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Abstract—Effective incident response (IR) is critical for mit-
igating cyber threats, yet security teams are overwhelmed by
alert fatigue, high false-positive rates, and the vast volume of
unstructured Cyber Threat Intelligence (CTI) documents. While
CTI holds immense potential for enriching security operations,
its extensive and fragmented nature makes manual analysis
time-consuming and resource-intensive. To bridge this gap, we
introduce a novel Retrieval-Augmented Generation (RAG)-based
framework that leverages Large Language Models (LLMs) to
automate and enhance IR by integrating dynamically retrieved
CTL Our approach introduces a hybrid retrieval mechanism
that combines NLP-based similarity searches within a CTI vector
database with standardized queries to external CTI platforms,
facilitating context-aware enrichment of security alerts. The
augmented intelligence is then leveraged by an LLM-powered
response generation module, which formulates precise, action-
able, and contextually relevant incident mitigation strategies.
We propose a dual evaluation paradigm, wherein automated
assessment using an auxiliary LLM is systematically cross-
validated by cybersecurity experts. Empirical validation on real-
world and simulated alerts demonstrates that our approach
enhances the accuracy, contextualization, and efficiency of IR,
alleviating analyst workload and reducing response latency. This
work underscores the potential of LLM-driven CTI fusion in
advancing autonomous security operations and establishing a
foundation for intelligent, adaptive cybersecurity frameworks.

Index Terms—Large Language Models (LLM), Cyber Threat
Intelligence (CTI), Incident Response (IR), Retrieval-Augmented
Generation (RAG).

[. INTRODUCTION

With the ever-increasing sophistication of cyber threats, or-
ganizations struggle to respond efficiently to security incidents,
leading to significant financial and operational consequences.
Incident response [1] is a structured and strategic process
for identifying and handling cyberattacks, aimed at reducing
damage, recovery time, and overall costs. IR involves several
specialized teams: SOC analysts handle monitoring and initial
triage; CTI analysts provide strategic threat intelligence to
contextualize events; and finally incident responders manage
and remediate the detected incidents. Despite this structure,
teams face major challenges, starting with detection. SOC an-
alysts deal with alert fatigue due to high volumes—averaging
4,484 alerts per day—and spend nearly three hours daily on
manual triage [2]. Alert enrichment with threat intelligence
adds further delays and resource demands. Modern multi-cloud
environments (e.g., AWS, GCP, Azure) introduce additional

complexity with fragmented security models, requiring spe-
cialized skills and slowing response times. Meanwhile, generic
incident response playbooks often lack actionable guidance,
especially for less experienced teams, limiting their ability to
learn from past incidents and respond effectively.

To bridge these gaps, organizations have turned to Cyber
Threat Intelligence (CTI) [3] as a pivotal resource for enhanc-
ing their IR capabilities. CTI involves the collection, analysis,
and dissemination of information about cyber threats and
vulnerabilities, enabling organizations to understand better and
respond to potential risks. Within SOC teams, CTT is primarily
used to enrich and contextualize security alerts, providing
crucial insights for improved prioritization and understanding.
This enables teams to quickly identify the nature and source of
an attack, assess potential damage, and make informed recom-
mendations. It also provides insights into the latest threats and
tactics used by attackers, which helps teams better prepare for
and respond to incidents. Subsequently, IR teams rely on this
enriched intelligence to craft efficient and targeted responses,
underlining the importance of CTI in the overall cybersecurity
ecosystem. However, without automated systems, searching,
reading, and correlating CTI reports requires additional manual
effort. Moreover, CTI data is vast, heterogeneous, and comes
from diverse sources, making its management and analysis
complex. Effectively utilizing CTI requires highly skilled
personnel and advanced technological tools, which can pose
challenges in terms of cost and skilled-resources availability.
Furthermore, the ability to quickly analyze CTI data and take
preventive or corrective actions may be limited, particularly
while facing real-time attacks.

