
REFN: A Reinforcement-Learning-From-Network
Framework against 1-day/n-day Exploitations

Tianlong Yu1, Lihong Liu1, Ziyi Zhou1, Fudu Xing3, Kailong Wang2, Yang Yang1

1School of Artificial Intelligence, Hubei University, Wuhan, China
2Huazhong University of Science and Technology, Wuhan, China

3University of Southern California, Los Angeles, USA
tommyyu21@163.com, llh3401939433@outlook.com, 202421121013087@stu.hubu.edu.cn,

fuduxing@usc.edu, wangkl@hust.edu.cn, yangyang@hubu.edu.cn

Abstract—The exploitation of 1-day/n-day vulnerabilities poses
severe threats to networked devices due to massive deployment
scales and delayed patching (average Mean-Time-To-Patch ex-
ceeds 60 days). Existing defenses, including host-based patching
and network-based filtering, are inadequate due to limited
scalability across diverse devices, compatibility issues especially
with embedded/legacy systems, and error-prone deployment pro-
cess (e.g., manual patch validation). To address these issues,
we introduce REFN (Reinforcement-Learning-From-Network), a
novel framework that trains Large Language Models (LLMs)
to autonomously generate network filters to prevent 1-day/n-
day exploitations. REFN ensures scalability by uniquely em-
ploys Reinforcement Learning (RL) driven by online network
rewards instead of traditional Human Feedback (RLHF). REFN
guarantees compatibility via unified deployment on edge security
gateways (e.g., Amazon Eero). REFN provides robustness via
online validation using real network traffic. Crucially, REFN
addresses three core challenges in training LLMs for exploit
prevention: 1) expanding current LLMs’ limited vulnerability-
fixing expertise via Agentic-RAG-based Knowledge Distillation;
2) bridging current LLMs’ language-to-network gaps through an
RL-From-VNF Pipeline that translates language context (e.g.,
vulnerability description) into network enforcement; 3) address-
ing the LLM hallucination & non-determinism via the Online
Agentic Validation that penalizes erroneous outputs. Evaluated
across 22 families of 1-day/n-day exploits, REFN demonstrates
effectiveness (21.1% higher accuracy than alternatives), efficiency
(Mean-Time-To-Patch of 3.65 hours) and scalability (easily scale
to 10K devices). REFN serves as an initial step toward training
LLMs to rapidly prevent massive-scale 1-day/n-day exploitations.

I. INTRODUCTION

The real-world conflicts are rapidly expanding into cy-
berspace, driving massive-scale exploitations of 1-day/n-day
vulnerabilities across networked devices [38], [8]. Landmark
incidents, such as the 2021 Log4j vulnerability which affecting
hundreds of millions of devices [8], demonstrate the severity
of this threat. Offensive capabilities are further amplified by
LLM-powered tools (e.g., WormGPT [29], HackerGPT [31]),
while defenses are slow to respond and falling behind, e.g.,
critical patches face dangerous delays, with Mean-Time-To-
Patch (MTTP) averaging 60 to 150 days [19].

Current vulnerability fixing strategies primarily utilize two
approaches: host-based patching [17], [12], [10], [20], [15],
[27], [14], [21], [25], [64], [63], [45], [66], [50] and network-
based filtering [57], [26], [48], [62], [11], [18], [61]. Host-

based patching operates by updating software or hardware
on vulnerable devices through patch generation, installation,
and validation. Despite automation efforts including patch
management tools [17], [12], [10], [20], [15], [27], [14], [21],
[25] (largely restricted to standard computers) and more recent
generic ML-based approaches [64], [63], [45], [66], [50], host-
based patching solutions remain challenged by source code
availability and the prohibitive cost of upgrading embedded/le-
gacy systems. Network-based filtering includes manual rule-
based filtering [26] (inherently error-prone and not scalable),
generic ML-based network filtering [57], [48] (relying on
statistical anomaly detection which causes disruptive false
positives and fails against low-frequency attacks like APTs). It
is also worth noting that generic LLMs can be used to generate
patches or filtering rules via manual prompts. However, the
generic LLMs [11], [18], [61] are plagued by hallucination
and non-determinism, generating seemingly correct but func-
tionally flawed patches and filtering rules.

Current vulnerability fixing mechanisms are ill-equipped to
address large-scale 1-day/n-day exploitation targeting diverse
networked infrastructure. Consider the compromise of millions
of smart meters within an Advanced Metering Infrastructure
(AMI) vulnerable to Smart Grid attacks like load oscilla-
tion [38]. Fixing such a vulnerability via host-based patching
demands expert analysis and expensive deployment/verifica-
tion across millions of devices. Network-based filtering al-
ternatives, which rely on manual rules or anomaly detection,
similarly fail to scale effectively to millions of AMI endpoints
while introducing unacceptable risks of disrupting critical grid
operations through false positives. We argue that existing
approaches fail to address large-scale 1-day/n-day exploits
effectively due to three fundamental limitations:
• Scalability: Patch and filtering rule generation relies criti-

cally on domain experts to manually analyze code and craft
fixes—a process that is inherently unscalable. This is acutely
demonstrated by vulnerabilities like Log4j, which impacted
millions of heterogeneous devices from Apache servers to
Smart City cameras. Manually generating tailored fixes for
such diversity is prohibitively slow and costly.
• Compatibility: Host-based patching suffers severe compat-

ar
X

iv
:2

50
8.

10
70

1v
1

 [
cs

.L
G

]
 1

4
A

ug
 2

02
5

https://arxiv.org/abs/2508.10701v1

ibility issues, particularly for embedded or legacy systems.
A Log4j patch designed for Windows servers, for instance,
will typically fail or malfunction on resource-constrained
smart cameras due to platform and dependency mismatches.
• Error-susceptibility: Both patching and filtering ap-

proaches are intrinsically susceptible to errors, as validation
remains exceptionally challenging across diverse device
functionalities. For example, it is hard to verify that an AMI
smart meter’s firmware patch installs correctly and will not
disrupting critical grid operations.
To overcome these limitations, we introduce REFN

(Reinforcement-Learning-From-Network): a novel framework
that trains Large Language Models (LLMs) to generate net-
work filters that can be deployed on edge security gateways to
prevent 1-day/n-day exploits. REFN’s core innovation include
leveraging Reinforcement Learning (RL) driven by real-time
network rewards – not human feedback (RLHF), enabling
autonomous adaptation to evolving 1-day/n-day threats. REFN
ensures scalability as its RL-trained LLMs automatically gen-
erate tailored filters, eliminating dependency on manual patch/-
fix generation. REFN guarantees compatibility via unified
deployment on edge security gateways (e.g., Amazon Eero)
abstracts away device-specific complexities, ensuring broad
coverage including embedded/legacy systems. REFN is error-
unsusceptible, as it can continuously perform online validation
against real network traffic, and can correct erroneous filters by
adjusting the online reward generated from network dataplane.

