
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

MirGuard: Towards a Robust Provenance-based Intrusion Detection

System Against Graph Manipulation Attacks
Anyuan Sang, Lu Zhou, Li Yang, Junbo Jia, Huipeng Yang, Pengbin Feng and Jianfeng Ma

Abstract—Learning-based Provenance-based Intrusion Detec-
tion Systems (PIDSes) have become essential tools for anomaly
detection in host systems due to their ability to capture rich
contextual and structural information, as well as their potential
to detect unknown attacks. However, recent studies have shown
that these systems are vulnerable to graph manipulation attacks,
where attackers manipulate the graph structure to evade detec-
tion. While some previous approaches have discussed this type
of attack, none have fully addressed it with a robust detection
solution, limiting the practical applicability of PIDSes.

To address this challenge, we propose MirGuard, a robust
anomaly detection framework that combines logic-aware multi-
view augmentation with contrastive representation learning.
Rather than applying arbitrary structural perturbations, Mir-
Guard introduces Logic-Aware Noise Injection (LNI) to generate
semantically valid graph views, ensuring that all augmentations
preserve the underlying causal semantics of the provenance data.
These views are then used in a Logic-Preserving Contrastive
Learning framework, which encourages the model to learn rep-
resentations that are invariant to benign transformations but sen-
sitive to adversarial inconsistencies. Comprehensive evaluations
on multiple provenance datasets demonstrate that MirGuard
significantly outperforms state-of-the-art detectors in robustness
against various graph manipulation attacks without sacrificing
detection performance and efficiency. Our work represents the
first targeted study to enhance PIDS against such adversarial
threats, providing a robust and effective solution to modern
cybersecurity challenges.

Index Terms—Intrusion Detection System, Provenance Graph,
Graph Manipulation Attack.

I. INTRODUCTION

ADVANCED Persistent Threats (APTs) have become in-
creasingly prevalent, posing significant risks to global

cybersecurity [1]. These sophisticated and stealthy attacks
target critical infrastructure, government systems, and private
enterprises, often leading to severe data breaches, financial
losses, and national security threats. The persistent nature of
APTs allows attackers to maintain a foothold within com-
promised networks for extended periods, enabling them to
exfiltrate sensitive information and disrupt operations, causing
widespread harm to society and the economy.

Anyuan Sang, Junbo Jia, Huipeng Yang, Lu Zhou, and Li Yang are with
the School of Computer Science and Technology, Xidian University, Xi’an,
China.

Pengbin Feng and Jianfeng Ma are with the School of Cyber Engineering,
Xidian University, Xi’an, China.

This work was supported in part by the National Key R&D Program of
China (2023YFB3106900), and the National Natural Science Foundation of
China (grants No.62302362, 62402364, 62472337), in part by the Fundamen-
tal Research Funds for the Central Universities, and in part by the Innovation
Fund of Xidian University under Grant YJSJ25012.

*Li Yang is the corresponding author. E-mail: yangli@xidian.edu.cn.

Provenance graphs, which capture the causal relationships
between system entities and events, have become a valu-
able foundation for behavior-based intrusion detection. These
graphs provide rich contextual information that enables de-
tailed analysis of system activity and potential attack chains
[2], [3]. Detection methods based on provenance graphs can
be broadly categorized into two approaches: knowledge-based
[4]–[7] and learning-based techniques [8]–[14]. Knowledge-
based methods rely on predefined rules or metrics to perform
anomaly detection within the graph. However, their depen-
dence on prior knowledge and inability to capture advanced,
deep features have driven researchers toward learning-based
approaches.

Learning-based detection methods leverage various levels
of graph embedding techniques in upstream tasks (graph
learning), such as node embedding [10], [12], edge embed-
ding [9], [11], and subgraph embedding [8], [15], to derive
expressive representations of the provenance graph. These
techniques effectively capture both contextual and structural
information. Subsequently, downstream detection algorithms,
including outlier detection and vector similarity analysis, are
applied to identify anomalies and detect potential attacks.

Although existing methods have demonstrated effective de-
tection performance, recent graph manipulation attack strate-
gies pose significant challenges to these detectors [16]–[18].
graph manipulation attacks involve attackers forging inter-
action information of malicious processes, such as adding
sufficient edges connecting to benign nodes, to shift their
representation in the embedding space and evade detection.
This vulnerability arises from an inherent limitation of ma-
chine learning models, where small perturbations can lead
to high-confidence misclassification [19], [20]. To the best
of our knowledge, only a few studies [10], [12], [14], [21]
have briefly explored the impact of such attacks on provenance
graph-based detection methods, and even fewer have proposed
targeted mitigation strategies. Generic robustness enhancement
strategies, such as adversarial training [22], [23], face practical
challenges in the PIDS domain due to the scarcity of malicious
samples and may be ineffective against potential unseen at-
tacks. Therefore, current defense mechanisms are inadequate
for countering mimicry attacks, highlighting an urgent need
for a novel robustness enhancement approach that improves
the intrinsic robustness of detection models.

In this paper, we propose MirGuard, a novel anomaly
detection method based on provenance graphs, designed to
enhance robustness against graph manipulation attacks while
maintaining high detection accuracy. Provenance graphs are
vulnerable to such attacks, where adversaries mimic benign
behaviors to conceal malicious activities and evade detection

ar
X

iv
:2

50
8.

10
63

9v
1 

 [
cs

.C
R

] 
 1

4 
A

ug
 2

02
5

https://arxiv.org/abs/2508.10639v1


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

[16]–[18]. In this work, we analyze the typical workflow of
PIDS and identify two primary types of graph manipulation
attacks (as detailed in the threat model section): graph poi-
soning attacks during the training phase and graph pollution
attacks during the detection phase. To counter such attacks,
MirGuard leverages a multi-view learning strategy that com-
bines structured graph augmentation with contrastive learning.
The key idea is to force the model to learn representations
that are invariant to local perturbations and sensitive to global
malicious patterns.

Specifically, MirGuard applies a logic-aware graph aug-
mentation strategy, which ensures that all perturbations con-
form to structural semantics defined by the provenance con-
text (e.g., disallowing file-to-network or network-to-network
edges). This results in more realistic adversarial simulations
compared to random augmentations. These augmentations
disrupt attacker-crafted patterns and encourage the model to
focus on more stable, graph-level semantics.

Based on these augmented views, MirGuard employs a
contrastive learning framework that encourages semantic con-
sistency across views while distinguishing unrelated behaviors.
Unlike conventional approaches such as GraphCL [24] or
MVGRL [25], our method emphasizes semantic consistency
rooted in domain-specific logic, rather than superficial struc-
tural similarity alone. By learning representations invariant
to benign-appearing manipulations but sensitive to semantic
inconsistencies, MirGuard achieves strong robustness against
both poisoning and evasion attacks. Our evaluations demon-
strate that this design leads to improved generalization and
more reliable anomaly detection in complex and adversarial
environments.

After obtaining robust graph representations, MirGuard em-
ploys an unsupervised anomaly detection mechanism based on
KMeans clustering. In the training phase, KMeans is used to
partition the embedding space into k clusters. The centroids
of these clusters, along with the average intra-cluster distance
across training samples, are retained as references. During
inference, each test sample is evaluated by computing its
Euclidean distances to all cluster centroids. The minimum
distance is taken as the initial anomaly score, which is then
normalized by the global average distance. If the normalized
score exceeds a predefined threshold, the sample is flagged
as anomalous. This centroid-based detection strategy enables
MirGuard to perform efficient and scalable anomaly detection,
significantly reducing inference overhead while preserving
high detection performance.

To comprehensively evaluate the efficiency of MirGuard,
we utilized widely adopted provenance datasets, including
DARPA TC THEIA, CADETS, TRACE [26], the Streamspot
dataset [27], and the Unicorn Wget dataset [28]. We also em-
ployed several state-of-the-art graph learning-based anomaly
detectors, such as Threatrace [10], MAGIC [12], and FLASH
[14], as baselines. To thoroughly assess MirGuard’s robust-
ness against graph manipulation attacks, we implemented
five types of such attacks during both the detection and
training phases, based on prior evasion studies [16]–[18]. In
our experiments, we first evaluated MirGuard’s resistance to
different attack types and compared its robustness with that of

current state-of-the-art detection schemes. We then discussed
whether MirGuard sacrifices detection performance to achieve
robustness. Next, we demonstrated the rationale and necessity
of MirGuard’s module design through ablation experiments.
Finally, we evaluated the overhead of MirGuard and discussed
the impact of different parameter settings on its performance.