Given these challenges, there is a pressing need for ad-
vanced automation tools. Large Language Models (LLMs)
have transformed multiple domains [4]-[6] with advanced
language processing, automation, and data analysis, making
them invaluable in many fields. These strengths make LLMs
particularly valuable in cybersecurity, where they have shown
promising results in diverse applications, including dataset
generation [7], threat detection [7], [8], response [9], Cy-
ber threat intelligence [10], and even attack [11]. In the
CTI domain specifically, LLMs are increasingly employed
to address the challenge of processing heterogeneous data
from diverse sources. Multiple solutions have been proposed
in this context. For instance, the Mitre ATT&CK project
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[12] launched the Threat Report ATT&CK Mapper (TRAM),
designed to simplify the analysis of CTI reports and ex-
traction of Tactics, Techniques, and Procedures. Alves et al.
[13] utilized different BERT model variants with optimized
hyperparameters to identify the most effective model for TTP
classification. Similarly, Fayyazi et al. [10] compared direct
use of LLMs (GPT-3.5, Bard) with supervised fine-tuning
(SFT) of smaller LLMs (BERT, SecureBERT) to interpret
ambiguous cyberattack descriptions, demonstrating that fine-
tuned small-scale LLMs like SecureBERT outperform direct
use in precise classification of cybersecurity tactics. In addi-
tion, Peng et al. [14] introduced CTISum, a new benchmark
specifically designed for CTI summarization tasks with capa-
bilities for attack process summarization as a subtask. Tseng
et al. [15] proposed an LL.M-based solution to automate threat
intelligence workflows within SOCs. Their system extracts
Indicators of Compromise using LLMs, applies a filtering
and cleaning mechanism via a multi-LLM voting system,
and generates Regex rules and relationship graphs, enhancing
preventive measures. While most state-of-the-art approaches in
CTI leverage LLMs for passive tasks such as summarization
and mapping, their role in active incident response remains
limited. We strongly believe that LLMs can extend their
actual usage to serve as a powerful tool, offering exceptional
capabilities in processing, analyzing, and synthesizing vast
amounts of CTI data to improve incident response efficiency,
automating the entire workflow from report analysis to tailored
response planning. However, there are significant challenges,
particularly the high costs of fine-tuning these models for
specialized CTI contexts. Additionally, maintaining the ability
to continuously adapt to the ever-evolving landscape of new
attacks and emerging CTI can be both time-consuming and
expensive.

To address these challenges, we propose a novel real-time
incident response approach based on LLMs. This system
enables security teams to effectively leverage Cyber Threat
Intelligence to respond to incidents. This model is capable of
accurately enriching events and alerts using CTI, and then
rapidly producing effective actions in response to specific
threats, drawing on vast and diverse CTI sources. The model’s
architecture will incorporate and integrate CTI without requir-
ing costly fine-tuning for each update, through the Retrieval-
Augmented Generation technique. The effectiveness of this
approach has been rigorously evaluated using a novel au-
tomated method, powered by LLMs, and cross-validated by
cybersecurity experts. This evaluation assesses key metrics
such as answer relevance, context relevance, and groundedness
across two datasets: real-world alerts and simulated alerts.

In summary, the main contributions of this paper are:

« A novel RAG-based incident response model that effec-
tively leverages Cyber Threat Intelligence to enrich secu-
rity alerts and generate precise, context-aware response
actions. Our approach supports the continuous integration
of new CTI data without requiring model fine-tuning for
each update, ensuring adaptability to emerging threats.

« We propose an innovative retrieval within our RAG

system that combines two complementary search tech-
niques to contextualize and enrich incidents: The model
can performs standard searches on platforms through
CTI APIs like VirusTotal [16] to retrieve standardized
contexts and correlate the incident with private databases.
Subsequently, it employs NLP-based similarity searches
to identify relevant documents or text segments in the CTI
vector database, enabling the correlation of incidents with
historical cases.

e A rigorous evaluation framework integrating automated
assessments powered by LLMs with manual expert val-
idation on real-world and simulated SIEM (Security In-
formation and Event Management) alerts. The simulated
alerts are generated by executing real attack scenarios
in controlled environments. The results, assessed across
multiple dimensions such as response accuracy, con-
textual relevance, and data groundedness, demonstrate
the effectiveness of our approach in enhancing incident
response.

The remainder of this paper is outlined as follows. The pro-
posed RAG-based Incident Response architecture is described
in Section II. Section III presents the experimental results and
analysis. Finally, Section IV concludes the paper and points
out future directions.

