converts the output sequence into a feature vector before being fed into the MLP. However, because the 
number of parameters is increasing exponentially, this strategy gets less effective as the sequence length increases. We have 
investigated further approaches, such as global average pooling, to overcome this problem. To do this, a feature vector is 
created by averaging the features in the output sequence. Global average pooling works effectively for tasks like sentiment 
classification, where it is advantageous to average the characteristics throughout the full phrase or paragraph. Averaging over 
the context of earlier flows may not be the best option when just the last flow in the sequence is being classified. Another 
strategy we consider is using a time-distributed neural network layer for each feature in the contextual representation. This 
enables us to represent the last flow’s additional weight by applying different weights to the other flows in the sequence. This 
strategy, also known as feature-wise embedding or feature-wise projection, avoids including data from earlier flows that the 
transformer has already considered. Alternatively, we can enter the feature vector for the classification head from the 
transformer’s final output. This avoids the need for averaging or additional layers and corresponds to the feature vector of the 
previous flow. This strategy is known as the ”Last token.”We also investigate the effectiveness of adding a ”classification” token 
at the end of the series of flows. This strategy is comparable to models like BERT, where a unique token directs the model to 
carry out a certain task. We assess the effectiveness of our token-based strategy by classifying data using the corresponding 
transformer output. In conclusion, we explore various methods for converting a transformer model’s sequential output into a 
classification outcome. These techniques increase efficiency and optimize parameter counts for various activities, including flow 
classification.  

3.4 Details of the dataset and learning model  

The dataset that we utilized to train our model and the outcomes we obtained are covered in this chapter. We used a grid search 
to gather the results. Input encodings, transformer block type, depth, transformer feed-forward size, attention heads per 
transformer, classification heads per transformer, and learning rate are the dimensions investigated in this article.  

3.4.1 Model Training and Grid Search: Each experiment has been tried at least three times when conducting a grid search over a 
target space and opted for the best repeat, which can account for insufficient model initialization throughout the experimentation, 
to determine the outcome. Accordingly, the early halting and an epoch limit for the model training have been set. The maximum 
number of epochs was 20, and the early halting was set to 5 epochs of patience. Since most models had converged to within 1% 
of their final performance by the 20th epoch during our initial experimentation, we decided to use 20 epochs. With the learning 
rate set in each experiment, we trained using the Adam optimizer. Our model was run on Google Colab and had specifications 
for Intel Xeon CPU @2.20 GHz, 13 GB RAM, Tesla K80 accelerator, and 12 GB GDDR5 VRAM.  

3.4.2 Datasets: In this research, two prominent datasets for DDoS attacks have been used, i.e.  

1. The University of New South Wales produced the network security dataset known as UNSW-NB15-V2  
(https://research.unsw.edu.au/projects/unsw-nb15-dataset).  
It includes legitimate and nefarious information on network activity, such as DoS and DDoS attacks. It is used to train and test 
network security algorithms and intrusion detection systems and has over 2 million instances. The dataset is useful for 
enhancing network security measures since it allows researchers to analyze and categorize various kinds of network behavior.  

Table 2 Class Distribution in UNSW-NB15 dataset  

Class  No of records % of total data 

Benign  2295222  96.023 

Exploits  31551  1.32 

Fuzzers  22310  0.933 

Generic  16560  0.69 

Reconnaissance 12779  0.534 

DoS  5794  0.242 

Analysis  2299  0.096 

Backdoor  2169  0.090 

Shellcode  1427  0.059 

Worms  164  0.006 

 
 
 



 

2. UNSW Canberra’s Cyber Range Lab created the BoT-IoT dataset and offers a complete network environment, including 
botnet and regular traffic (https://research.unsw.edu.au/projects/bot-iot-dataset).  
It is divided into attack kinds and subcategories and contains a variety of file formats, including pcap, argus, and csv. The 
dataset includes attacks such as data exfiltration, keylogging, OS and service scans, DDoS, and DoS. A 5% subset that totals 
1.07 GB and 3 million records has been extracted. The BoT-IoT dataset is important for researching and creating secure IoT 
settings.  