Our contributions are summarized as follows:
• To the best of our knowledge, we are the first to specif-

ically enhance the robustness of PIDS models against
graph manipulation attacks.

• We propose a novel graph learning-based PIDS, Mir-
Guard, which is designed with a unique multi-view
augmentation strategy and employs a contrastive learning
mechanism to train the model. This enables MirGuard
to achieve strong robustness against graph manipulation
attacks while maintaining detection performance compa-
rable to state-of-the-art detectors.

• We implemented five types of attacks across both the
training and detection phases and conducted compre-
hensive evaluations of MirGuard’s robustness and de-
tection performance on multiple datasets. Experimental
results demonstrate that, compared to baseline systems,
MirGuard exhibits exceptional robustness against graph
manipulation attacks without compromising detection
performance or incurring additional detection overhead
(achieving an average F1-score of over 96% with less
than 10% AUC drop under graph manipulation attacks).

II. BACKGROUND

A. Graph Manipulation Attacks

Graph manipulation attacks [16]–[18] pose a significant
challenge to graph-based systems by strategically altering
graph structures to evade detection or degrade model perfor-
mance. These attacks often target critical graph elements, such
as nodes, edges, or features, to disguise malicious behavior as
benign or disrupt the learning process of graph-based models.
For instance, attackers may inject fake nodes or edges to
obscure critical relationships or modify existing features to
mimic benign entities, making it harder to detect anomalies.
In the context of provenance graphs, these attacks exploit the
graph’s structural and semantic complexity, where malicious
subgraphs are embedded within larger benign structures, al-
lowing adversaries to manipulate local patterns while preserv-
ing global consistency. This obfuscation enables attackers to
bypass anomaly detection methods that heavily rely on local or
static patterns. Addressing such attacks requires robust graph-
based methods that can capture invariant global features and
distinguish subtle manipulations, ensuring resilience against
adversarial perturbations.

B. Provenance-based IDS

Since the provenance graph can express the relationship
between system operating entities in time, existing research
has used this feature to build an IDS based on the provenance
graph. Including detection schemes based on knowledge labels
[4]–[7], these schemes construct a series of matching rules



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Audit Log

Training Phase

GNN TrainTampered graph
ModelAudit Log

Detection Phase

0.97
0.96

0.94

0.53
0.49
0.21

Data poisoning attack
Data pollution attack

Fig. 1: The classic detection processes of PIDS identified two
types of graph manipulation attacks: data poisoning attacks
during the training phase and data pollution attacks during the
detection phase.

based on expert knowledge to match in the origin graph to
detect anomalies. Based on the statistics IDS scheme [29]–
[31], they use the structural feature information of the graph,
including: abnormality, discrepancy, time correlation and other
features to analyze in the graph to detect anomalies. Recently,
more learning-based IDS solutions have been proposed [8],
[11], [12], [15], [21], [32]. These solutions use models such as
graph representation learning and sequence learning to extract
high-dimensional features from graphs to perform anomaly
detection in downstream tasks.

III. MOTIVATION EXAMPLE

This scenario illustrates an APT attack conducted through
a browser extension in the DARPA TC E3 dataset. Figure 2
provides a simplified visualization of this attack. The attack
was initiated when the victim visited a malicious website that
exploited a vulnerability in the pass mgr extension of the
Firefox browser. The attacker leveraged this vulnerability to
download a program named gtcache. The gtcache program
connected with the attacker and executed data theft operations.
Additionally, it installed another program, ztmp, to gather
system configuration details and perform port scans on the
target network for internal reconnaissance. Notably, in this
attack scenario, we introduce a manipulation strategy where
the attacker alters the graph structure by inserting benign
subgraphs into the attack subgraph to evade detection.

This attack poses a significant challenge to existing
learning-based detection methods, especially those relying on
graph embedding techniques such as GraphSAGE, GNNs,
and Graph2Vec [8], [10], [11]. These methods are suscep-
tible to graph manipulation attacks, which can modify the
neighborhood structure of malicious nodes, causing them to
resemble benign nodes more closely. As a result, the em-
beddings learned during training may increasingly resemble
benign behavior, significantly impairing the model’s ability
to differentiate between malicious and benign activities. This
phenomenon, known as evasion attacks, occurs when the
attacker manipulates the graph such that malicious nodes are
embedded in regions of the graph space typically occupied by
benign nodes. Consequently, the detection model, trained on
these altered embeddings, becomes more prone to evasion, re-
sulting in a decline in its overall robustness. These challenges
underscore the need for detection systems that can not only
learn effective representations of graph data but also remain
robust against adversarial manipulations designed to conceal
malicious behaviors.

Fig. 2: In the provenance graph of the TC E3 browser
extension attack, we considered a graph manipulation attack
proposed by [16], where attackers could manipulate the graph
structure by inserting benign subgraphs into the attack sub-
graph to evade detection. The green nodes represent benign
nodes engaged in normal activities, red nodes represent attack
nodes, and yellow nodes indicate attack nodes added by the
attacker.

IV. THREAT MODEL & ASSUMPTIONS

Our experimental environment relies on a Trusted Comput-
ing Base (TCB) consisting of the operating system, auditing
framework, and provenance analysis tools. We assume that
all components within the TCB function correctly through-
out the entire process from installation to execution. This
assumption is standard in existing provenance-based detectors.
Hardware trojans and side-channel attacks that cannot be
captured through audit mechanisms are not considered in this
paper. In addition, we assume that the integrity of the output
audit data is guaranteed by existing secure provenance and
integrity audit systems [33]–[37].

In our robustness evaluation experiments, we analyzed the
typical processing pipeline of provenance-based systems, as
shown in Figure 1, and identified two types of graph ma-
nipulation attacks: data poisoning attacks during the model
training phase and data pollution attacks during the detection
phase. Previous studies [16]–[18] assumed that adversaries can
manipulate the structure of the provenance graph to launch
attacks against the detector. This falls into the category of data
pollution attacks. Based on this, we extend the attack model
by introducing a stronger assumption in which adversaries
can also inject crafted graph perturbations into the audit logs
during the training phase. This results in data poisoning attacks
that affect the model’s training outcomes.

V. DESIGN

As shown in Fig.3 MirGuard comprises three main compo-
nents: (1) Graph Builder, (2) Graph Representation, and (3)
Anomaly Detection.

In the graph builder module, MirGuard processes system
audit logs to construct the provenance graph, where nodes rep-
resent system entities and edges denote interactions between
them. Edge compression techniques are employed to merge
redundant nodes and edges, optimizing the graph structure and
reducing computational complexity. Additionally, batch-based



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Fig. 3: Overview of MirGuard’s architecture.

provenance graph construction is implemented to handle large-
scale data by splitting the graph into smaller batches. Node
and edge types are extracted for subsequent feature encoding
in the representation module.

The core of MirGuard lies in the graph representation
module, which includes feature encoding, graph augmentation,
and contrastive learning. First, node and edge features are
encoded using one-hot encoding to standardize the input.
Then, GNN, such as a Graph Attention Network (GAT),
is employed to extract higher-order structural and semantic
features, capturing both local and global dependencies. Graph
augmentation introduces controlled perturbations to simulate
adversarial scenarios, enhancing the model’s ability to learn
invariant representations. Finally, a contrastive learning frame-
work aligns embeddings of augmented views while maintain-
ing separation between distinct graphs, ensuring robustness
against adversarial manipulations.

The anomaly detection module employs a KMeans-based
detection method to identify anomalous nodes in the graph.
Although various classifiers were considered, KMeans-based
detection demonstrated superior performance in our evalua-
tions, as detailed in Section VI-D.

A. Graph Builder

Our system accepts streaming system audit logs and con-
structs the provenance graph, similar to previous research [38],
[39]. It consists of three main components. First, MirGuard
streams and extracts audit logs in batches from existing
operating systems, such as Windows ETW logs or Linux
audit logs. These logs contain information about interac-
tions between system entities, including files, processes, and
networks. Next, MirGuard extracts and processes this log
information. Specifically, for each audit log within a batch, it
extracts the fundamental components representing the nodes
and edges of the provenance graph: the quadruple (src, dst,
timestamp, edge type), where src denotes the process node,
dst represents the file or network node, timestamp indicates the
time when the event occurred, and edge type specifies the type
of edge. Finally, to accelerate model training and reduce com-
putational complexity, we adopt multi-class graph denoising
techniques from prior studies, removing only redundant nodes
and those irrelevant to attack detection. MirGuard utilizes
the CPR (Causal Persistent Reduction) method [40] for edge
processing, retaining only one instance of edges that appear

multiple times between two nodes within a short time window.
Additionally, during graph construction, orphaned nodes and
faulty nodes (potentially generated by logging errors) that are
unrelated to the attack investigation are removed.