II. PROPOSED APPROACH
A. Overview of the proposed system

We propose a RAG-based incident response architecture
(Figure 1) designed to automate and streamline the workflows
of SOC analysts, CTI analysts, and incident responders. The
system takes as input a security incident description, with
a focus on SIEM alerts (Figure la, Part 1), and operates
in two main phases: retrieval and augmented generation. In
the Retrieval phase, the model searches for relevant threat
intelligence to enrich the alert. Given the inherent access
restrictions in CTI, we introduce a tailored retrieval method
optimized for this context. The model first performs structured
searches via CTI platform APIs, such as VirusTotal, to extract
contextual information from private databases. It then employs
NLP-based similarity techniques to identify relevant docu-
ments or text segments within CTI vector databases, enabling
correlation between current incidents and historical cases. In
the augmented generation phase, the language model synthe-
sizes accurate and actionable responses using the retrieved
data. Our approach continuously integrates new CTI data by
embedding reports into a vector database and using additional
private datasets, eliminating the need for fine-tuning. This
strategy significantly reduces both computational overhead and
operational costs, ensuring adaptability to evolving threats.
The following sections detail the architecture’s main com-
ponents, including knowledge base construction, the retrieval
mechanism, and the generation process.

B. Building the Knowledge Base

To build the Knowledge Base for the NLP-based search, we
initially utilized CTI documents from publicly available collec-
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Fig. 1: Proposed Retrieval-Augmented Generation RAG Incident Response Architecture

tions of Advanced Persistent Threat (APT) and cybercriminal
campaign reports [16]. In the future, we plan to integrate this
process directly with the OpenCTI platform [17] to enable
seamless data sharing and integration. The process starts by
loading all the CTI documents, cleaning, and transforming
PDF files into text. Then, text splitters break large documents
into smaller chunks, making them easier to index and search,
as larger chunks can be difficult to handle in models with
limited context windows. These chunks are transformed into
vectors using embeddings, and then stored in a specialized
database called a vector database. This type of database is
specifically designed to efficiently store, manage, and search
through large quantities of high-dimensional vector data.

C. RAG-Based CTI Retrieval

We proposed a new RAG-based search method tailored for
gathering CTI from diverse sources. This method combines
both standard search and NLP-based search techniques.

The standard search, depicted in part 2 of Figure la,
involves querying private databases commonly used by SOC
teams. To automate this process, we first employed an 10C
Parser tool to extract various IOCs, such as domain names,
hashes, IP addresses, and URLs. For each IOC the sys-
tem leverages APIs from private threat intelligence databases
(VirusTotal in our case) to gather detailed contextual infor-
mation, including historical malicious activity, geolocation,
and reputation scores. This enriched data is then appended
to the standard search context. For example, if an IP address
is flagged, the system queries APIs to determine its association
with botnets, historical attack patterns, and blacklist status.

The natural language processing (NLP)-based search, pre-
sented in part 3 of Figure la, retrieves the most relevant

context from CTI reports by conducting searches in a knowl-
edge base built from these. To retrieve the CTI reports most
relevant to the detected incident in the alert, we propose
a solution to enhance the alert. Raw alert data often lacks
the contextual richness necessary for effective correlation. To
address this, we leverage an LLM guided by a tailored prompt
to generate an augmented alert. This prompt is designed to
incorporate findings from an initial standard search—such as
those conducted on VirusTotal during our experiments—into
the alert. This process facilitates similarity-based searches
by reformatting the alert into a structured and contextually
relevant format.

Performing a search in the vector database involves cal-
culating the similarity (e.g. cosine similarity) between the
embeddings of the question (the Siem Alert) and document
chunks (CTI). To evaluate the similarity between texts, two
key aspects must be defined: the method used to measure
the similarity between embeddings, and the algorithm used
to transform the text into embeddings, which represent the
text in a vector space. The system primarily employs Cosine
Similarity, as defined in Equation 1, to measure the similarity
between embeddings. This method remains one of the most
widely used techniques for assessing vector similarity. A score
closer to 1 indicates a higher degree of similarity between
embeddings. To generate embeddings, we utilize Transformer-
based models [18], as they represent a significant breakthrough
in NLP and consistently outperform previous approaches.
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D. Augmented Generation