In developing REFN, we address three core chal-
lenges in training LLMs for exploit prevention: 1) Limited
vulnerability-fixing expertise: LLMs trained on general-
purpose data lack internalized vulnerability-fixing infer-
ence capabilities (e.g., unaware of day-1 vulnerability); 2)
Language-to-network gaps: LLMs optimized for natural
language (e.g., via RLHF) struggle to translate textual descrip-
tions into executable network enforcements due to structural
mismatches between linguistics and network; 3) LLM hallu-
cination and non-determinism: LLMs generate inconsistent
or erroneous outputs across iterations, producing unreliable
filtering rules that disrupts normal functions.

To address these challenges, REFN introduces three novel
designs: 1) Agentic-RAG-based Knowledge Distillation: dy-
namically retrieves and internalizes vulnerability intelligence
from security databases, CVE reports, and historical fixes,
enabling contextual reasoning for precise filter generation.
2) RL-from-VNF Pipeline: employs reinforcement learning
(RL) driven by real-time rewards from Virtualized Network
Function (VNF) to translate textual vulnerability descriptions
into protocol-aware network enforcements. 3) Online Agen-
tic Validation: enforces output reliability through real-time
network feedback loops that penalize errors and refine filters
during deployment.

The main contributions of this paper are as follows:
• Proof-of-Concept: We demonstrate the viability of training

LLMs for preventing massive-scale 1-day/n-day exploits.
• REFN Framework: We introduce a novel framework that

leverages Reinforcement Learning (RL) driven by real-time
network rewards – instead of human feedback (RLHF),
to generate vulnerability-fixing filters. REFN is scalable,
compatible and error-unsusceptible. Code available: https:
//github.com/REFN2025/REFN2025.
• Security-Specialized LLM Model: We provide the RL-

trained vulnerability-fixing LLM specifically effective
against 22 families of 1-day/n-day exploits. Model available:
https://huggingface.co/llhview/HuggingFace/tree/main.
• RL Dataset for Exploit Prevention: We present the first

dataset enabling Reinforcement Learning of LLMs to pre-
vent 1-day/n-day exploits, covering 22 families of exploits
and 65 types of devices. Dataset available: https://github.
com/REFN2025dataset/REFN2025/tree/master.
• Rigorous Evaluation: Using our RL dataset, we compre-

hensively evaluate REFN and demonstrate its effectiveness
(21.1% higher accuracy than alternatives), its efficiency
(Mean-Time-To-Patch of 3.65 hours) and its scalability
(easily scale to 10K devices).

II. MOTIVATIONS AND RELATED WORKS

A. Current vulnerability fixing approaches

Current vulnerability fixing mechanisms, including host-
based patching and host-based patching, can be further spec-
ified as several types of approaches:
Manual patching: This approach involves human-driven up-
dates to software/hardware systems through three core phases:
patch generation, installation, and validation. Security admin-
istrators must manually execute each step, requiring substantial
effort and expertise while offering limited scalability.
Patch management software: Developed to automate patch-
ing workflows [17], [12], [10], [20], [15], [27], [14], [21], [25],
these tools primarily streamline delivery and installation for
standard computing environments. However, they are ineffec-
tive for embedded or legacy systems due to platform-specific
dependencies and lack of validation.
Generic ML-based patching: InferFix [50] employs ML-
assisted repair; GraphSPD [63] and PAVUDI [45] utilize
GNNs for patch analysis; PatchRNN [64] models patches
via RNNs; SPI [66] identifies patches through commits. ML
solutions [64], [63], [45], [66], [50] are constrained by source
code availability and face prohibitive deployment costs for
legacy/embedded devices.
Manual network filtering: This approach requires the secu-
rity admins to craft rule-based filters or access control rules
manually [47], [49], inherently limited by human error and im-
practical for large-scale deployments. The lack of automation
also impedes rapid response to emerging threats.
Generic ML-based network filtering: These methods detect
threats through statistical traffic anomalies [57], [48], [40],
[39], [44], [42], [54]: Kitsune [57] uses autoencoder recon-
struction deviations; Bartos et al. [40] and FlowLen [39] apply
flow-sampling classifiers; Whisper [44] analyzes periodicity
via spectral decomposition; DeepLog [42] models system

https://github.com/REFN2025/REFN2025
https://github.com/REFN2025/REFN2025
https://huggingface.co/llhview/HuggingFace/tree/main
https://github.com/REFN2025dataset/REFN2025/tree/master
https://github.com/REFN2025dataset/REFN2025/tree/master

logs. Despite sophistication, they remain vulnerable to low-
frequency APT evasion due to reliance on pattern deviations.
LLM based patching/filtering: By prompting generic
LLMs [11], [18], [61], this approach generates patches or
filtering rules. However, it suffers from critical hallucination
and non-determinism issues, producing seemingly valid but
functionally flawed outputs that compromise security efficacy.

B. Issues with current approaches

Scalability issue: Current vulnerability remediation mech-
anisms face significant scalability challenges. The sheer di-
versity of vulnerable devices and systems—encompassing
complex infrastructures, numerous software applications, and
millions of endpoints—makes broad protection difficult. A
prime example is the Log4j vulnerability, which impacted
devices ranging from Apache servers to consumer appliances
like Siemens refrigerators. Manually generating and validat-
ing patches or filtering rules for each unique vulnerability-
device combination demands immense domain expertise and
is impractical at scale. Furthermore, patch deployment itself
consumes substantial time, manpower, and technical resources,
a burden particularly acute for organizations with limited
budgets. This scalability gap is exacerbated by the emergence
of LLM-empowered exploitation tools (e.g., HackerGPT [31],
WormGPT [29]), which dramatically enhance attackers’ ability
to launch large-scale exploits.

Compatibility issue: Existing approaches also struggle with
compatibility across diverse device ecosystems. End-of-life de-
vices often lack manufacturer support and receive no security
updates, leaving them persistently vulnerable. Many older or
resource-constrained devices lack the hardware or software ca-
pability to accept firmware updates at all. Proprietary, closed-
source systems present another barrier, as they cannot be
audited by the community or have third-party patches devel-
oped. Furthermore, patching complex hardware like medical
equipment or industrial control systems frequently requires
specialized expertise that may be unavailable.

Error-susceptibility issue: Current patching mechanisms
are inherently susceptible to errors. Fixes often require modi-
fications across multiple system components, increasing the
risk of implementation mistakes that can cause instability
or functional loss. Conflicts with existing software or hard-
ware versions are common, and managing dependencies adds
further complexity. Crucially, the process relies heavily on
manual intervention for both deployment and validation, in-
troducing significant opportunities for human error. It is inher-
ently challenging to anticipate all potential issues—especially
in complex systems or embedded devices—meaning even
validated patches can inadvertently introduce new problems
or unexpected behavior. For example, the ML-based network
filtering approaches may flag the benign accesses on a newly
joined devices as malicious as it is rarely seen deviation.