B. Graph Representation

Graph representation in MirGuard involves a systematic
pipeline to transform the raw provenance graph into robust
embeddings suitable for anomaly detection. This process be-
gins with feature encoding, where node and edge attributes
are represented using one-hot encoding and refined through
GNNs to capture both local and global structural dependen-
cies. Following this, graph augmentation introduces controlled
perturbations to simulate adversarial scenarios, enhancing the
model’s ability to learn invariant representations. Finally, a
contrastive learning framework aligns embeddings of aug-
mented views while maintaining separation between distinct
graphs, ensuring robustness against adversarial manipulations
and capturing meaningful graph semantics. Together, these
steps enable MirGuard to construct high-quality graph em-
beddings that are both expressive and resilient, forming the
foundation for reliable detection in complex environments.

1) Feature Encoding: MirGuard begins by encoding the
raw provenance graph’s node and edge attributes using one-
hot encoding. Each node and edge is represented by its type,
and one-hot encoding is applied to generate a categorical
feature vector. This process transforms discrete attributes, such
as node types (e.g., processes, files) and edge types (e.g.,
read, write), into binary vectors that preserve their distinct
semantics.

Once the one-hot encoding is complete, MirGuard employs
a Graph Neural Network (GNN), such as a Graph Attention
Network (GAT), to extract higher-order structural and semantic
features. The GNN processes the graph by aggregating infor-
mation from neighboring nodes and edges, capturing both local
dependencies and global contextual patterns. For a node v, its
feature representation h

(l+1)
v at layer l + 1 is computed as:

h(l+1)
v = σ

(
W (l) · AGG

(
{h(l)

u | u ∈ N (v)}
)
+ b(l)

)
,

where h
(l)
v is the feature vector of node v at layer l, N (v)

represents the neighbors of v, AGG(·) is an aggregation
function (e.g., sum or mean), W (l) and b(l) are learnable
parameters, and σ is an activation function (e.g., ReLU). This



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Fig. 4: Examples of logic-aware graph augmentation. Edge
and node operations are constrained to preserve provenance
semantics.

encoding process generates a dense feature vector for each
node and edge, capturing both their individual properties and
relational information.

The output of the GNN serves as the input for subsequent
graph augmentation and contrastive learning steps.

2) Logic-Aware Graph Augmentation: MirGuard employs
logic-aware graph augmentation strategies to simulate poten-
tial adversarial attacks while maintaining the semantic plausi-
bility of the provenance graph. These augmentations include
edge augmentation (EA), node augmentation (NA), and feature
augmentation (FA), each applied to generate perturbed views
of the original graph. The intensity of each augmentation op-
eration is controlled by the hyperparameter γ, which specifies
the proportion of nodes or edges to be modified.

To ensure the realism and logical validity of augmented
graphs, we implement a strategy called Logic-Aware Noise
Injection (LNI) as shown in Table I. This strategy enforces
rationality constraints during augmentation to prevent the
generation of semantically invalid structures. For instance, in
edge augmentation, we prohibit the addition of edges that
directly connect two network nodes or connect a file node to
a network node—such configurations violate causal semantics
in provenance graphs.

TABLE I: Logic-Aware Edge Augmentation Rules in Prove-
nance Graphs

Source Destination Allowed Edge

Process File ✓ read/write
Process Network ✓ connect/send/recv
File Process ✓ exec/load
Process Process ✓ fork/clone
Network Process × violates causality
File Network × no direct communication
Network File × no direct communication
Network Network × meaningless edge

a) Edge Augmentation (EA): Edge augmentation modi-
fies the graph structure by adding or removing edges under
logic constraints. The edge set E′ is modified as follows:

E′ = E ∪ {(u, v)},

This operation adds an edge between nodes u and v only if
it does not already exist and the connection satisfies domain-
specific logic rules.

E′ = E \ {(u, v)},

Alternatively, an existing edge can be removed. The perturba-
tion intensity is controlled by γ; for example, 20% of edges are
randomly selected for addition or removal, subject to logical
validity.

b) Node Augmentation (NA): Node augmentation in-
volves adding or removing nodes along with their associated
edges, while ensuring logical consistency in their insertion or
removal context:

V ′ = V ∪ {v′},

This means a new node v′ is added to the graph and linked
to others only through permissible edge types.

V ′ = V \ {v}, E′ = E \ {(u, v)},

An existing node v may be removed along with all its
connected edges. Node augmentation is also governed by γ;
for example, 20% of the nodes are selected for addition or
deletion.

c) Feature Augmentation (FA): Feature augmentation
modifies node attributes while preserving semantic alignment.
The feature vector of node v is replaced with that of another
node w of the same type:

X ′
v = Xw, w ∼ {u ∈ V | type(u) = type(v)},

This simulates adversarial feature manipulation without dis-
rupting node-type semantics.

Collectively, these logic-aware augmentations enhance the
model’s ability to learn invariant patterns and detect adversarial
perturbations that preserve surface semantics but violate causal
consistency. They prepare the model for challenging attack
scenarios while retaining the integrity of the graph’s structural
and semantic foundations.

3) Logic-Preserving Contrastive Learning: To further im-
prove robustness, MirGuard introduces a contrastive learn-
ing framework tailored to provenance graphs, with an em-
phasis on preserving the underlying causal semantics. Un-
like general-purpose contrastive learning frameworks such
as GraphCL [24] or MVGRL [25], which rely on random
augmentations and structure-based similarity, our approach in-
corporates domain-aware augmentations and logic consistency.

Given two augmented views Gi and Gj of the same original
graph G, the encoder generates graph-level embeddings zi and
zj , which are passed through a two-layer projection head:

pv = ReLU(W (1)
p zv + b(1)p ), p̂v = W (2)

p pv + b(2)p .

We then compute the contrastive loss:

L = − log
exp(sim(p̂i, p̂j)/τ)∑N
k=1 exp(sim(p̂i, p̂k)/τ)

,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

where sim(·, ·) denotes cosine similarity, and τ is a tempera-
ture parameter. Positive pairs (p̂i, p̂j) originate from different
views of the same graph that preserve logical structure, while
negatives p̂k come from unrelated graphs.

This design ensures that the learned embeddings reflect
consistent high-level behaviors rather than superficial struc-
tural features. It enables the model to resist manipulation that
mimics graph topology while violating semantic logic, which
is especially critical for provenance-based anomaly detection.

C. Anomaly Detection

To determine the most effective self-supervised anomaly de-
tection mechanism, we evaluated several candidate classifiers,
including Local Outlier Factor (LOF) [41], One-Class SVM
[42], KMeans [43], and Isolation Forest [44]. As detailed in
Section VI-D, KMeans demonstrated superior performance in
terms of detection accuracy. Consequently, MirGuard employs
a KMeans-based anomaly detector, which includes training
and detection phases.

In our method, we apply K-means to partition the embed-
ding space into k clusters and retain all cluster centroids for
subsequent anomaly detection.

During the detection phase, each new embedding vector
is evaluated by computing its distance to the nearest cluster
centroid. The anomaly score Si for a data point xi is defined
as the Euclidean distance to the closest centroid among the k
clusters:

Si = min
j=1,...,k

∥xi − cj∥ ,

where cj denotes the j-th cluster centroid obtained from
training.

To ensure comparability across datasets and feature scales,
we normalize the raw anomaly score using the mean nearest-
centroid distance computed on the training set, denoted as
Dmean. This is defined as:

Dmean =
1

N

N∑
i=1

min
j=1,...,k

∥xi − cj∥ ,

where N is the number of training samples. The normalized
anomaly score S̃i is given by:

S̃i =
Si

Dmean

A data point is considered anomalous if its normalized score
exceeds a predefined threshold θ:

Anomaly(xi) =

{
1 if S̃i > θ,

0 otherwise.

Given the large-scale nature of provenance data, this
centroid-based evaluation strategy significantly reduces the
inference overhead compared to pairwise distance-based ap-
proaches such as KNN [12], while maintaining effective
anomaly detection performance, especially for large-scale
provenance data.

VI. EVLUATION

In this section, we evaluate the performance of MirGuard
by addressing the following research questions (RQs):

• RQ1: How is MirGuard’s detection efficiency compared
to baseline methods?

• RQ2: Does MirGuard successfully improve robustness
against graph manipulation attacks compared to its base-
lines?