Table 3: Class distribution in BoT-IoT dataset  

Class  No of records % of total data 

Non anomalous(normal) 9543  0.013 

Information gathering 1821639  2.480 

DDoS  38532480  52.500 

DoS  33005194  45.00 

Information theft  1587  0.002 

 
 
3.4.3 Evaluation Metrics: Standard criteria were used to evaluate the effectiveness of various transformer models, including the 
false alarm rate, detection rate, and F1 score. True Positives, True Negatives, False Positives, and False 
Negatives—abbreviated as TP, TN, FP, and FN are combined to calculate the metrics.  
 
3.4.4 Hyperparameters: Different input encoding techniques, classification heads, transformer configurations, and corresponding 
hyperparameters were examined. We took into account the following hyperparameters for our model:  

• Transformer Block Types: The encoder and decoder blocks have been considered in the proposed model setup. • Number of 
Layers: To investigate the effects of varied layer counts on model performance, the experiments were conducted with 2, 4, 6, 
and 8 layers.  
• Feed-forward Dimensions (FF): To find the best size for the model range of feed-forward layer sizes in the transformer blocks, 
128, 256, and 512 have been chosen.  
• Number of Attention Heads: From 2 to 12 to analyze the impact of various attention head counts in the transformer blocks. • 
Learning Rate: To determine the best value for the model’s training, the range of learning rates was 0.01, 0.001, 0.0005, 0.0001, 
and 0.00001.  
• Optimizer: The model was optimized using the Adam optimizer, known for its efficiency in handling sparse gradients on noisy 
problems. The binary cross-entropy loss function was employed, which was appropriate for binary classification tasks, ensuring 
that the model’s predictions were as close to the actual labels as possible.  
• Batch size: During training, a batch size of 128 was used, striking a balance between training speed and memory efficiency. • 
Epochs: The model was trained for a maximum of 20 epochs, with each epoch comprising 64 steps per epoch. • Early stopping: 
To prevent overfitting and enhance the model’s ability to generalize to unseen data, early stopping was implemented with a 
patience of 5 epochs.  

Various hyperparameters and configurations were evaluated to better understand how they affect the model’s performance and 
find the right set for our particular purpose.  

4 Results and Discussion  

In this section, we present the results of our approach in two parts. The efficacy of the transformer model is demonstrated by 
comparing two models, Transformer and LSTM, furthering the computational analysis of the system.  

4.1 Efficacy of the system  

Various parameters, e.g., Input Encoding, Classification Heads, different Transformer models, etc., affected the model’s overall 
performance. Figure 3 shows the confusion matrix of the Transformer model.  



 

 
Fig. 3: Confusion Matrix  

Table 4 compares the performance of the four transformer models we considered for our experimental setup. Here, we have 
shown the two best-performing combinations for each transformer model.  

 

It is evident from Table 4 that the type of transformer model didn’t have much effect on the F1 score and accuracy of the model. 
The F1 score is calculated using Equation 3. Though, to be quite precise, we can say the shallow models outperformed the 
deeper model when we check their F1 score and accuracy. Though their performances were insignificant, the major difference 
we noticed between the shallow and deeper model was in terms of their total trainable parameters, which can be seen in Table 
4. The deep encoder and decoder models, like GPT and BERT, had a much larger number of trainable parameters than the 
shallow models. Its major effect was on the time required for training the models and their inference time. For a 
resource-constrained environment, such as an IoT environment, deep encoder and decoder models will pose a huge problem. 
As our basic objective of this research work was to identify a lightweight machine learning model that can be implemented for  

 
Table 4 Comparison of the transformer models  

Transformer  Layers  Heads FDim Classification 
head 

Input 
encodings 

Parameters  F1 
scor

e  

Accuracy  Alarm 
Rate 

Shallow 
Encoder 

2  2  128  Last Token  Record 
Emb.Dense 

383,237  90.
54  

99.79  1.05 

Shallow 
Encoder 

2  2  256  Feature 
Wise 
Projection 

Record 
Projection 

349,332  90.
43  

98.38  0.95 

Shallow 
Decoder 

2  2  128  Last Token  No input 
encoding 

1,346,545  88.
74  

99.65  1.32 

Shallow 
Decoder 

2  2  128  Flatten  No input 
encoding 

1,568,666  87.
81  

99.53  1.12 

GPT 
Model(Dee
p  
Decoder) 