Following the retrieval step, a final prompt is designed
for the LLM to generate an incident response strategy. This
prompt incorporates both the SIEM alert and the retrieved data,
which is a combination of standard search data (e.g. virusTotal
results) and insights from the NLP search (CTI chunks). To
achieve optimal results, we propose an adapted prompt that
clearly defines the context of the alert, provides the necessary
background from the retrieved data, and outlines the specific
task. This ensures that the LLM produces a comprehensive and
actionable incident response strategy tailored to the detected
threat. The final prompt is fed into a pre-trained LLM, as
illustrated in Figure 1b, to generate the incident response
plan text. In our solution, we leverage GPT LLM (Generative
Pre-trained Transformer), which utilizes auto-regressive [19]
modeling to produce coherent and contextually relevant text.
These models called decoder-only, correspond to the decoder
part of the Transformer model, are ideal for text generation.

III. EXPERIMENTS AND EVALUATION RESULTS
A. System Setup

We tested the proposed architecture on 100 alerts generated
by the our company’s SIEM system (LogPoint SIEM [20]),
randomly selected between August 10 and September 8, 2024.
These real-world alerts served as inputs to our model, which
we enriched with CTI to propose a coherent response for each
incident.

In addition to real-world alerts, we manually generated
alerts by emulating incidents within a controlled and isolated
test environment, illustrated in Figure 2. This environment was
built on an internal Proxmox hypervisor, which hosted and
managed the virtual machines (VMs) necessary for simulating
attacks. We deployed the ELK stack [21] as a dedicated SIEM
solution on a separate virtual machine, configured within the
same network as the target machines. For attack simulation,
we used a Linux virtual machine as the attacker, where we
installed Caldera [22], an attack simulation tool developed
by MITRE. Caldera automates cyberattacks by replicating
tactics and techniques (TTPs) from the MITRE ATT&CK
framework [23]. To ensure diverse log data, we deployed
two types of target operating systems—Windows and Linux.
Both target machines had Elastic Defend agents [24] installed
to capture all security events. Using Caldera, we emulated
various advanced persistent threat (APT) attacks, illustrated in
Table I. These simulated attacks included a range of TTPs from
the MITRE ATT&CK Framework, targeting both Linux and
Windows hosts. For instance, the Advanced Thief adversary
employed techniques such as Automated Collection (T1119)
and Exfiltration Over C2 Channel (T1041) on Linux machines
to collect and exfiltrate sensitive data. Similarly, the Stowaway
adversary utilized Process Discovery (T1057) and Process
Injection (T1055.002) to hide its presence and evade detection
on Windows systems. Detection rules were created within the
SIEM to intercept these events and generate alerts. In total, we
generated 10 simulated alerts, which were tested and evaluated

using our solution. These alerts, combined with the 100 real-
world alerts, provided a comprehensive dataset to thoroughly
study and refine our proposed solution and analyze the results.
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Fig. 2: Test environment for alerts generation

TABLE I: Simulated Cyber Attacks in a Controlled
Environment for Alert Generation

Test

Adversarie Ability Name Tactic Technique Host
Advanced Advanced File Search and | Collection TI1119 Automated Collection Linux
Thief Stager
Advanced Compress staged directory Collection T1560.001 Archive Collected Data: Archive | Linux
Thief via Utility
Advanced Exfil staged directory Exfiltration | T1041 Exfiltration Over C2 Channel Linux
Thief
Stowaway Discover injectable process Discovery | T1057 Process Discovery Windows
Stowaway Inject Sandcat into process Defense- T1055.002 Process Injection: Portable Exe- | Windows
Evasion cutable Injection
atomic NMAP scan Technical- T1254 Conduct active scanning Linux
Information-
Gathering
atomic Access /etc/shadow (Local) Credential- T1003.008 OS Credential Dumping: /etc/- | Linux
Access passwd, /etc/master.passwd and /etc/shadow
Windows Collect ARP details Discovery | TI0I8 Remote System Discovery Windows
Worm #1
Super Spy Find files Collection | T1005 Data from Local System Windows
Super Spy Exfil staged directory windows | Exfltration | T1041 Exfiltration Over C2 Channel Windows
For the standard search involving querying private