C. New vantage point to prevent 1-day/n-day vulnerabilities

To tackle the compatibility and scalability issue, security
vendors are shifting the vulnerability fixing function from

host-side to Edge Security Gateways (ESG), including Amazon
eero [2], Cisco Meraki [3], Netgear Orbi [6] and Linksys
Velop [5]. In such network-fix paradigm, the vulnerability
fixing is enforced as network filtering on the edge security
gateways. The remote cloud services is responsible for gen-
erating the filtering rules and installing them on the edge
security gateways. For example, the Cisco Talos Intelligence
cloud service can generate a network filtering for Log4j, and
deploy it on Meraki MX edge routers to detect and block Log4j
exploits [4], [7]. The gateways hosting the vulnerability fixes
are unified platforms such as Cisco IOS [13], Rasberry PI [24]
or OpenWRT [22]. The network-based patches only need to
adapt to several unified edge platforms instead of heteroge-
neous vulnerable devices. Unlike current host-based patching
mechanisms - which are hard to upgrade and slow to respond
to emerging vulnerabilities, the network-fix update [52] can
be performed in seconds.

III. OVERVIEW

In this section, we present the overview of REFN- a scal-
able, compatible and error-unsusceptible framework that trains
Large Language Models (LLMs) to autonomously generate
and deploy network filters on Edge Security Gateways (ESG),
and prevent 1-day/n-day exploitations across heterogeneous
networked devices.

Threat model: Before detailing REFN’s design, we estab-
lish the following assumptions regarding adversarial capabili-
ties and system trust boundaries:

Adversarial Capabilities: 1) The adversary can exploit all
1-day/n-day vulnerabilities in exposed devices; 2) The ad-
versary can utilize LLM-based automation tools (e.g., Hack-
erGPT [31], WormGPT [29]) to generate and scale exploits.

System Trust Assumptions: 1) The Edge Security Gateway
(ESG) is a secure, trusted component and cannot be compro-
mised by the attacker; 2) Cloud servers responsible for training
the LLMs, generating and deploying network filters onto the
edge security gateways are trusted and secure; 3) The edge
security gateways have the capability to enforce network filters
that inspect and block malicious traffic directed at vulnerable
devices; 4) For encrypted traffic, we assume the edge security
gateway can either decrypt the traffic (which is common for
business ESGs such as Cisco Meraki [3]) using protocols
like mcTLS [58], or can infer malicious intent (which is also
common for ESG Intelligence such as the Cisco Talos [4])
through analysis of metadata or unencrypted portions (e.g.,
packet headers, certificates).

Baseline approach: To address the core challenges of
scalability, robustness, and compatibility in exploit prevention,
we can design a baseline framework integrating the strategic
vantage point of Edge Security Gateways (ESGs) identified
in Section II, the generative capabilities of Large Language
Models (LLMs), and the validation efficiency of Virtualized
Network Function (VNF) to mitigate LLM hallucination. This
streamlined pipeline operates as follows: upon disclosure of
a 1-day/n-day vulnerability, an LLM-based generator dynami-
cally crafts tailored filter rules leveraging Retrieval Augmented

1

USER: What is the key pattern for Sambacry attack?
ASSISTANT: "Sambacry" is not a word or term that is commonly used
or recognized. It is not a term that is commonly associated with
any specific field of study or industry. It is possible that this
word or term was created or invented by the person who is using it
in this chat. Without more information or context, it is difficult
to provide a more comprehensive answer to your question.

Figure 1: Gemma-3-4B (May-2025) lacks expertise.
Generation (RAG), addressing scalability by eliminating man-
ual rule creation and enabling rapid response within the first
day. These rules then undergo rigorous validation through
VNF testing against synthetic exploit traffic and benign traffic
samples, which identifies and filters erroneous outputs before
deployment. Finally, validated rules are propagated to ESGs,
achieving compatibility by providing a unified enforcement
layer that protects diverse connected devices across heteroge-
neous network environments.

Challenges: While the baseline approach shows promise,
several practical challenges hinder its implementation:
• Limited Vulnerability-Fixing Expertise: Existing

LLMs [18], [11], [61], [36] are trained on general-
purpose datasets and lack specialized knowledge in niche
domains like vulnerability remediation (Figure 1). While
techniques like Retrieval Augmented Generation (RAG)
can incorporate vulnerability-related context into prompts,
they fail to internalize domain-specific expertise. This
limitation prevents LLMs from reliably inferring accurate
filter fixes for novel 1-day/n-day vulnerabilities
• Gaps Between Language and Network: Current LLMs are

designed and optimized for natural language interactions,
as exemplified by training paradigms like Reinforcement
Learning from Human Feedback (RLHF). This creates a
significant semantic and structural disconnect when ap-
plied to network security. Their effectiveness in processing
raw network-layer data (e.g., packets) or generating pre-
cise protocol-specific rules remains unproven, limiting their
practical utility for real-world network enforcement tasks.
• LLM Hallucination and Non-Determinism: LLM outputs

are inherently non-deterministic, often producing inconsis-
tent or contradictory rules across repeated iterations. This
instability introduces reliability risks, as identical inputs
may generate divergent outputs—some of which could be
erroneous or unsafe. Such unpredictability undermines trust
in automated systems requiring consistent, repeatable results
for critical tasks like vulnerability-fixing filtering.
REFN’s ideas: To address the above challenges, we pro-

pose REFN on top of the baseline approach, as shown in
Figure 2. REFN is built on a simple yet powerful premise:
training LLMs into dynamic, network-aware vulnerability fix-
ing engines that can deliver fixes on day one. To achieve
this, the system directly tackles the three core challenges
through strategic design. The first idea is to close the expertise
gap via knowledge distillation. Instead of relying on generic
LLM knowledge, REFN distills historical vulnerability fixes
(e.g., past CVEs, patches) into the model during training.
This equips the LLM with an implicit playbook of reme-
diation strategies, enabling it to infer fixes for new 1-day

1

Challenge 1:
Limited
Vulnerability
fixing expertise

Challenge 3: LLM
Hallucination &
Non-determinism

Challenge 2:
Gap between
language and
network

Agentic-RAG-based
Knowledge Distillation

Router Agent

Context Search
Agents

Knowledge
Distillation Agents

RL-From-VNF Pipeline
Instruction Tuning

VNF-GRPO

VNF-Reward Function

Online Agentic Validator

Internet

Edge Security Gateway

Vulnerable
Devices

NToT Agent

Fuzzing & Trimming Agent

RL training data

REFN LLM

VNF Fixes DP Feedbacks

Idea 1:
Close expertise
gap via
knowledge
distillation

Idea 2:
Translate
language to
network actions
via RL-From-VNF

Idea 3:
Punish
hallucination
via dataplane
validation

VNF Reward

Figure 2: REFN’s workflow.
vulnerabilities by recognizing patterns from past fixes—even
if the new vulnerability differs superficially. The second idea
is to translate language to network actions via RL-from-VNF
pipeline. REFN treats network filtering as a “language” the
LLM must learn. Through reinforcement fine-tuning (ReFT),
the model is trained to enforce vulnerability-fixing filters
on raw network packets (e.g., dropping malicious payloads)
rather than generating text. Rewards are tied to real-world
outcomes - blocking malicious packets while preserving legit-
imate packets. The third strategy is to punish hallucination via
dataplane validation. Every LLM generated filter is validated
as Virtualized Network Function (VNF) with both benign and
malicious traffic. Filters that fail to block attacks or disrupt
legitimate flows are punished via a VNF-based online reward
function, creating a feedback loop that force out the LLM
hallucination in the training stage.