• RQ3: To what extent do the structured augmentations and
multi-view contrastive learning contribute to MirGuard’s
ability to counteract graph manipulation attacks and de-
tect malicious behaviors?

• RQ4: Does MirGuard introduce significant computa-
tional overhead compared to existing PIDSes?

A. Experiments Setup

In data processing, we adopted the log transformers in
MAGIC [12] for processing streaming audit logs, including
StreamSpot [45], Camflow [34] and DARPA TC Dataset [26].
Networkx is used to construct the provenance graph. The graph
indicates that the learning module is implemented by Pytorch
[46] and DGL [47].
Parameter settings. For the setup of MirGuard, the learning
rate lr is set to 0.001. We use a 2-layer GAT encoder, and in
data augmentation, the augmentation ratio is set to 0.5. The
training batch size is 50 with d set to 64 on the DARPA TC
dataset.
Datasets. We evaluated the performance of MirGuard un-
der three open-source datasets: DARPA Engagement TC E3
[26], Streamspot and, Unicorn Wget. All three datasets are
inconsistent in the scenarios they target and the granularity of
their detections, and thus we believe they are able to provide
insights into the performance of the system. The detail of the
dataset description are as follows:

TABLE II: Dataset Statistics for Streamspot and Unicorn Wget

Dataset Graph Pieces Entities Interactions Size (GB)

Streamspot 100

8,292 113,229

2.8

8,636 112,958
8,989 294,903
8,830 310,814
6,826 37,382
8,890 28,423

Unicorn Wget 125 265,424 975,226 7625 257,156 949,887

TABLE III: Dataset Statistics for DARPA E3

Dataset Benign Nodes Abnormal Nodes Edges Size (GB)
E3 Trace 3,220,596 68,082 4,080,457

67E3 Cadets 1,614,189 12,846 3,303,264
E3 Theia 3,505,326 25,362 10,929,710

• DARPA TC dataset. The DARPA TC dataset is a
benchmark dataset provided by DARPA for evaluating
cybersecurity and intrusion detection systems. It was
collected from networks during adversarial engagements.
The red team conducted APT attacks using various
vulnerabilities to exfiltrate information. Our evaluation



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE IV: Details of Graph Manipulation Attacks

Phase Attack Type Target Rate (y)

Detection
GSPA Node y
GFPA Edge y
CGPA Node & Edge 0.5y + 0.5y

Training SPA Node & Edge 0.5y + 0.5y
FPA Node y

includes the TRACE, CADETS, and THEIA subdatasets,
which contain millions of entities and interaction records.
We used the ground truth information provided by the
Threatrace [10] to perform entity-level detection and
conduct attack investigations.

• Unicorn Wget dataset. The Wget dataset was designed
by the authors of Unicorn [28] to simulate attack sce-
narios. It uses the Camflow [34] system to collect 150
batches of audit logs, with 125 batches containing no
attack processes and 25 batches containing supply chain
attacks. These attacks are carefully crafted to mimic
benign entity interactions, making this dataset challenging
to identify due to its large data volume and stealthy
attacks. We will perform graph-level detection on this
dataset as in previous approaches.

• StreamSpot dataset. The StreamSpot dataset is a
publicly available dataset provided by the authors of
StreamSpot [45], containing 600 information flow graphs.
These graphs come from five benign scenarios and one
attack scenario. Each scenario runs 100 times, generating
100 graphs using the Linux SystemTap Logging System.
The five benign scenarios simulate normal user behavior,
while the attack scenario simulates a drive-by download
attack. We performed graph-level anomaly detection on
the StreamSpot dataset, similar to previous studies [10],
[28], as it only provides graph-level ground truth.

Baselines. To comprehensively evaluate the detection per-
formance of MirGuard, we compare it with state-of-the-art
(SOTA) and open-source graph-based methods in the PIDS
domain, including Threatrace [10], MAGIC [12], and FLASH
[14]. It is worth noting that several other approaches were not
included in our comparison for the following reasons:

First, since MirGuard is a graph-based anomaly detection
method, we excluded signature-based methods [5], [7], [48],
priority-based approaches [29]–[31], and graph sketch-based
techniques [28]. Additionally, some recent works [13], [49]
adopt finer-grained root node labeling strategies, which differ
significantly from our threat model and would hinder a fair
comparison. As such, these methods were also excluded.

Second, as noted by the authors of [13], many learning-
based detectors in the PIDS domain, such as ProvDetector [9],
ShadeWatcher [11], RCAID [50], and ProGrapher [8], are not
fully open-source. Reproducing these methods solely based on
their published descriptions may introduce experimental bias;
therefore, we chose not to include them in our evaluation.
Graph manipulation attack. We provide a detailed descrip-
tion of the experimental setup used to evaluate the robustness
of MirGuard against graph manipulation attacks, which aim
to evade detection by modifying either the graph structure or

node features. We broadly categorize these attacks into two
types: data pollution attacks that occur during the detection
phase, and data poisoning attacks that take place during the
model training phase. Following prior work [12]–[14], [21],
we adopt five different attack scenarios for comprehensive
evaluation.

(1) Data Pollution Attacks. Data pollution attacks aim to
manipulate graph structures during the detection phase to hide
malicious behaviors. For this category, we implemented three
types of graph manipulation attacks:

• Graph Feature Pollution Attack (GFPA). Alters the
features of malicious nodes to mimic those of benign
nodes, thereby hiding malicious behavior and evading
detection.

• Graph Structure Pollution Attack (GSPA). Selectively
adds new edges between malicious nodes and benign
nodes, thereby altering the graph structure to make ma-
licious nodes appear similar to benign nodes.

• Combined Graph Pollution Attack (CGPA). Combines
both malicious feature manipulation and malicious struc-
ture manipulation methods, simultaneously altering the
features and structure of malicious nodes to maximize the
concealment of malicious behavior and evade detection.

These attacks were simulated by perturbing malicious nodes
and their surrounding structures within the victim graph,
mimicking realistic attacker behavior aimed at tampering with
the graph.

(2) Data Poisoning Attacks. Data poisoning attacks target
the training phase, where the attacker perturbs the graph
data used for training to compromise the model’s robustness.
Considering the practical difficulty for attackers to access the
model directly, we focused on two types of poisoning attacks:

• Structure Poisoning Attack (SPA): Perturbs a certain
proportion of nodes and edges in the training graph by
adding or modifying connections, thereby disrupting the
original structural features.

• Feature Poisoning Attack (FPA): Alters a certain pro-
portion of node features in the training graph by swapping
initial features between nodes, disrupting the feature
distribution, and misleading the model during training.

In summary, we provide detailed information about the at-
tacks in Table IV, including the attack targets (nodes or edges)
and the perturbation rate (y). Specifically, the perturbation rate
(y) represents the proportion of nodes or edges manipulated
within the entire graph structure. these attacks are constructed
at the node level, while for graph-level detection since the
Streamspot and Unicorn datasets only provide anomalous
graphs rather than nodes, we extend the attacks to the graph
level. Specifically, we randomly select nodes or edges in the
graph to be detected for attacks based on the perturbation rate
(y).
Metrics. In evaluating the performance of MirGuard, we
use a variety of common metrics to comprehensively assess
the model’s behavior under different tasks and experimental
setups. The basic evaluation metrics include Recall (Rec),
Precision (Pre), AUC (Area Under the Curve), F1 Score (F1),
and Accuracy (Acc). Additionally, we introduced an Absolute



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

(a) ROC curves (Node). (b) ROC curves (Graph).

Fig. 5: ROC curves on each dataset.

Change Rate (ACR) as an extra metric to evaluate robust-
ness, which is utilized in Figure 7. These metrics provide a
holistic understanding of the model’s performance, covering its
detection capability, classification effectiveness, and balance
between different classes.

B. MirGuard’s Effectiveness (RQ1)

In this section, to evaluate the detection performance of Mir-
Guard and its baseline models, we use precision, F1-score, and
recall as evaluation metrics. The experiments are conducted on
the Unicorn and Streamspot datasets for graph-level detection
and the DARPA dataset for node-level detection. MirGuard
adopts a self-supervised training approach, where the model
is trained on benign data and evaluated on malicious data for
detection.
Detection result. Table V provides the detection results
of MirGuard, while Figure 5 shows the ROC curves for
each dataset. In the graph-level anomaly detection datasets,
Streamspot and Unicorn wget, MirGuard achieved near-perfect
detection performance on the simpler Streamspot dataset, with
a precision of 99% and a recall of 100%. This high perfor-
mance is attributed to the dataset’s collection of single-user
activities per log batch, which are structurally and semantically
distinct from each other.