12  12  768  Feature 
wiseprojecti
on 

Categorial 
Emb. 
Lookup 

20,514,132 8 87. 
89 

98.62  1.06 

GPT 
Model(Dee
p  

12  12  768  Last Token  Record 
Emb.Dense 

30,506,179 8 89.9
3 

98.8  1.05 



 

Decoder) 

BERT 
Model(Dee
p Encoder) 

12  12  768  Last Token  No input 
encoding 

124,875
8

87. 
79 

98.75  1.23 

BERT 
Model(Dee
p Encoder) 

12  12  768  Last Token  Record 
Projec tion 

29,862,401 7 76. 
32 

98.90  2.78 

 
 
In real-time scenarios, it’s apparent that BERT and GPT won’t be a good choice for such use cases. This is well-suited for DDoS 
attack detection tasks where we have a real-time stream of network traffic packets and must monitor them continuously to detect 
the attack. It can be helpful to find out if the recent flow is part of a suspicious sequence. Table 4 shows that the input encoding 
did not impact the overall model’s F1 score. The performance of each input encoding technique was essentially the same. 
However, it significantly reduced the number of model parameters. For instance, record-level embedding used the last token as 
the classification head and produced the same outcome as category embedding with only half the parameter counts.  

 
Fig. 4: F1 scores obtained for different types of classification Heads  

It can be observed from Figure 4 that classification heads have the biggest impact on the model’s performance. While global 
average pooling and CLS token did, Last Token, Flatten, Feature-wise Embedding, and Feature-wise Projection all performed 
roughly the same, and with satisfactory results. The authors of most NLP research papers have employed global average 
pooling, although it should be avoided when doing DDoS detection tasks. This can be considered as one of the major 
contributions. Global Average Pooling has been used extensively in related areas, particularly natural language processing, to 
accomplish categorization. However, our research work’s outcomes showed this was one of the least effective techniques. This 
makes sense, given that only the last flow in the sequence is being classed and that the transformer previously captured the 
relationships between this flow and earlier flows in the previous token. By averaging, we incorporate the data from earlier flows 
that might not be pertinent to the current classification task. The Flatten method was one of the best classification heads, which 
takes all of the transformer’s outputs and sends them straight to the classification Multi-Layer Perceptron(MLP). Figure 4 reveals 
that, in contrast to the other approaches, these results in a disproportionately high parameter count that grows exponentially with 
sequence length. Although this method can be employed for short flow sequences, the model size may grow out of control for 
longer sequences. More training data are needed, and the risk of over-fitting grows with more model parameters. Finally, 
feature-wise embedding also had decent performance. With this method, the classification multi-layer perceptron can get a 
weighted mixture of all the features from the flows in the sequence instead of simply the data from the previous flow. As the 
transformer has already recorded dependencies between the latest flow and earlier flows, this is probably not preferable to 
taking only the last flow’s embedding. Considering that this receives a slightly lower F1 score than picking the last token, it 
follows that final token classification heads seem to be the most effective for DDoS attack detection tasks.  
 
 

Table 5 Training Vs Inference Time  

Transformer 
model  

Classification Head  Input Encoding  Train 
time(flows/sec) 

Inference Time 

Shallow Encoder  Last Token  Record Emb. Dense  1630  7877 



 

Shallow Encoder  Feature Wise Projection  Record Projection  1527  6321 

Shallow Decoder  Last Token  No input encoding  1095  6481 

Shallow Decoder  Flatten  No input encoding  1088  6321 

GPT Model 
(DeepDecoder) 

Feature Wise Projection  Categorical Emb. 
Lookup  

105  287 

GPT Model 
(DeepDecoder) 

Last Token  Record Emb. Dense  288  2959 

BERT Model 
(DeepEncoder) 

Last Token  No input encoding  48  154 

BERT Model 
(DeepEncoder) 