REFN’s workflow: As illustrated in Figure 2, REFN
transforms raw 1-day/n-day vulnerability context into reliable
security enforcements on Edge Security Gateways (ESGs)
through three core components:

Agentic-RAG-Based Knowledge Distillation: This
pipeline integrates agent-based systems, Retrieval-Augmented
Generation (RAG), and knowledge distillation to transfer
vulnerability-fixing expertise from powerful-but-expensive
LLMs to specialized models (efficient for training fixes
for new vulnerabilities). This architecture features three
autonomous agents: a Router Agent directing queries,
Context Search Agents retrieving vulnerability context, and
Knowledge Distillation Agents extracting structured inference
examples (e.g., filter rules). This automated pipeline ensures
RL-optimized knowledge transfer while eliminating manual
expertise bottlenecks (detailed in Section IV).

RL-From-VNF Pipeline: Distilled knowledge is processed

Retrieval Relevant
Chunks LLM

Vector
stores

embedding

Vulnerability
Descriptions

Protocol
Specifications

Network
Traces

Query

Prepare

Relevant
Chunks

Issue 2: Unstructured Training Data

Issue 1: Manual Context Preparation

Issue 3: No examples

Router
Agent RL

Vulnerability
Descriptions

Protocol
Specifications

Network
Traces

Training Data
Template

Structured
Training Data

Context Search
Agents

Knowledge
Distillation Agents

Solution 2: Structured Training Data

Solution 1:
Query Template

Solution 3: Examples
From SOTA LLMs

Figure 3: Common RAG (top) vs REFN’s Agentic-RAG-
Based Knowledge Distillation (bottom).
by the RL-From-VNF LLM training pipeline, which replaces
human feedback with Virtualized Network Function (VNF)
validation, which automatically generate rewards/penalties
based on security enforcement outcomes. To improve training
inefficiency, REFN presents the VNF-GRPO algorithm that
integrates GRPO optimization, LoRA adapters and VNF. The
pipeline’s VNF-Based Reward Function evaluates each LLM-
generated filter on both benign and malicious traffic samples,
training a lightweight network-aware LLM capable of translat-
ing textual vulnerability contexts into practical vulnerability-
fixing enforcements on the ESGs (detailed in Section V).

Online Agentic Validator: To address the LLM hallucina-
tion and non-determinism challenge, REFN’s Online Agentic
Validator will validate the filters and generate quantitative
rewards for the RL-From-VNF pipeline. Unlike coarse-grained
network validation (e.g., binary block/no-block decisions), this
validator employs fine-grained VNF-specific logic and can
fuzz on LLM-generated filters to reward “near-correct” outputs
(key for RL training convergence). This approach provides
granular feedback for Reinforcement Fine-Tuning (ReFT),
balancing precision with training stability while reducing
hallucinations. The design enables effective RL convergence
and reliable exploit prevention (detailed in Section VI).

IV. AGENTIC-RAG-BASED KNOWLEDGE DISTILLATION

When a 1-day/n-day vulnerability emerges, the Reinforce-
ment Learning (RL) process requires curated training data,
which currently is prepared manually with the common
Retrieval-Augmented Generation (RAG) (Figure 3 top). This
conventional approach suffers from three critical limitations:
labor-intensive preparation of vulnerability contexts (descrip-

1

"context": {
"name": "log4j",
"cve":["CVE-2021-44228","CVE-2021-45046”,…],
"vd":["log4j_vd.txt"],
"proto":["http"],
"devices":["ty/DLinkCamera”, …],
"pcaps_pos":["log4j_attack.pcap”, …],
"pcaps_neg":["log4j_benign.pcapng”, …]}

"examples": {
"gemma3_4b”:{

"log4j":{
"prompt":["Write a snort rule to detect log4j attack."],
"sample_rule": "alert tcp any any -> $HOME_NET any

(msg:\"Log4j JNDI Exploit Attempt (CVE-2021-44228)\";
content:\"jndi:ldap://<IP_of_the_attacker>\"; sid:1000001;)"}}}

Context Search Agents

Vulnerability Description Agent
Protocol Spec Agent

NetworkTrace
Agent

Knowledge Distillation Agents
Gemma3 Agent

Figure 4: Training data template.

1

Log4j vulnerability was reported to apache by Chen Zhaojun of
the Alibaba cloud security team on 24th November 2021 and
published in a tweet on 9th December 2021. Apache software
foundation assigned a maximum severity score of 10/10. The
vulnerability allows attackers to remote code execution and the
payload string looks like \“${jndi:ldap://attacker.com/a}”. Lots
of organization-affected services include Cloudfare, apple
iCloud, Minecraft: java edition, stream, Tencent QQ, and Twitter.

Figure 5: Segment of Log4j [28] vulnerability description.
tions, network traces, protocol specifications), unstructured
blended data that compromises RL effectiveness, and inabil-
ity to distill knowledge from SOTA LLMs (DeepSeek-R1,
Gemini-2.5, GPT-4o). To overcome these constraints, we intro-
duce the Agentic-RAG Knowledge Distillation pipeline (Fig-
ure 3 bottom), which integrates agent-based systems, RAG,
and knowledge distillation to transfer capabilities from ex-
pensive LLMs (e.g., DeepSeek-R1-671B) to efficient-to-train
specialized models. The pipeline employs three autonomous
components: a Router Agent that dynamically directs queries,
Context Search Agents that retrieve vulnerability intelligence,
and Knowledge Distillation Agents that extract structured
inference samples from SOTA LLMs—automating knowledge
transfer while ensuring RL-optimized, structured outputs.