On the more complex Unicorn Wget dataset, MirGuard still
achieved high accuracy (96%) and recall (96%). Moving to
node-level detection, MirGuard also demonstrated high perfor-
mance on the DARPA TC datasets, achieving 99% accuracy
and 99% recall. Due to the significant disparity between
benign and malicious entities, MirGuard was able to accurately
identify anomalies. This success is attributed to the use of
KMeans for outlier detection, which effectively leverages the
distinct feature distributions of benign and malicious entities.
Comparison study. To compare the performance of MirGuard
with existing state-of-the-art methods, as described in our
experimental setup VI-A, we selected several detectors for
both graph-level and node-level anomaly detection, including
Threatrace [10], FLASH [14], and MAGIC [12].

As shown in Table V, MirGuard demonstrates outstanding
performance across five representative provenance datasets.
For node-level detection, it achieves near-perfect results on
Theia, Cadets, and Trace. On Theia, MirGuard reaches 0.99
in both precision and F1-score, while achieving the lowest

TABLE V: Comparison of Anomaly Detection Methods

Dataset Method
Metrics

Precision F1-score Recall FPR

Theia

Threatrace 0.87 0.93 0.99 0.10%
MAGIC 0.98 0.99 0.99 0.14%
FLASH 0.93 0.96 0.99 0.05%

MirGuard 0.99 0.99 0.99 0.03%

Cadets

Threatrace 0.90 0.95 0.99 0.20%
MAGIC 0.94 0.97 0.99 0.09%
FLASH 0.95 0.97 0.99 0.16%

MirGuard 0.98 0.99 0.99 <0.01%

Trace

Threatrace 0.71 0.82 0.99 1.10%
MAGIC 0.99 0.99 0.99 0.09%
FLASH 0.95 0.97 0.99 0.16%

MirGuard 0.99 0.99 0.99 <0.01%

Streamspot

Threatrace 0.98 0.99 0.99 0.4%
MAGIC 0.99 0.99 1.00 0.6%
FLASH 1.00 0.96 0.98 0.3%

MirGuard 0.99 0.99 1.00 0.6%

Wget

Threatrace 0.93 0.95 0.98 7.4%
MAGIC 0.96 0.95 0.96 2.0%
FLASH 0.96 0.96 0.96 2.0%

MirGuard 0.98 0.96 0.96 0.6%

FPR of 0.03%. On the Cadets and Trace datasets, it fur-
ther reduces the FPR to below 0.01%, outperforming both
supervised detectors like Threatrace and FLASH, as well as
advanced unsupervised methods like MAGIC. For graph-level
detection, MirGuard also shows strong performance on both
the Streamspot and Wget datasets. On Streamspot, it achieves
a perfect recall of 1.00 and a balanced F1-score of 0.99,
matching the results of MAGIC and FLASH. On the more
complex Wget dataset, MirGuard leads all baselines with
an FPR of only 0.6%, significantly outperforming MAGIC
and FLASH (2.0%) and especially Threatrace (7.4%). These
results highlight the effectiveness of MirGuard’s contrastive
learning framework, which leverages multi-view graph aug-
mentation to generate robust and generalizable representations.
Unlike MAGIC’s masked graph autoencoder approach that
focuses on local reconstruction, MirGuard captures both local
and global semantics by contrasting positive and negative
views. This enables more reliable identification of stealthy or
structurally evasive attack behaviors embedded in the prove-
nance graph.

C. Adversarial Robustness Analysis (RQ2)

In this section, we conducted a comprehensive and in-
depth evaluation of the robustness of MirGuard against graph
tampering attacks. Table VI presents a comparative analysis
of various attack types under different perturbation ratios.
Threatrace and FLASH exhibit significant performance degra-
dation under structural perturbations, especially at a 50%
attack ratio, where their F1 scores drop to 0.489 and 0.657,
respectively. This indicates their strong reliance on local
neighborhood structures, making them vulnerable to shifts
in the embedding space caused by adversarial modifications.
MAGIC, which adopts a node-masking strategy, shows im-
proved local robustness and performs reasonably well under
low-intensity attacks (0.8 F1 under GSPA=20%). However, its
performance deteriorates notably under structurally intensive



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE VI: Multi-various Graph Manipulation Attacks under Different Attack Rates.

Attack Rate(%)
Threatrace [10] MAGIC [12] FLASH [14] MirGuard

Precision F1-score AUC Precision F1-score AUC Precision F1-score AUC Precision F1-score AUC
None \ 0.904 0.949 0.954 0.944 0.970 0.997 0.947 0.972 0.978 0.981 0.989 0.999

GSPA

10 0.731 0.813 0.910 0.734 0.848 0.921 0.817 0.837 0.921 0.978 0.942 0.996
20 0.617 0.749 0.854 0.644 0.800 0.862 0.723 0.759 0.889 0.957 0.932 0.984
50 0.307 0.489 0.756 0.334 0.533 0.745 0.593 0.657 0.828 0.861 0.887 0.972

GFPA

10 0.784 0.878 0.913 0.904 0.959 0.991 0.887 0.922 0.952 0.979 0.988 0.999
20 0.744 0.843 0.907 0.873 0.950 0.979 0.840 0.896 0.941 0.976 0.976 0.998
50 0.644 0.797 0.871 0.794 0.920 0.957 0.793 0.871 0.938 0.967 0.963 0.988

CGPA

10 0.767 0.845 0.901 0.784 0.870 0.974 0.807 0.877 0.934 0.971 0.931 0.997
20 0.693 0.749 0.882 0.713 0.830 0.913 0.787 0.841 0.913 0.953 0.937 0.989
50 0.484 0.489 0.824 0.527 0.655 0.819 0.667 0.777 0.865 0.873 0.872 0.975

SPA

10 0.783 0.803 0.882 0.769 0.807 0.958 0.876 0.808 0.895 0.970 0.983 0.995
20 0.674 0.739 0.842 0.628 0.740 0.873 0.677 0.668 0.830 0.949 0.937 0.983
50 0.494 0.589 0.761 0.571 0.631 0.815 0.572 0.522 0.753 0.871 0.899 0.962

FPA

10 0.834 0.821 0.904 0.904 0.960 0.983 0.877 0.952 0.953 0.980 0.989 0.999
20 0.785 0.777 0.895 0.884 0.940 0.853 0.853 0.946 0.948 0.978 0.970 0.998
50 0.744 0.759 0.874 0.807 0.890 0.916 0.790 0.931 0.922 0.933 0.951 0.981

global perturbations (i.e., higher attack ratios), revealing its
lack of explicit global structural consistency enforcement.

In contrast, MirGuard, enhanced by multi-view perturba-
tion strategies across nodes, edges, and features, consistently
outperforms all baselines across all attack types and ratios.
For instance, under CGPA-50%, MirGuard achieves an F1
score of 0.872 and an AUC of 0.975, significantly surpassing
other methods. Its strength lies in guiding the model to learn
globally robust representations, thereby mitigating the impact
of structural manipulations.

Furthermore, we evaluated the robustness of all models
under increasing attack ratios (10%, 20%, 50%). The results
show that although all methods experience some performance
drop under stronger perturbations, MirGuard exhibits the least
degradation, consistently maintaining AUC 0.96 and F1 0.87
in nearly all cases. It is also important to note that large-scale
perturbations are often difficult to execute stealthily in real-
world scenarios and tend to leave more forensic traces. Prior
studies [17], [18] have also indicated that high-ratio structural
manipulations are challenging to realize in practice. Therefore,
MirGuard demonstrates superior robustness against existing
graph manipulation attacks.
Visualization of Representations. The main contribution
of MirGuard lies in its ability to learn high-quality rep-
resentations that provide a comprehensive understanding of
behavioral information, forming a clear decision boundary
that effectively distinguishes between benign and malicious
behavior nodes. To further analyze the internal representations
learned by MirGuard, we visualized its latent representations
under a graph manipulation attack (CGPA with an attack ratio
of 0.2). We employed the t-SNE technique to project the graph
representations of each input sample onto a 2D space. Figure
6 presents the learned representations, where subfigures (a),
(b), (c), (d), and (e) depict the feature space distribution in the
absence of attacks, while subfigures (f), (g), (h), (i), and (j)
illustrate the feature space distribution after the attack.