databases, we used the VirusTotal database [25] via API,
which allows searching for domain names, hashes, IP ad-
dresses, and URLs. For the NLP-based search and vector
database creation, we utilized public CTI reports from the
APT repository on VX Underground [16], which contains
papers and blogs (sorted by year) related to malicious cam-
paigns, activity, or software associated with vendor-defined
APT groups and toolsets. We retrieved these reports and
performed text extraction from each CTI report in PDF format
using PyMuPDF [26], a high-performance Python library for
extracting, analyzing, converting, and manipulating PDFs and
other document formats. The extracted text was then chunked
and embedded into a Chroma vector database. For augmented
generation, we used the GPT-40 model, as it is considered the
best model according to the leaderboard platform on Hugging
Face for text generation. Moreover, it accepts a large context
length, which is crucial for our use case.

B. Evaluation Method and Metrics

To evaluate the RAG model, we opted for specific metrics
commonly used for the assessment of Retrieval-Augmented



Generation systems. These metrics are designed to measure
various aspects of the model’s performance, focusing on how
well it retrieves and generates information:

o Answer Relevance: Is the response directly relevant to
the query?

o Context Relevance: Is the retrieved context relevant and
appropriately aligned with the query?

¢ Groundedness: Is the response supported by the re-
trieved context?

We propose using an automated evaluation method powered
by LLMs to assess each metric for every alert. The idea is to
employ other LLMs to evaluate each alert on a scale of 1 to
5 for each criterion. To accomplish this, we crafted specific
prompts tailored to each metric. These prompts instruct the
LLM to provide a score for each metric and simultaneously
offer an explanation of why that score was given. To ensure
the validity of our approach, we complemented the automated
scoring system with manual evaluations performed by security
experts, thereby validating the reliability and accuracy of the
automated assessments.

C. Experimental Results

The evaluation consists of two parts. First, we assess the
automated analysis of real alerts from the enterprise SIEM,
evaluating the response quality. Then, we validate these results
through both automated and manual evaluation on 10 simu-
lated alerts generated in a controlled environment. This setup,
with known incident causes, helps confirm the reliability of
our scoring system. Finally, we compare results across both
datasets.

1) Results of the real-world Alerts: We performed the
automatic evaluation on 100 real-world alerts reported by our
security teams, using three open-source models. The models
used include Mistral-large-2407 a larger variant of the Mistral
model, Llama-3.1-70B-Instruct, a larger variant of the LLaMA
model from Meta, and a smaller LLaMA model Llama-3.2-
3B-Instruct.

Table II displays the percentage ratings assigned by each
model for each alert processed, along with the mean and vari-
ance. We observe that the models provide close mean scores,
however their sensitivity varies. This variation is expected, as
we included both large and small versions of different models.

Overall, our Retrieval-Augmented Generation (RAG) sys-
tem demonstrates strong performance in answer relevance,
achieving an average score close to 5 across all LLMs, and in
groundedness (accuracy of responses), with an average score
exceeding 4. These positive results are consistently reflected
in the high ratings from all LLMs. However, context relevance
scores are relatively low. The reduced score can likely be
attributed to the inability to identify relevant context for certain
alerts in either VirusTotal or CTI reports. This can be explained
by the inclusion of false-positive alerts in the dataset, as well
as the fact that, for some alerts, the IOCs are not recognized
within the VirusTotal database. Furthermore, CTI reports often
lack detailed information on specific campaigns. In future

versions, we aim to extend this solution by incorporating addi-
tional trusted private databases, such as CrowdStrike, to enrich
the standard search, as well as integrating more comprehensive
CTI reports to improve overall context coverage.

To further investigate, we separated context relevance evalu-
ations based on CTI reports and VirusTotal data. We observed
similar, lower-than-global context relevance scores for each,
indicating that both sources are complementary and collec-
tively improve the final context relevance.