A. Router Agent

When a 1-day/n-day vulnerability first emerges, REFN
initiates training data preparation by sending a structured
prompt to the Router Agent (RA). In this prompt, REFN
presents a well-designed RL-training data template (Figure 4)
that captures key RL-training structures for exploit prevention.
Upon receiving the training-data-preparation prompt, the agent
decomposes data preparation tasks based on the template
and delegates them to specialized context search agents and
knowledge distillation agents. Three context search agents
operate in parallel: (1) The vulnerability description agent
extracts vulnerability details from CVE databases and security
advisories [9], such as the Log4j vulnerability description
in Figure 5; (2) The protocol specification agent identi-
fies relevant network protocols and their specifications for
trace parsing; (3) The network trace agent retrieves packet
captures (from public repositories [33], [46], [1]), populat-
ing positive/negative traffic examples (“pcap pos/pcap neg”)
and device context. Concurrently, the knowledge distilla-

tion agent queries SOTA LLMs for vulnerability-fixing filter
examples. While these examples may contain inaccuracies
(e.g., Snort rules content “jndi:ldap://IP of the attacker” with
correct prefixes like “jndi:ldap” but erroneous continuations
like “IP of the attacker”), they provide valuable structural
patterns. This enriched data significantly enhances Super-
vised Fine-Tuning (SFT), ultimately improving output quality
throughout the RL pipeline.

B. Context Search Agents

The context search agent prepares critical vulnerability con-
text, including descriptions (vd), network traces (pcaps), and
protocol specifications (proto). A naive non-agent approach re-
lies on conventional Retrieval-Augmented Generation (RAG)
with in-context learning (ICL): first crawls vulnerability de-
scriptions from sources like NVD [9], network traces from
repositories [33], [46], [1], and protocol specifications from
IETF [32], then chunks this heterogeneous data indiscrimi-
nately for ICL prompting. However, the unstructured blending
of data types significantly compromises retrieval efficacy [56].

To address this limitation, REFN introduces a vulnerability-
to-trace pair-ranking mechanism that explicitly correlates vul-
nerability descriptions vc with network traces nc, enhancing
context preparation efficacy. Our approach segments the vul-
nerability description context vc into discrete sentence-level
contexts xvc and the network trace context nc into packet-
level contexts xnc. It then generates sentence-packet context
pairs (xvc, xnc) and algorithmically selects the subset of
pairs exhibiting the highest semantic correlation {(xvc, xnc)}.
Based on previous research [56], suppose x is the testcase, y is
the ground truth for the testcase, C is the space of all ground
truth, and there are k labeled examples (x1, ŷ1), ..., (xk, ŷk),
then the LLM output is: argmaxy∈CP (y|x1, ŷ1, ..., xk, ŷk, x).
Consider each sentence-packet context pair (xvc, xnc) as a
demonstration, the LLM output can be approximated by:

argmaxy∈CP (y|[(xvc
1 , xnc

1), ..., (xvc
k , xnc

k)]top k, x), (1)

where [(xvc
1 , xnc

1), ..., (xvc
k , xnc

k)]top k are the top k most cor-
related sentence-packet context pairs. Such approximation
is feasible because nc ∈ C, i.e., the network context nc
augmented from the vulnerable device’s traces shares the same
ground truth space C with the desired output y. In other words,
the LLM output y will be close to vulnerability descriptions
vc’s real network traffic pattern.

To implement the sentence-packet context pair ranking
efficiently, REFN provides a join labeling operation:

[(xvc
1 , xnc

1), ..., (xvc
k , xnc

k)]top k = vc 1con nc, (2)

where con is d(xvc, xnc) < top k({d(xvc, xnc}) 1. More
specifically, d(xvc, xnc) is the distance metrics between sen-
tence context xvc and the packet context xnc. We leverages
FastText [51] metrics for efficient distance calculation.

1k = 10 unless specified otherwise.

C. Knowledge Distillation Agents

The Knowledge Distillation (KD) Agents extract and struc-
ture actionable insights from SOTA LLMs to prepare data
for the Supervised Fine-Tuning (SFT) stage of RL training.
Leveraging transfer learning principles, these agents adapt
general knowledge from expensive Pre-trained Language Mod-
els (PLMs) to the specific downstream task of vulnerability
remediation through three key mechanisms:

Knowledge Inheritance Mechanism: PLMs acquire intrinsic
linguistic patterns (syntax, semantics, knowledge representa-
tion) through self-supervised pretraining on large corpora. The
distillation framework inherits this knowledge as initialization,
avoiding inefficient learning from scratch. More specifically,
given a list of known vulnerabilities {v}, a PLM M and a
filter generation prompt p, the KD agents will generate a list
of filters {f} = M({v}, p) and prepare the knowledge as
({v}, p, {f}) for the SFT process.

Essence of Task Adaptation: By minimizing the
vulnerability-fixing-specific loss function on the structured
training data, the model parameters in the SFT process are
adjusted to adapt to the filter generation domain:

θSFT = argmin
θ

∑
(x,y)∈D

L (f(x; θ), y) (3)

where θ represents the model parameters, D denotes the
labeled dataset, L is the loss function (e.g., cross-entropy),
and f(·) is the model’s predictive output.

Catastrophic Forgetting Control: In SFT, a low learning
rate strategy (typically 1-10% of pretraining rates) com-
bined with early stopping preserves foundational inference
knowledge (e.g., generating filter rule) while accommodating
vulnerability-fixing requirements (e.g., correct rule format).

Integrated into REFN’s Instruction Tuning stage (Sec-
tion V), this distillation framework enables structured extrac-
tion of filtering rule patterns from SOTA LLMs, ensuring
effective knowledge transfer to specialized security models.

V. RL-FROM-VNF PIPELINE

This section introduces the RL-From-VNF (RFV) pipeline,
a novel framework that eliminates human feedback from the
reinforcement learning loop. We first contrast RFV against
state-of-the-art approaches (RLHF, DPO) to establish its
unique network-driven paradigm. Next, we detail the pipeline’s
operational workflow and present its VNF-GRPO optimization
algorithm. Finally, we analyze the core VNF reward function,
demonstrating how network-generated feedback replaces hu-
man evaluations to autonomously drive RL training.

A. Comparison with RLHF and DPO

As shown in Figure 6, we compare the RL-From-VNF
pipeline with two SOTA RL methodologies: Reinforcement
Learning from Human Feedback (RLHF) and Direct Prefer-
ence Optimization (DPO).

RLHF: This approach includes three key stages. First,
supervised fine-tuning (SFT) leverages human-generated in-
struction data to align a pre-trained model’s initial outputs

Base
Model

Instruction
Tuning

Reward
Function PPO/GRPO

Step 1:
Supervised
Fine-Tuning

Step 2:
Reward Model

Training

Step 3:
Policy

Optimization

RLHF

REFN

Base
Model

Instruction
Tuning DPO

Base
Model

Instruction
Tuning VNF-GRPO

DPO

VNF-Reward
Function

Security
Model

Security
Model

Security
Model

Human
Instructions

VNF
Agentic

RAG

Direct
Preferences

Agentic
Validator

Human
Preferences

Figure 6: RL-From-VNF Pipeline.
with security objectives, such as filter rule generation. Second,
reward modeling directly incorporates human feedback, where
annotators rank or rate model responses to train a preference
predictor that quantifies qualitative judgments into reward
signals. Finally, policy optimization employs algorithms like
PPO [59] or GRPO [60] to iteratively refine the model
against this reward predictor, embedding human preferences
throughout the optimization cycle.