In the figure, blue points represent benign samples, while
red points represent malicious samples. Notably, in the
DARPA dataset, due to the large number of nodes, we utilized

K-means cluster centroids to approximate the distribution of
benign nodes, while the red points indicate malicious nodes.
Any node significantly distant from all cluster centroids is
considered malicious. It can be observed that MirGuard’s
learned latent representations are well-structured, allowing for
a clear distinction between benign and malicious samples.
Importantly, this compact representation and well-defined de-
cision boundary not only enhance the model’s performance in
classification tasks but also significantly increase the difficulty
of adversarial attacks, thereby improving its robustness. After
the graph manipulation attack, although some dispersion in
the sample distribution is observed, MirGuard still effec-
tively distinguishes between benign and malicious nodes. This
can be attributed to MirGuard’s use of contrastive learning,
which brings samples from different augmented views closer
together, enabling the model to focus on global features
rather than local features. As a result, the impact of graph
manipulation attacks on MirGuard remains minimal.

D. Ablation Study (RQ3)

This section aims to investigate whether different modules
in MirGuard, such as multi-view graph augmentation and
contrastive learning, can improve its robustness and detection
performance. Specifically, we evaluate the robustness of the
current design by replacing certain components in MirGuard.
Since graph augmentation and contrastive learning are de-
signed to work collaboratively, we demonstrate the necessity
of this design from two perspectives. First, we highlight the
robustness of MirGuard’s graph representation learning by
substituting different methods in the representation learning
module. Second, we verify the effectiveness of the graph
augmentation strategy by introducing various augmentation
techniques. Additionally, we further explore the impact of aug-
mentation rate selection and the choice of detection methods.
Effective of GCL Model. To evaluate the robustness of
the graph representation learning module in MirGuard, we
conducted comparative experiments by replacing it with al-
ternative methods, including GraphSAGE [51], DGI [52], and
MGAE [53]. The detection module still adopted the KNN-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

(a) Wget, None (b) Streamspot, None (c) Cadets, None (d) Trace, None (e) Theia, None

(f) Wget, y=(20%) (g) Streamspot,y=(20%) (h) Cadets,y=(20%) (i) Trace,y=(20%) (j) Theia,y=(20%)

Fig. 6: The latent representation learned by MirGuard has good discriminability and is able to resist graph manipulation attacks
against the model.

TABLE VII: Ablation study on graph representation model

Models
None CGPA(y=20%)

Precision Recall F1 AUC F1
MirGuard(DGI) 0.9 0.8 0.91 0.9 0.678
MirGuard(GraphSAGE) 0.92 0.96 0.92 0.94 0.642
MirGuard(MGAE) 0.95 0.92 0.94 0.95 0.839
MirGuard 0.98 0.99 0.99 0.99 0.96

based strategy. In the experiments, we replaced the GCL
module with these embedding methods to learn graph repre-
sentations and performed anomaly detection. The training and
testing datasets remained the same, and all experiments were
conducted on the Cadets dataset with the attack ratio set to
0.2 to assess both robustness and detection performance. The
results are shown in Table VII. The GCL module achieves the
best detection performance. Moreover, the contrastive learning
component plays a critical role in enhancing the model’s
robustness, exhibiting only minimal performance degrada-
tion. In comparison, the alternative approaches, namely DGI,
GraphSAGE, and MGAE, all result in noticeable performance
drops. Among them, MGAE shows the second-best robustness.
A possible explanation is that MGAE utilizes a masked
reconstruction mechanism that reconstructs the graph structure
based on unmasked nodes. This allows some attacked nodes
to be masked during training, thereby improving its resistance
to certain types of graph manipulation attacks.
Effective of Graph Augmentation. MirGuard introduces
three types of graph augmentation methods. These techniques,
through contrastive learning, encourage the model to focus on
global behaviors while ignoring local perturbations. To inves-
tigate the impact of these graph augmentation strategies on
the robustness of MirGuard, we evaluated their effectiveness
under a graph contrastive learning framework against different
attacks, including GSPA, GFPA, and CGPA. Specifically, we
trained the model using various augmentation strategies on the
Cadets dataset and assessed its robustness. The experimental

TABLE VIII: F1 for Different Augmentation Methods under
Various Attack Types(γEA, γNA, γFA)

Augmentation AUC AUC AUC AUC
Type (CGPA) (GSPA) (GFPA) (None)
NA 0.954 0.971 0.967 0.989
EA 0.972 0.961 0.964 0.985
FA 0.965 0.963 0.947 0.973

NA+FA 0.979 0.971 0.988 0.991
EA+FA 0.984 0.959 0.987 0.989

NA+EA+FA 0.984 0.971 0.984 0.999

results are shown in Table VIII.
The results show that in the absence of attacks, applying all

three augmentation methods achieves the best performance.
Under attack scenarios, different augmentation strategies con-
tribute differently to robustness. For example, NA achieves
the highest AUC of 0.971 under GSPA attacks, while the
combination of NA and FA performs best under GFPA attacks,
achieving an AUC of 0.988. The combination of NA, EA,
and FA demonstrates consistent robustness across all attack
types, with AUC values ranging from 0.971 to 0.984. Overall,
Table VIII indicates that well-designed augmentation strategies
can effectively enhance MirGuard’s robustness against various
attacks. It is worth noting that although the NA+EA+FA
combination does not always yield the best result, possibly due
to excessive perturbations interfering with feature extraction,
selecting appropriate augmentation strategies can still signifi-
cantly improve adversarial robustness.

In addition, we explored the impact of the augmentation ra-
tio on model robustness. We conducted experiments under both
attack and non-attack scenarios. As shown in Figure 7(a), as
the augmentation ratio increases, the model’s performance first
improves and then declines, and a similar trend is observed in
its robustness. This is because a low perturbation ratio fails to
effectively enhance the model’s learning capacity, while an



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

0.3 0.5 0.7
0.90

0.92

0.94

0.96

0.98

1.00

F1
 S

co
re

0.964

0.989

0.971

No attack
CGPA=20%

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

F1
 S

co
re

0.840

0.931

0.896

(a) Ablation on γ

LOF IF OCSVM Kmeans
0.75

0.80

0.85

0.90

0.95

1.00

1.05

F1
 S

co
re 0.92

0.87

0.93

0.99

F1 Score Time Cost (s)

0

1

2

3

4

5

Ti
m

e 
Co

st
 (m

in
s)

3.2

4.5 4.3

3.3

(b) Ablation on detector

Fig. 7: Ablation study on detector modules and augment rate
γ for MirGuard.

excessively high ratio disrupts the original graph structure.
Therefore, we recommend an optimal augmentation ratio of
γ = 0.5.
Effective of Detector. We explored the classification perfor-
mance of MirGuard by employing different classifiers. To this
end, we configured several lightweight classifiers, including
Local Outlier Factor (LOF) [41], One-Class Support Vector
Machine (OCSVM) [42], and Isolation Forest (IF) [44]. We
conducted experiments with multiple detectors on the Cadets
dataset, and the results are shown in Figure 7.(b). The exper-
imental results show that IF and OCSVM incurred relatively
high time overhead and delivered moderate performance. In
contrast, LOF had a similar time cost to KMeans but exhibited
slightly lower accuracy. Overall, KMeans achieved the best
classification performance while maintaining low time over-
head.

E. Performance Overhead (RQ4)

Besides the robustness and effectiveness of MirGuard, effi-
ciency is another critical factor influencing its practical appli-
cation. In this section, we compare the training and inference
costs of MirGuard with its baseline models to evaluate its effi-
ciency. It is important to emphasize that during the training of
these detectors, we used the default settings provided in their
open-source implementations to achieve optimal performance,
and the training process was conducted on the same server
and configuration.

Table IX summarizes the training costs of MirGuard and
its baseline models. We observed that when trained with
the same batch size, MirGuard and MAGIC exhibit similar
time and memory overheads. On the other hand, FLASH and
Threatrace adopt strategies that allow them to converge with
smaller batch sizes and fixed graph sizes within each batch,
which reduces memory overhead but results in longer training
times. Regarding inference overhead, MirGuard maintains the
best inference time and relatively low memory consumption.
Therefore, overall, compared to the training costs of baseline
detectors, it can be concluded that MirGuard ensures robust-
ness without sacrificing efficiency.