Last Token  Record Projection  83  752 

 
 
In Table 5, train time is the duration for a machine learning model to learn patterns in a dataset, while inference time is the phase 
where the trained model predicts or performs tasks on new data, which is crucial for real-time systems with low latency. They are 
measured in terms of flows/second. This means that the higher the throughput (flows/second), the better the model will be to 
train, and it will take less time for prediction. A model with higher throughput will be preferred for the real-time implementation of 
our model. The shallow transformers have much higher throughput than the deeper models. To measure the training and 
inference time, we followed the following steps:  

Training Time Measurement:  

• The GPU was cleared, and TensorFlow was warm before starting the measurements.  
• The training time for each batch was recorded, including the backpropagation step.  
• The recorded training time for each batch was divided by the batch size.  
• The average training time per batch was calculated by averaging all the batches used during training.  
• TensorFlow train on batch function was used for this purpose.  
• Care was taken to ensure no other processes were running during the model training.  
• Outlier testing was performed to check for significant drift in batch training times during training.  

Inference Time Measurement:  

• The inference time for a single batch was recorded from the start to the end of the batch.  
• This process was repeated four times on the same batch of data to ensure consistent results and avoid 
caching effects. • The median time from the four measurements was taken to obtain a stable range for 
inference time.  
• This procedure was repeated for 50 batches of data, selected randomly.  
• The mean time over all the batches was calculated to determine the average inference time.  

Finally, the result of the proposed research is being compared with the state-of-the-art method, where LSTM was used as the 
classifier.  

Table 6 Comparison of our model with state-of-the-art models  

Technique  Algorithm  Data-set  No of 
Fea  
tures 

Amount of dataset used  Accuracy  No of 
Classes 
Classified 

Protocol-Based 
Deep Intrusion 
Detection for DoS 
and DDoS Attacks. 

LSTM  BoT-IoT 
UNSW  
NB15 

26  96% of the BoT-IoT dataset 
and 87% of the UNSW NB15 
dataset 

96.3  3 

A Transformer 
Based Approach 
for DDoS Attack 
Detection in IoT 
Networks 
(Proposed). 

Shallow 
Encoder, 
Shallow 
Decoder, 
Deep 
Encoder, 
Deep 
Decoder 

BoT-IoT, 
UNSW  
NB15 

NA  Used the entire dataset, out 
of which 80% was used for 
training and 20% for testing 

99.79, 
99.65,98
.62, 
98.75 

2 



 

4.2 Computational Analysis  

CPU utilization (per core) over time:  
The consistency indicates that the transformer model is likely processing at a steady rate without significant spikes or drops in 
CPU load, which implies a stable processing demand. The Transformer model appears to have a more consistent and possibly 
lower computational demand than the LSTM model.  

Disk utilization in gigabytes (GB) over time:  
The disk utilization appears to be constant at around 27 GB, indicating that the Transformer model uses no additional disk space 

during this  
 

Table 7 Comparison of Computational Analysis  

Parameters  LSTM  Transformer  Difference  Inference 

CPU utilization 
(percore) 

90%  30%  60%  Transformer model has CPU 
utilization60% less than LSTM 
model. 

Network 
traffic(bytes) 

0-50MB  0.4MB-1MB  49MB  Network traffic drops by 98% for 
Transformer model. 

Disk utilization (GB)  27.4GB  27GB  0.4GB  Even though the difference is small, 
the duration of disk utilization for 
the LSTM model is in minutes, 
whereas for the Trans former 
model, it is in seconds. 

 
 

   
Fig. 5: System CPU utilization for LSTM 

 
 
 
 



 

 
                       Fig. 6: System CPU utilization for Transformer  

time interval. The Transformer model does not show any disk space change over the 30 seconds depicted, which means the 
model is loaded in memory and not engaging in significant read/write activities during this period. The LSTM model has a small 
but noticeable increase in disk space usage at the start, reflecting initialization activities or initial data processing steps. After this 
initial activity, the disk usage does not change, suggesting that the model is either running in memory or that data is not being 
written to or read from the disk. 