DPO: This approach streamlines preference integration
while maintaining human dependency. Similar to RLHF, DPO
begins with SFT using human-crafted instruction-response
pairs for initial task alignment. However, its policy opti-
mization phase diverges significantly: annotators rank output
pairs, and the DPO algorithm directly optimizes for preferred
responses using a contrastive loss function that compares fa-
vorable against dispreferred outputs. This approach eliminates
the explicit reward modeling step required in RLHF, instead
embedding human feedback directly within the optimization
process while reducing implementation complexity.

Reliance on human feedback: The reliance on human feed-
back in both RLHF and DPO workflows makes them ill-suited
for fixing 1-day/n-day vulnerabilities, which demand real-
time, automated responses. First, human feedback introduces
latency: RLHF requires iterative human annotation to train
reward models, while DPO depends on pre-collected human
preference datasets. These steps create delays incompatible
with the time-sensitive nature of 1-day/n-day exploits, where
threats must be neutralized within hours or minutes of discov-
ery. Second, human feedback loops struggle to scale with the
sheer volume and diversity of network traffic—annotators can-
not feasibly label every potential intrusion pattern in dynamic
network environments. Third, human biases or inconsistencies
in labeling could inadvertently prioritize non-critical alerts or
miss adversarial evasion tactics, undermining precision.

RL-From-VNF idea: We propose the RL-From-VNF (RFV)
pipeline—a paradigm where Virtualized Network Functions
(VNFs) replace human feedback in the reinforcement learning
loop. Unlike traditional RL that relies on handcrafted reward
functions (e.g., “maximize throughput”), RFV leverages secu-
rity VNFs deployed on edge gateways to autonomously vali-
date vulnerability-fixing filters. These VNFs generate real-time

Algorithm 1 VNF-GRPO Algorithm

1: Input: Initial policy πθ with parameters θ,
batch of trajectories D = {(x, e, p, y∅)},
NFV reward function R,
learning rate β, regularization factor λ, clipping factor ϵ,
number of group members N

2: Output: Updated policy π′
θ with parameters θ′

3: // Initialize policy parameters
θ ← θ(0)

4: for each member i from 1 to N do
5: // Collect trajectory Di from member i
6: V NFi ← VNF GENERATOR(x, e, i)
7: Di ← VNF VALIDATOR(p→ V NFi)
8: // Compute VNF reward ri
9: ri ← R(Di)

10: // Compute group-relative reward Ri

11: Ri =
ri∑N

j=1 rj

12: // Compute the advantage function Ai

13: Ai ← VNF ADVANTAGE(Ri)
14: end for
15: for each member i from 1 to N do
16: // Compute the surrogate objective function:

Li(θ) = SURROGATE OBJ(πθ, A, ϵ)
17: // Compute Gradient Ascent and Update the policy:

θi = θi + β · ∇θLi(θ)
18: end for
19: for each agent i from 1 to N do
20: Apply regularization to stabilize the policy update:

Lregularized(θ) = L(θ)− λ · penalty(θ)
21: Update the policy parameters θi with regularization:

θi = θi − λ · ∇θpenalty(θ)
22: end for
23: Return: Updated policy parameters θ′

reward/penalty signals based on concrete security outcomes,
such as successful malicious traffic blocking without disrupt-
ing benign flows. This approach eliminates human subjectivity
while harnessing domain-specific validation logic to guide RL
optimization. By integrating VNF validation logic (e.g., fire-
wall checks) as the reward generator, RFV eliminates manual
reward engineering—a significant departure from conventional
RL systems. This architecture directly enables zero-touch
networking principles by establishing closed-loop automation:
security policies self-optimize through continuous feedback
from live network enforcement, requiring minimal human
intervention while maintaining context-aware precision.

B. VNF-GRPO Algorithm

Algorithm 1 presents the VNF-GRPO algorithm and its
differences (in blue) with the basic GRPO algorithm [60].

Input: The standard GRPO inputs include initial policy
πθ with parameters θ, learning rate β, regularization factor
λ, clipping factor ϵ, number of group members N . The two
distinguished inputs include batch of trajectories D and VNF
reward function R. The basic GRPO batch of trajectories
D = {(x, e, y)} is tuples of question x, CoT e and answer

y. However, since the dependency of Human Feedback is
removed, REFN’s batch of trajectories’ answer y∅ is an empty
set. The VNF feedbacks relies on the processing result on the
online packets p. Therefore, REFN’s batch of trajectories can
be denoted as D = {(x, e, p, y∅)}.

Update trajectories, rewards and advantages from VNF:
After the policy parameters are initiated (Line 3), the tra-
jectories Di will be updated for each member i (Line 5-7).
The VNF GENERATOR will generate a virtualized function
V NFi for each member i (Line 6). The VNF GENERATOR
will update the trajectories based on the packets processing
result of the VNF p → V NFi (Line 7). The VNF reward
functionR will compute the reward ri based on the trajectories
(Line 9), which is converted into the group-relative reward Ri

(Line 11). The VNF ADVANTAGE function will compute the
advantage function Ai for member i based on the the group-
relative reward Ri, which estimates the difference between
the expected reward for an action and the average reward.
Traditionally, the human feedbacks decide which actions are
preferable given a certain state. In REFN, it is replaced by
the VNF feedbacks via the VNF ADVANTAGE function.

Update Policy with Group Relative Consideration: This
part includes the step to Compute Surrogate Objective and the
Gradient Ascent on Surrogate, which follows the basic GRPO.
The SURROGATE OBJ(πθ, A, ϵ) function is:

E
[
min

(
πθ(a|s)
πθold(a|s)

A(s, a),CLIP(πθ, s, a, ϵ)A(s, a)

)]
, (4)

where πθ is the policy with parameter θ, A is the advantage
function, a is the action, s is the state, ϵ is the clipping factor.
The CLIP function is:

CLIP(πθ, s, a, ϵ) = clip
(

πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ

)
, (5)

After that, the Gradient Ascent on Surrogate is computed and
the policy is updated (Line 17).

Apply Regularization for Stability: To ensure stability, a
regularization term is applied based on the relative group per-
formance (Line 20-21). This is a penalty term that discourages
large changes in the policy parameters.

C. VNF Reward Function

A naive reward function implementation would assign bi-
nary rewards per benign/malicious sample (e.g., per pcap file).
However, such coarse-grained signals prove insufficient for
effective reinforcement learning guidance [60], necessitating
finer-grained alternatives: per network flow, per Application
Data Unit (ADU), or per packet. The network packets are
dynamic under various network configurations (e.g., switch
MTU) and is not suitable as the basic unit for rewarding.
The network flow are hard to assemble and hard to compare,
which is key for assigning reward. Consequently, we choose
the ADU, which is a consecutive sequence of packets from
one device to another, leveraging its established adoption in

Fuzzing & Trimming Agent

Network Tree-of-Throught
(NToT) Agent

Pentester

Sample
pcaps

Analyzer

Edge IPS Gateway

Network
logs

VNF
updates

Input:
Near-Correct

VNF fixes
Fuzzing

Trimming

VNF fixes

Output2:
Quantitative
Feedbacks

Output1:
Correct

VNF fixes

Figure 7: REFN’s validation workflow.
network penetration testing methodologies [43] and inherent
stability across network conditions.