VII. RELATED WORK

Provenance-based IDS. Recently, provenance-based IDS
methods have been categorized into three main types: learning-
based, statistical-based, and rule-based approaches. Statistical

TABLE IX: Performance Comparison of Different Methods in
Terms of Training Time and Memory Usage

Phase Metric FLASH MAGIC Threatrace MirGuard

Train Total Time (s) 4,580 151 2,780 214
Memory (MB) 760 1,564 1,031 1,525

Inference Total Times (s) 4,304 1,037 1,380 437
Memory (MB) 1,097 1,667 2,301 1,532

methods [29], [30], [34], [54] model the anomaly degree
of nodes using features such as temporal correlation, degree
distribution, and rarity. Rule-based methods [4]–[7], [55], [56]
create rules based on external knowledge to progressively
match patterns in the provenance graph for anomaly detection.
Learning-based approaches [8], [10]–[13], [15], [21], [32],
[57] include sequence learning to extract and model sequence
features for anomaly detection, as well as deep graph learning
techniques for graph-level and edge-level detection using fea-
tures like graph snapshots [8], [13], [28] and node interactions
[11]. Recent research has also explored node-level detection
within provenance graphs, laying the foundation for fine-
grained anomaly analysis. Threatrace [10] uses GraphSAGE
for node embedding and anomaly detection, while MAGIC
[12] employs MGAE for unsupervised graph representation
learning and KNN-based anomaly detection. FLASH [14]
combines a GNN with Word2Vec for feature extraction and
designs a caching mechanism to support scalability real-time
detection.

Graph Manipulation Attacks for Provenance-based De-
tector. Wagner et al. [58] first introduced mimicry attacks
in 2002, enabling attackers to evade IDS detection. Their
theoretical framework laid the foundation for circumventing
PIDS. Li et al. [59] questioned the robustness of provenance-
based detectors, highlighting risks like dependency explosion
and proposing mimicry-based circumvention methods. Goyal
et al. [16] demonstrated the first practical evasion attacks
against P-IDS in 2023. Kunal et al. [17] advanced this with
the PROVNINJA framework, reducing new system events and
expanding tolerable distribution differences. Sang et al. [18]
proposed an obfuscation attack strategy, introducing meta-
behavior mapping for realistic evasion, noting that large-scale
graph tampering is impractical for attackers.

Robustness of Graph Neural Networks. The robustness of
GNN has gained increasing attention in recent years due to its
wide applications in critical domains such as social networks,
recommendation systems, and cybersecurity. However, studies
have shown that GNNs are vulnerable to adversarial attacks,
which manipulate graph structures, node features, or both
to degrade model performance. These attacks are generally
categorized into evasion attacks and poisoning attacks. Evasion
attacks target the inference phase by perturbing graph data
to mislead model predictions [60], while poisoning attacks
modify training data to undermine model robustness before
deployment [61], [62].

To address these threats, researchers have proposed various
defense mechanisms. Adversarial training is one of the most
widely studied methods, which enhances model robustness
by injecting adversarial perturbations during training [60].
Additionally, graph data preprocessing techniques, such as



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

graph sanitization [63], aim to filter out adversarial pertur-
bations, while robust GNN architectures leverage mechanisms
like attention mechanisms or spectral filtering to strengthen
resistance against attacks [64], [65]. Recently, contrastive
learning has emerged as a promising direction to improve
GNN robustness by combining data augmentations and con-
trasting positive and negative samples, effectively learning
more robust graph embeddings [24].

VIII. DISCUSSION

Graph manipulation attacks. Recently, graph manipulation
attacks have posed significant challenges to the performance of
provenance-based detectors [16]–[18]. Attackers maliciously
alter graph structures, causing the graph encoding of malicious
nodes to resemble that of normal nodes, leading to false nega-
tives. MirGuard demonstrates notable advantages in addressing
these challenges, primarily due to our innovative approach of
introducing various types of perturbations during the training
phase and generating embeddings using contrastive learning.
This method takes into account the potential manipulations
of the graph structure by attackers during training, render-
ing attempts to alter the structure and features of malicious
nodes ineffective. Therefore, MirGuard suggests a promising
approach for countering such graph manipulation attacks in
the future.

IX. CONCLUSION

In this study, we introduced MirGuard, a novel graph
learning-based anomaly detection system designed to enhance
the robustness of provenance-based intrusion detection. By in-
tegrating multi-view augmentations with contrastive learning,
MirGuard effectively mitigates mimicry attacks that manip-
ulate graph structures. Comprehensive evaluations on multi-
ple datasets demonstrate that MirGuard outperforms state-of-
the-art detectors in both robustness and detection accuracy
(achieving an average F1-score of over 96% with less than
10% AUC drop under graph manipulation attacks), without
compromising efficiency (with overhead comparable to exist-
ing detectors). Our work provides a robust solution to modern
cybersecurity challenges, paving the way for more robust
provenance-based intrusion detection systems.

REFERENCES

[1] “Apt notes.” https://github.com/kbandla/APTnotes, Last accessed on
2024-6-25.

[2] M. A. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink, N. Michael, S. Gaur,
A. Bates, and W. U. Hassan, “Sok: History is a vast early warning
system: Auditing the provenance of system intrusions,” in 2023 IEEE
Symposium on Security and Privacy (SP), pp. 307–325, IEEE Computer
Society, 2022.

[3] F. Dong, S. Li, P. Jiang, D. Li, H. Wang, L. Huang, X. Xiao, J. Chen,
X. Luo, Y. Guo, et al., “Are we there yet? an industrial viewpoint on
provenance-based endpoint detection and response tools,” in Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 2396–2410, 2023.

[4] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. D. Stoller, and V. Venkatakrishnan, “Sleuth: Real-time
attack scenario reconstruction from cots audit data.,” in USENIX Security
Symposium, pp. 487–504, 2017.

[5] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time apt detection through correlation of suspicious
information flows,” in 2019 IEEE Symposium on Security and Privacy
(SP), pp. 1137–1152, IEEE, 2019.

[6] W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis
for endpoint detection and response systems,” in 2020 IEEE Symposium
on Security and Privacy (SP), pp. 1172–1189, IEEE, 2020.

[7] T. Zhu, J. Yu, C. Xiong, W. Cheng, Q. Yuan, J. Ying, T. Chen, J. Zhang,
M. Lv, Y. Chen, et al., “Aptshield: A stable, efficient and real-time apt
detection system for linux hosts,” IEEE Transactions on Dependable
and Secure Computing, 2023.

[8] F. Yang, J. Xu, C. Xiong, Z. Li, and K. Zhang, “Prographer: An
anomaly detection system based on provenance graph embedding,” in
32nd USENIX Security Symposium (USENIX Security 23), pp. 4355–
4372, 2023.

[9] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen,
W. Cheng, C. A. Gunter, et al., “You are what you do: Hunting stealthy
malware via data provenance analysis.,” in NDSS, 2020.

[10] S. Wang, Z. Wang, T. Zhou, H. Sun, X. Yin, D. Han, H. Zhang, X. Shi,
and J. Yang, “Threatrace: Detecting and tracing host-based threats in
node level through provenance graph learning,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 3972–3987, 2022.

[11] J. Zeng, X. Wang, J. Liu, Y. Chen, Z. Liang, T.-S. Chua, and Z. L.
Chua, “Shadewatcher: Recommendation-guided cyber threat analysis
using system audit records,” in 2022 IEEE Symposium on Security and
Privacy (SP), pp. 489–506, IEEE, 2022.

[12] Z. Jia, Y. Xiong, Y. Nan, Y. Zhang, J. Zhao, and M. Wen, “Magic:
Detecting advanced persistent threats via masked graph representation
learning,” in 33rd USENIX Security Symposium (USENIX Security 24),
pp. 5197–5214, 2024.

[13] Z. Cheng, Q. Lv, J. Liang, Y. Wang, D. Sun, T. Pasquier, and X. Han,
“Kairos: Practical intrusion detection and investigation using whole-
system provenance,” in 2024 IEEE Symposium on Security and Privacy
(SP), pp. 3533–3551, IEEE, 2024.

[14] M. U. Rehman, H. Ahmadi, and W. U. Hassan, “Flash: A comprehensive
approach to intrusion detection via provenance graph representation
learning,” in 2024 IEEE Symposium on Security and Privacy (SP),
pp. 139–139, IEEE Computer Society, 2024.

[15] Y. Shen and G. Stringhini, “Attack2vec: Leveraging temporal word
embeddings to understand the evolution of cyberattacks,” 28 st USENIX
Security Symposium (USENIX Security 2019), 2019.

[16] A. Goyal, X. Han, G. Wang, and A. Bates, “Sometimes, you aren’t
what you do: Mimicry attacks against provenance graph host intrusion
detection systems,” in 30th Network and Distributed System Security
Symposium, 2023.