TABLE II: Automatic Evaluation of LLMs on Real-World
Alerts

Model & Metric 1(%) 2(%) 3(%) 4(%) 5(%) Mean Variance
Mistral-large Answer Relevance 0.00 0.00 0.00 2.12 97.87 497 0.02
Mistral-large Context Relevance [VT + CTI] 0.00 2000 5111 2222 6.66 3.15 0.66
Mistral-large Context Relevance [VT only] 17.77 333 4444 2777 6.66 3.02 1.28
Mistral-large Context Relevance [CTI only] 1.20 63.85 21.68 6.02 722 2.54 0.82
Mistral-large G ded 0.00 0.00 2.46 41.97 55.55 4.53 0.29
Llama-3.2-3B Answer Relevance 0.00 1.00 23.00 25.00 51.0 4.26 0.71
Llama-3.2-3B Context Relevance [VT + CTI] 0.00 30.00 28.99 17.00 24.00 3.35 1.30
Llar -3B Context Relevance [VT only] 0.00 33.00 51.00 16.00 0.00 2.83 0.46
Llama-3.2-3B Context Relevance [CTI only] 0.00 20.00 31.00 28.99 20.00 3.49 1.04
Llama-3.2-3B Gr 0.00 3.00 28.00 16.00 53.00 4.19 0.89
Llama-3.1-70B Answer Relevance 0.00 0.00 0.00 5.00 95.0 4.95 0.04
Llama-3.1-70B Context Relevance [VT + CTI] 6.06 23.23 13.13 17.17 40.40 3.62 1.87
Llama-3.1-70B Context Relevance [VT only] 24.00 49.00 22.00 1.00 4.00 212 0.84
Llama-3.1-70B Context Relevance [CTI only] 2.00 20.00 64.00 1.00 13.00 3.03 0.80
Llama-3.1-70B Groundedness 0.00 0.00 18.00 13.00 69.00 4.51 0.60

2) Results of the Simulated Alerts: In this section, we aim
to validate the automated evaluation by incorporating a manual
assessment conducted by cybersecurity experts. This approach
involves analyzing alerts generated through controlled sim-
ulations, where the incidents triggering each alert and their
corresponding attacks are known. The objective is to assess
the system in detail and validate the automated evaluation,
which we intend to use later as a filter to retain only accurate
responses.

We began with the automated evaluation, illustrated in Table
III, which demonstrates results similar to the evaluation of
100 alerts. It shows strong performance in answer relevance,
achieving an average score close to 5 across all LLMs, as
well as groundedness (accuracy of responses), with an average
score exceeding 4. Additionally, there is an improvement in
context relevance compared to previous results, as all the alerts
in this case are true positives. A detailed comparison between
the two datasets will be explored in subsequent sections.

TABLE III: Automatic Evaluation of LLMs on Simulated

Alerts
Model & Metric 1(%) 2(%) 3(%) 4(%) 5(%) Mean Variance
Mistral-large-2407 Answer Rel 0.00 0.00 0.00 0.00 100 5.00 0.00
Mistral-large-2407 Context [VT + CTI] 0.00 0.00 22.22 0.00 71.77 4.55 0.69
Mistral-large-2407 Context Relevance [VT only] 22.22 11.11 2222 11.11 33.33 322 239
Mistral-large-2407 Context [CTI only] 0.00 0.00 0.00 37.50 62.50 4.62 0.23
Mistral-I; 2407 Gi 0.00 0.00 0.00 44.44 55.55 4.55 0.24
Llama-3.2-3B-Instruct Answer Relevance 0.00 0.00 0.00 20.00 80.00 4.80 0.15
Llama-3.2-3B-Instruct Context Relevance [VT + CTI] 0.00 10.00 20.00 30.00 40.00 4.00 1.00
Llama-3.2-3B-Instruct Context Relevance [VT only] 0.00 20.00 30.00 50.00 0.00 3.30 0.61
Llama-3.2-3B-Instruct Context Relevance [CTI only] 0.00 10.00 10.00 20.00 60.00 4.30 1.01
Llama-3.2-3B-Instruct Groundedness 0.00 0.00 10.00 10.00 80.00 4.70 0.41
Llama-3.1-70B-Instruct Answer Relevance 0.00 0.00 0.00 20.00 80.00 4.80 0.15
Llama-3.1-70B-Instruct Context Relevance [VT + CTI] 10.00 10.00 10.00 10.00 60.00 4.00 2.00
Llama-3.1-70B-Instruct Context Relevance [VT only] 40.00 20.00 10.00 10.00 20.00 2.50 245
Llama-3.1-70B-Instruct Context Relevance [CTI only] 0.00 10.00 20.00 0.00 70.00 4.30 1.21
Llama-3.1-70B-Instruct G 0.00 0.00 0.00 20.00 80.00 4.80 0.15