Consider a benign sample (pcap) as a sequence of ADUs B
and a malicious sample (pcap) as a sequence of ADUs M . A
simple way to assign reward is to find out how much ADUs
are blocked in B (FP) and how much ADUs are allowed in
M (FN). However, this approach fundamentally misrepresents
malicious sample M , where most ADUs constitute benign
background traffic and only a small portion of ADUs in M
is related to attack payloads. Penalizing these benign ADUs
within M introduces contradictory signals that destabilize
reinforcement learning. To resolve this distortion, we apply
a differentiation operation to isolating and excluding benign
ADUs in M before reward calculation:

M −B = {m : m ∈M&&m /∈ PairRank(M,B)} (6)

where PairRank(M,B) pairs the ADUs in M and B,
rank them by their similarity and output the same ADUs in
sequence M and sequence B.

Based on these observations, we define the reward function:

R = 2pc/(p+ c) (7)

which is basically the F1-Score reward that address the
unbalanced data (malicious data is much fewer than benign
data), where the precision reward p = TP (M−B)

TP (M−B)+FP (B) ,

and the recall reward c = TP (M−B)
TP (M−B)+FN(M−B) . Note that

in the above reward calculation, instead of tracking all the
TP/TN/FP/FN in benign ADU sequence B and malicious
ADU sequence M , we optimized to only track TP/FN in
M −B and FP in B. Given that M is much less than B, such
optimization would greatly reduce the validation cost while
providing effective reward to guide the RL process for the
unbalanced security data.

VI. ONLINE AGENTIC VALIDATOR

To address LLM hallucination issues, REFN introduces
an Online Agentic Validator, as shown in Figure 7. This
solution targets two critical RL failure modes: 1) Near-
correct outputs: generated VNF fixes that are near-correct
but contain subtle discrepancies; 2) Feedback granularity gap:

(1)	Validation Task

(1a)	Standard (1c)	Act-only

(1b) Reason-only（CoT）

Given IPS rule [alert tcp any any -> any 80 (msg:"Log4j JNDI Exploit"; content:"jndi:ldap";)],
[device context] and [sample pcaps], perform validation on the IPS rule.

Answer: The IPS rule seems
to be correct.

Thought: Let’s think step by step. Given
the device context [port:{80, 8080},
service:{ldap,dns}]. So the rule is correct.

Answer: correct

Act1: VNFPentest [IPS rule, sample pcaps]
Obs1: The IPS rule did not block malicious
pcaps.

Act2: Finish [yes]
Answer: The IPS rule is incorrect.

Fuzzing & Trimming	Agent
Thought1: Given [IPS rule], [device context] and [sample pcaps], need to
perform VNF pentesting on the [IPS rule] first.
Act	1:VNFPentest [IPS rule, sample pcaps]
Obs 1: The IPS rule [alert tcp any any -> any 80 (msg:"Log4j JNDI Exploit";
content:"jndi:ldap";)] did not block malicious pcaps. The IPS rule is incorrect.

Thought2: Given the device context [port:{80, 8080}, service:{ldap,dns}]. I need to
fuzz Obs1_rule .
Act	2: Fuzzing [Obs1_rules]
Obs	2: alert tcp any any -> any 8080 (msg:"Log4j JNDI Exploit"; content:"jndi:ldap";)
alert tcp any any -> any 8080 (msg:"Log4j DNS Exploit"; content:"jndi:dns";)
…
Thought3: I need to trim the rules above.
Act	3: Trimming [Obs2_rules]
Answer: alert tcp any any -> any 8080 (msg:"Log4j JNDI Exploit";
content:"jndi:dns";)

Figure 8: REFN’s fuzzing & trimming agent.
require quantitative diagnostic feedback to drive reinforcement
learning beyond binary validation. REFN’s validator resolves
these challenges through two integrated components: 1) A
Fuzzing & Trimming Agent that bridges the correctness gap
by iteratively refining near-correct VNF fixes into fully valid
fixes via constraint-guided mutation; 2) A Network Tree-
of-Thought (N-ToT) Agent that analyzes live penetration
testing results to generate fine-grained metrics, providing the
structured quantitative feedback required for RL optimization.
This dual approach not only rectifies hallucination-induced
inaccuracies but also establishes a closed-loop online system
for continuous RL to prevent emerging 1-day/n-day exploits.

A. Fuzzing & Trimming Agent

The first challenge is handling near-correct outputs. Current
LLM methodologies—including standard LLMs, Reason-only
Agents, and Act-only Agents—are ill-suited for this purpose.
Consider the validation task in Figure 8: given a near-correct
filter rule (with a mismatched port 80 and partially incorrect
content “jndi:ldap”), device context, and sample pcaps, vali-
date the rule’s effectiveness. A standard LLM merely validates
the rule’s format, falsely concluding it is correct. A Reason-
only Agent performs limited context matching (e.g., checking
ports 80/8080 and services ldap/dns) but also fails to detect
the flaw. Only an Act-only Agent, by performing a VNFPentest
(enforcing the rule on benign and malicious pcaps), identifies
that malicious traffic bypasses the rule. However, the Act-only
Agent only provides a binary pass/fail result that lacks the
ability to refine the near-correct rule itself.

To address this limitation, REFN developed a fuzzing
& trimming agent by extending the ReAct framework [65],

Algorithm 2 NToT-BFS
Require: dataplane ADUs ADUD , validation agent AGv , network

protocol spec netsp, middlebox spec boxspec
Ensure: middlebox action Cm ∈ (BLOCK,ALLOW,ALERT)

� Create decision tree DT
1: DT ← AGv(netsp, boxspec)

� Create thought generator G()
2: G()← AGv(DT, netsp, boxspec)

� Create states evaluator V ()
3: V ()← AGv(DT, netsp, boxspec)

� Perform NToT-BFS
4: S0 ← Init(DT)
5: for adu ∈ ADUD do
6: g = G(DT, St)
7: St+1 = V (adu,DT, g)
8: t← t+ 1
9: Cm ← St+1

10: end for
11: return Cm

specifically designed to refine near-correct VNF fixes into fully
valid fixes. The agent employs a two-phase approach: first
performing fuzzing to explore solution space through con-
trolled randomness (“random walk”), followed by trimming
to eliminate defective branches (e.g., malformed rules) and
optimize search efficiency. As Figure 8 demonstrates, the agent
begins by executing a VNFPentest (Act 1) and observe that
the filter rule cannot block the malicious pcaps. However, it
did not stop but continue to perform Fuzzing (Act 2) on the
near-correct rule, generate variants via random walk towards
the correct solution. During this process, invalid branches are
systematically pruned. Ultimately, the agent concluded with
the right filter rule (with port 8080 and content “jndi:dns”).