[17] K. Mukherjee, J. Wiedemeier, T. Wang, J. Wei, F. Chen, M. Kim,
M. Kantarcioglu, and K. Jee, “Evading provenance-based ml detectors
with adversarial system actions,” in 32nd USENIX Security Symposium
(USENIX Security 23), (Anaheim, CA), pp. 1199–1216, USENIX As-
sociation, Aug. 2023.

[18] A. Sang, Y. Wang, L. Yang, J. Jia, and L. Zhou, “Obfuscating
provenance-based forensic investigations with mapping system meta-
behavior,” in Proceedings of the 27th International Symposium on
Research in Attacks, Intrusions and Defenses, RAID ’24, 2024.

[19] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks,” in Proceedings
of the 37th International Conference on Machine Learning (ICML),
pp. 2206–2216, PMLR, 2020.

[20] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial exam-
ples,” in Proceedings of the 35th International Conference on Machine
Learning, pp. 274–283, PMLR, 2018.

[21] X. Han, X. Yu, T. Pasquier, D. Li, J. Rhee, J. Mickens, M. Seltzer,
and H. Chen, “Sigl: Securing software installations through deep graph
learning,” in 30th USENIX Security Symposium (USENIX Security 21),
pp. 2345–2362, 2021.

[22] Q. Wang, W. Guo, K. Zhang, A. G. Ororbia, X. Xing, C. L. Giles, and
X. Liu, “Adversary resistant deep neural networks with an application
to malware detection,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp. 1145–1153, ACM, 2017.

[23] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly, “Adversarial
deep learning for robust detection of binary encoded malware,” in 2018
IEEE Symposium on Security and Privacy Workshops (SPW), pp. 76–82,
IEEE, 2018.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[24] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in neural information
processing systems, vol. 33, pp. 5812–5823, 2020.

[25] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view represen-
tation learning on graphs,” in International conference on machine
learning, pp. 4116–4126, PMLR, 2020.

[26] “Transparent computing engagement 3 datarelease..” https://github.com/
darpa-i2o/TransparentComputing/blob/master/README-E3.md, Last
accessed on 2024-5-21.

[27] “Streamspot dataset.” https://github.com/sbustreamspot/
sbustreamspot-data, Last accessed on 2024-5-29.

[28] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn:
Runtime provenance-based detector for advanced persistent threats,”
NDSS, 2020.

[29] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage,” in network and distributed systems security symposium, 2019.

[30] P. Fang, P. Gao, C. Liu, E. Ayday, K. Jee, T. Wang, Y. F. Ye, Z. Liu,
and X. Xiao, “{Back-Propagating} system dependency impact for attack
investigation,” in 31st USENIX Security Symposium (USENIX Security
22), pp. 2461–2478, 2022.

[31] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security.,” in NDSS,
2018.

[32] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik, X. Zhang,
and D. Xu, “Atlas: A sequence-based learning approach for attack
investigation.,” in USENIX Security Symposium, pp. 3005–3022, 2021.

[33] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy {Whole-
System} provenance for the linux kernel,” in 24th USENIX Security
Symposium (USENIX Security 15), pp. 319–334, 2015.

[34] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical whole-system provenance capture,” in Proceedings
of the 2017 Symposium on Cloud Computing, pp. 405–418, 2017.

[35] R. Paccagnella, P. Datta, W. U. Hassan, A. Bates, C. Fletcher, A. Miller,
and D. Tian, “Custos: Practical tamper-evident auditing of operating
systems using trusted execution,” in Network and distributed system
security symposium, 2020.

[36] J. Zeng, C. Zhang, and Z. Liang, “Palantı́r: Optimizing attack provenance
with hardware-enhanced system observability,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, pp. 3135–3149, 2022.

[37] C. Zhang, J. Zeng, Y. Zhang, A. Ahmad, F. Zhang, H. Jin, and
Z. Liang, “The hitchhiker’s guide to high-assurance system observability
protection with efficient permission switches,” in Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications
Security, pp. 3898–3912, 2024.

[38] S. T. King and P. M. Chen, “Backtracking intrusions,” in Proceedings
of the nineteenth ACM symposium on Operating systems principles,
pp. 223–236, 2003.

[39] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching
intrusion alerts through multi-host causality.,” in Ndss, Citeseer, 2005.

[40] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pp. 504–516, 2016.

[41] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, pp. 93–104, 2000.

[42] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt,
“Support vector method for novelty detection,” Advances in neural
information processing systems, vol. 12, 1999.

[43] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “Knn model-based ap-
proach in classification,” in On The Move to Meaningful Internet Systems
2003: CoopIS, DOA, and ODBASE: OTM Confederated International
Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy,
November 3-7, 2003. Proceedings, pp. 986–996, Springer, 2003.

[44] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth
ieee international conference on data mining, pp. 413–422, IEEE, 2008.

[45] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-efficient
anomaly detection in streaming heterogeneous graphs,” in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 1035–1044, 2016.

[46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[47] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou,
C. Ma, L. Yu, Y. Gai, et al., “Deep graph library: A graph-centric,
highly-performant package for graph neural networks,” arXiv preprint
arXiv:1909.01315, 2019.

[48] L. Wang, X. Shen, W. Li, Z. Li, R. Sekar, H. Liu, and Y. Chen, “Incor-
porating gradients to rules: Towards lightweight, adaptive provenance-
based intrusion detection,” arXiv preprint arXiv:2404.14720, 2024.

[49] B. Jiang, T. Bilot, N. El Madhoun, K. Al Agha, A. Zouaoui, S. Iqbal,
X. Han, and T. Pasquier, “ORTHRUS: Achieving High Quality of At-
tribution in Provenance-based Intrusion Detection Systems,” in Security
Symposium (USENIX Sec’25), USENIX, 2025.

[50] A. Goyal, G. Wang, and A. Bates, “R-caid: Embedding root cause
analysis within provenance-based intrusion detection,” in Proceedings
of the 2024 IEEE Symposium on Security and Privacy (SP), pp. 257–
257, IEEE, 2024.

[51] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[52] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax.,” ICLR (Poster), vol. 2, no. 3, p. 4, 2019.

[53] Q. Tan, N. Liu, X. Huang, R. Chen, S.-H. Choi, and X. Hu, “Mgae:
Masked autoencoders for self-supervised learning on graphs,” arXiv
preprint arXiv:2201.02534, 2022.

[54] Y. Liu, X. Shu, Y. Sun, J. Jang, and P. Mittal, “Rapid: Real-time alert
investigation with context-aware prioritization for efficient threat discov-
ery,” in Proceedings of the 38th Annual Computer Security Applications
Conference, pp. 827–840, 2022.

[55] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,
“Poirot: Aligning attack behavior with kernel audit records for cyber
threat hunting,” in Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security, pp. 1795–1812, 2019.

[56] M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence ex-
plosion in forensic analysis using alternative tag propagation semantics,”
in 2020 IEEE Symposium on Security and Privacy (SP), pp. 1139–1155,
IEEE, 2020.

[57] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec:
A heterogeneous graph embedding based approach for detecting cyber
threats within enterprise,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pp. 1777–1794,
2019.

[58] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, pp. 255–264, 2002.

[59] Z. Li, R. Yang, Q. A. Chen, and Y. Chen, “Mimic the whole attack chain:
A first look at evasion against provenance graph based detection,” 2020.

[60] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Ad-
versarial attack on graph structured data,” in International conference
on machine learning, pp. 1115–1124, PMLR, 2018.

[61] L. Sun, Y. Dou, C. Yang, K. Zhang, J. Wang, S. Y. Philip, L. He,
and B. Li, “Adversarial attack and defense on graph data: A survey,”
IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 8,
pp. 7693–7711, 2022.

[62] K. Xu, X. Ma, L. Liu, D. Deb, J. Liu, J. Tang, J. Fan, J. Bailey, and
D. Song, “Topology attack and defense for graph neural networks: An
optimization perspective,” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI), pp. 3961–3967, 2019.

[63] X. Wu, X. Shi, H. Cheng, J. Zhou, and Y. Li, “Adversarial examples on
graph data: Deep insights into attack and defense,” in Proceedings of the
28th International Joint Conference on Artificial Intelligence (IJCAI),
pp. 3776–3782, 2019.

[64] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph structure
learning for robust graph neural networks,” in Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 66–74, 2020.

[65] J. Guo, K. Huang, X. Yi, Z. Su, and R. Zhang, “Rethinking spectral
graph neural networks with spatially adaptive filtering,” arXiv preprint
arXiv:2401.09071, 2024.