 

Fig. 7: Disk utilization for LSTM                                           

 

Fig. 8: Disk utilization for Transformer  



 

Network traffic in bytes over time:  
The graph indicates that the amount of network traffic associated with the LSTM model also increases as time progresses. We 
can infer that both models engage in network activity, with the LSTM model showing a larger total traffic volume over a longer 
period. In contrast, the Transformer model shows a detailed, shorter, balanced two-way network traffic period. As the LSTM 
model has 2 LSTM layers, one for binary classification and a second for multi-class classification, along with a dense layer for 
output and an embedded layer for converting the dataset to a vector, the network traffic is more compared to the Transformer 
model.  

 
Fig. 9: Network traffic for LSTM              

 
 

 
 

Fig. 10: Network traffic for Transformer  

GPU Power Usage (W):  
GPU power usage, which tracks the power consumption of a GPU (Graphics Processing Unit) over time, measured in seconds. 
The horizontal x-axis represents the time from 70 to 100 seconds, while the vertical y-axis represents the power usage in watts, 
ranging from approximately 11.75W to 12.05W. The curve shows a slight bend, indicating a gradual acceleration in power usage 
rather than a linear increase. The increase in power usage suggests that the GPU is being subjected to progressively more 
demanding tasks, such as computational processes, that are becoming more intensive over time.  



 

 
Fig. 11: GPU power utilization  

5 Conclusion  

The proposed research has demonstrated the utility and power of transformer models by a detailed and methodical analysis of 
various configurations over a combination of two widely used datasets. With the ability to process large amounts of network 
traffic data in real-time and identify anomalous patterns, Transformer models can provide accurate and timely detection of DDoS 
attacks. Through self-attention mechanisms, Transformer models can capture long-range dependencies in the data and learn 
contextual relationships, making them particularly effective in detecting sophisticated and evolving DDoS attacks when working 
with such enormous data. Furthermore, adapting to changing network traffic patterns and learning from new data ensures these 
models remain effective. Our research concluded that selecting the classification head was the most important aspect of the 
model’s performance, and “Last Token” was the best option. The model size can be decreased by more than half without 
affecting the classification performance by applying record-level embedding or projection. The quickest approaches in terms of 
training time and inference were record-level approaches. For DDoS detection tasks, shallow transformer models are adequate, 
achieving the highest accuracy of 99.79% with 60% less CPU utilization as compared to the state-of-the-art LSTM model, which 
had an accuracy of 96.3%, as shown in Table 6.  

6 Future Work  

In light of the challenges identified with our proposed approach, future work can be focused on several key areas to enhance the 
robustness and effectiveness of our DDoS detection system in IoT networks. First, a mechanism for incremental learning can be 
developed, enabling the model to continuously learn from new data without needing to be retrained from scratch. This will help 
the model adapt to evolving network conditions and data patterns, ensuring it remains effective. Additionally, incorporating 
adversarial training techniques will make the model more resilient against evasion attacks, where attackers manipulate traffic 
patterns to avoid detection. To address the practical challenges of implementing and maintaining detection systems, automated 
tools can be developed for model monitoring, updating, and retraining, reducing the need for extensive manual intervention. 
Enhancement of the system’s real-time data handling capabilities to preprocess and analyze network traffic efficiently, meeting 
the stringent latency requirements of IoT networks. Extensive real-world testing of the model in various IoT environments can be 
conducted to validate its effectiveness and identify areas for improvement. The model can be integrated into existing IoT 
frameworks at the Modular level as part of security pipelines, such as IDS and SIEM systems, or at the edge or cloud level, 
leveraging the computational power of cloud resources for large-scale data analysis. Establish benchmarks for different types of 
IoT networks and attack scenarios, systematically evaluating the model’s performance and guiding future enhancements. These 
efforts will collectively ensure that our DDoS detection system remains robust, adaptive, and effective in real-world IoT 
environments.  

7 Data availability statement  

The following datasets were used for the experimental work; the links have been provided for reference:  

1. UNSW-NB15: https://research.unsw.edu.au/projects/unsw-nb15-dataset  
2. BoT-IoT: https://research.unsw.edu.au/projects/bot-iot-dataset  
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