For the expert evaluation, we submitted 10 alerts to a
cybersecurity expert within our organization, as summarized in
Table IV. The results demonstrate strong performance across
all metrics, with an average score exceeding 4. Compared to
the automatic evaluation, the expert evaluation yields similar



average scores for context relevance. However, the scores for
answer relevance and groundedness are slightly lower, while
still remaining near 4. These findings validate the proposed
automatic evaluation methodology and further confirm the
effectiveness of our approach from an operational perspective,
as evaluated by an incident responder.

TABLE IV: Expert Evaluation on Simulated Alerts

Metric 1(%) 2(%) 3(%) 4(%) 5(%) Mean Variance
Expert Answer Relevance 0.00 0.00 0.00 80.00  20.00 4.20 0.17
Expert Context Relevance  0.00 0.00 20.00  50.00  30.00 4.10 0.54
Expert Groundedness 0.00 0.00 20.00  50.00  30.00 4.10 0.54

3) Comparison of Results: Real-World Alerts vs. Sim-
ulated Alerts: Overall, the results show almost identical
performance in Answer Relevance and Groundedness, both
scoring very high and close to 5, with slightly better results
for the simulated alerts. However, for Context Relevance, a
significant improvement can be observed, increasing from a
score of 3 to 4. This improvement is attributed to the presence
of false positives in the real-world alerts, where the system
fails to retrieve valid CTI. This limitation arises either during
the standard search with VirusTotal, which fails to recognize
any IOCs, or when CTI reports do not match any described
campaigns. Consequently, the system generates a coherent
result that is not based on the extracted context, leading to
lower Context Relevance scores.

IV. CONCLUSION

This paper introduces a novel intelligent incident response
solution powered by large language models. Our solution
effectively leverages Cyber Threat Intelligence through an
innovative Retrieval-Augmented Generation architecture that
integrates dual search techniques to contextualize and en-
rich incident data. The model performs NLP-based similarity
searches within a CTI vector database, retrieving relevant doc-
uments or text segments to correlate incidents with historical
cases. Additionally, it conducts standard searches via CTI APIs
such as VirusTotal or CrowdStrike to access standardized con-
texts, facilitating correlation with data from private databases.
The proposed solution has been rigorously validated using
a comprehensive evaluation framework that combines auto-
mated assessments using LLMs, and expert cross-validation
by cybersecurity professionals. The evaluation demonstrates
strong performance across critical metrics, including answer
relevance, context relevance, and groundedness, using both
real-world and simulated SIEM alerts. These results under-
score the robustness and effectiveness of our proposed system.

In future research, we plan to extend our solution to a wider
range of cybersecurity roles by tailoring outputs to their work-
flows and enhancing the model’s reasoning. Furthermore, we
will address a critical dimension of the system’s development:
ensuring the security and resilience of the solution against
adversarial attacks. By prioritizing these advancements, we
aim to enhance the system’s usability, adaptability, and trust-
worthiness in real-world applications.
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V. APPENDIX



Expansion Prompt Template

You are a helpful cybersecurity expert.

Your task is to expand the given SIEM alert with additional context from VirusTotal to formulate a complete incident.
This expansion will facilitate similarity-based searches in Cyber Threat Intelligence (CTI) reports. You should explain
the incident and detail the Indicators of Compromise (IoCs).

SIEM Alert (Query): {alert}

VirusTotal Context: {virustotal_context}

Answer:

### Incident Overview

Based on the SIEM alert and VirusTotal context, this incident appears to involve incident description. The alert details
suggest malicious activity that could be part of a larger campaign targeting a specific sector or industry. The VirusTotal
analysis adds further clarity to the threat by identifying key indicators and behavioral patterns.

### Indicators of Compromise (IoCs)

1. **Network Indicators**

- Source IP: source_ip (Possible attacker)

- Destination IP: destination_ip (Potential target or intermediate server)

- Domain: domain (Linked to malicious activity)

2. **File Hashes**

- MDS5:

- SHAL:

- SHA256:

- File associated with malware family: malware_family (if identified)

3. **Behavioral Observations**

- behavior_1

- behavior_2

4. **VirusTotal Context**

- Detection Count: positives/total

- Associated Tags: tags

- Summary: analysis_summary

### Threat Hypothesis

This activity aligns with threat actor or group campaigns, which commonly use specific techniques or tactics. The
observed indicators suggest potential motives or impact, and the behavior is consistent with related malware or known
attack patterns.




Incident Response Prompt Template

You are an Incident Responder (IR). Your Task is to provide a concise and relevant incident response strategy for the
siem alert detected based on the context.

1- First, enrich and correlate the alert with VirusTotal results and cyber threat intelligence (CTI) context.

2- Then, Generate a detailed alert explanation when a match is found in VirusTotal or a Cyber Threat Intelligence
(CTI) document. Include the full name of the matched document or report, and provide a comprehensive explanation
of the potential attack, including its possible purpose, method of operation, and implications for the targeted system
or organization.

3- Finaly, propose a clear and actionable incident response strategy tailored to the specific incident.

Your response should be clear, concise, and focused on the incident. If the answer cannot be deduced from the context,
do not give an answer.

Incident (SIEM LOG): {question}
virustotal Results : {virustotal_context}
CTI documents : {context}

Output::

Answer Relevance Prompt Template

Task Description: You will evaluate how well the generated response directly addresses the SIEM alert.

Instructions:

Assess the relevance of the response to the SIEM alert based on the following:
Does the response focus on the key aspects of the alert?

Is the response aligned with the nature of the alert (e.g., malware, phishing, intrusion)?
Does it provide actionable insights or explanations that match the alert’s context?
Scoring (1 to 5):

1: The response is not relevant at all.

2: The response is somewhat relevant but does not directly address the SIEM alert.
3: The response is moderately relevant; it addresses some aspects but lacks focus.
4: The response is mostly relevant with minor gaps.

5: The response is highly relevant and fully addresses the SIEM alert.

**You must provide the Total Rating.**

Answer:::

Evaluation: (Explain why the response is or isn’t relevant)

Total Rating: (Provide a rating from 1 to 5)

SIEM Alert (Query): {alert}
Generated Response: {response}

Output:::




Context Relevance Prompt Template

Task Description: You will evaluate whether the response appropriately considers the broader security context based
on available information.
(Is the context useful for enriching the SIEM alert?)

Instructions:

Assess the context relevance of the response based on the following:

Does the response consider the larger security implications of the alert?

Is the explanation aligned with real-world attack techniques and threat intelligence?
Does it make reasonable connections between the alert, VirusTotal results, and CTI data?
Scoring (1 to 5):

1: The response lacks any meaningful context or is misleading.

2: The response includes some context but misses key connections.

3: The response considers context but is not well-integrated with the provided data.
4: The response is contextually relevant with only minor gaps.

5: The response fully integrates and applies context appropriately.

**You must provide the Total Rating.**

Output:::

Evaluation: (Explain your reasoning for the context relevance rating)

Total Rating: (Provide your rating here, from 1 to 5)

SIEM Alert (Query): {alert}
Context: {context}

Answer:::

Groundedness Prompt Template

Task Description: You will evaluate whether the response is properly supported by the given VirusTotal results and
CTI documents.
(Is the response well-supported by the context?)

Instructions:

Assess the groundedness of the response based on the following:

Does the response correctly use information from VirusTotal and CTI sources?
Is there any unsupported or hallucinated information in the response?

Does the response cite relevant CTI documents or VirusTotal results appropriately?
Scoring (1 to 5):

1: The response contains hallucinated or unsupported information.

2: The response includes some relevant information but introduces inaccuracies.
3: The response is mostly based on sources but has minor unsupported claims.
4: The response is well-grounded with only slight inconsistencies.

5: The response is fully supported by VirusTotal and CTI documents.

**You must provide the Total Rating.**

Answer:::

Evaluation: (Explain your reasoning for the groundedness rating)

Total Rating: (Provide your rating here, from 1 to 5)

Incident Response Strategy (Response): {response}
Context: {context}

Output::