B. Network Tree-of-Thought (NToT) Agent

The second challenge is the feedback granularity gap, as
quantitative feedbacks beyond binary result is required for
RL process. REFN addresses this through its Network Tree-
of-Thought (N-ToT) Agent, which analyzes live penetration
testing results to generate structured quantitative feedback for
RL optimization. As illustrated in Figure 7, the workflow
begins when the NToT agent receives VNF fixes from the
Fuzzing & Trimming agent and deploys them to the Edge
IPS Gateway via VNF updates. The agent then coordinates
penetration testing by: (1) configuring benign and malicious
test cases for the Pentester, and (2) deploying expected data-
plane actions to the Analyzer. During execution, the Pentester
conducts tests while the Analyzer compares observed traffic
against expected actions, returning network logs to the NToT
agent. This enables the agent to validate VNF fixes and
derive quantitative RL feedback—a complex task requiring
inference of middlebox enforcement from dynamic dataplane
traffic. For example, during Log4j vulnerability testing, the
agent must precisely calculate the blocking rate for malicious
payloads (e.g., ”jndi:dns”) while measuring false positive rates
on benign traffic. While LLM agents typically employ Chain-
of-Thought (CoT) for multi-stage inference [16], this method
proves inadequate for middlebox analysis due to two funda-
mental limitations: locally, CoT fails to explore alternative

Exploit Family Vulnerability Examples
Log4j CVE-2021-44228, CVE-2021-45046
SambaCry CVE-2017-7494
Mirai CVE-2020-5902
Modbus Injection CVE-2022-1068
Spooky SSL CVE-2022-3602, CVE-2022-3786
Eternal Blue CVE-2017-0143, CVE-2017-0148
CryptoWall CVE-2015-5560, CVE-2015-5122
AlexaEavesDropping CVE-2023-33248
CiscoRouterCmp CVE-2017-3881
CiscoRouterHttp CVE-2024-20393
HuelightBlackout CVE-2020-6007
PlexDVRExp CVE-2020-5741
ToriiBot CVE-2023-1389
Virut CVE-2014-4114
Yakesmalware CVE-2014-0224
Conficker CVE-2008-4250
Gh0st RAT CVE-2018-8174, CVE-2012-0507
Locky Ransomware CVE-2012-0507, CVE-2015-5122
Pony CVE-2017-11882
Bladabindi CVE-2017-8759
WannaCry CVE-2017-0144, CVE-2017-0145
Trojan.Valyria CVE-2017-11882

Table I: The 22 families of 1-day/n-day exploits.

reasoning paths within a thought process; globally, it lacks
state planning mechanisms to evaluate different continuation
options across the inference trajectory.

To address these issues, REFN provide the NToT (Network-
Tree-of-Thought) inference mechanism, as shown in Algo-
rithm 2. The key idea of NToT is to build a decision-tree
thought structure DT based on network and middlebox specifi-
cations (Line 1). Then, the agent will map the dataplane ADUs
to the states of decision-tree DT and infer the middlebox
actions (Line 4-11) based on the following components:

Thought generator: NToT provide a thought generator G()
to generate thought for each state St in decision-tree DT (Line
6). The thought generator is created based on the decision
tree DT , the network protocol specifications netspec and the
middlebox specifications boxspec (Line 2).

State evaluator: NToT provide a state evaluator V () to
evaluation multiple continuations at each state St based on
current dataplane ADU adu, decision-tree DT and current
thought g (Line 7). The state evaluator V () is created based
on the decision tree DT , the network protocol specifications
netspec and the middlebox specifications boxspec (Line 3).

REFN’s NToT stores the decision tree structure and allows
for the addition, deletion, or modification of nodes and edges.
It also supports the inclusion of new protocols. REFN enables
the easy analyze the live penetration testing results to gen-
erate fine-grained metrics and provide structured quantitative
feedback (based on the VNF-Reward Function in Section V)
required for RL optimization.

VII. DATASET AND IMPLEMENTATION

Dataset: We present the first dataset that enables RL-
training of LLMs to prevent 1-day/n-day exploits. The dataset
is generated by using REFN’s Agentic-RAG-Based Knowl-
edge Distillation module to gather four key parts of data:
1) vulnerability descriptions: details from CVE databases
and security advisories [9], such as the Log4j example in
Figure 5; (2) protocol specifications: network protocols and
their specifications [32] for trace parsing; (3) network traces:

packet captures (pcaps) from online repositories including NE-
TRESEC [33], IoT-23 [46] and IoT Sentinel [55], populating
positive/negative traffic examples (“pcap pos/neg”) and device
context. The 22 families of 1-day/nday exploits (Table I)
and benign samples from 65 types of devices. As shown in
Figure 4, for each family of exploit (e.g., Log4j), there is a list
of vulnerabilities (“cve” field), a vulnerability description text
(“vd” field), corresponding devices (“devices” field), malicious
pcaps (pcaps pos) and benign pcaps (“pcaps neg” field).

Implementation: We implemented REFN with 6K LoC
on two desktop servers (one for RL training and one for
testbed) and a edge security gateway. Each server is equipped
with an NVIDIA RTX 4090 GPU (24GB VRAM), Intel
Platinum 8352 CPU (36 cores), 32GB RAM, and 16TB
HDD. The edge security gateway is implemented on a
Raspberry Pi 4B running Snort 2.9.8.0. REFN’s
base LLM model for RL training and agents is Gemma
3-4B. The agents integrates ReAct framework and is de-
ployed using Ollama [34]. The RAG is implemented using
LangChain [16] (chunk size = 500 and chunk overlap = 10).
The vector store is using FAISS [30].

VIII. EVALUATION

In this part, we evaluate REFN and show that:
• REFN is effective, with ≥ 21.1% accuracy improvement

and ≥ 225.9% F1-Score improvement than alternatives.
• REFN is efficient - Mean-Time-To-Patch (MTTP) is 3.65h

(95.4% improvement); the fix installation delay (iDelay) is
at second-scale (10X reduction) compared with alternatives.
• REFN is scalable - the Batched Training Time (BTT) for 22

1-day/n-day vulnerabilities is less than 0.5 day; can easily
be applied to 10000 vulnerable devices (around 300 offices)
with 1.5 hours of Accumulative Downtime (ADT) in total.

A. Experiment Setting

Basic setting: We established a penetration testbed (Fig-
ure 13 in Appendix A) to evaluate REFN and alternative
approaches (Table II). This testbed incorporates attack launch-
pads and user interfaces connected to target devices via the
edge security gateway. The testbed integrates both physical
devices and virtualized devices (using QEMU [23]) to host the
22 families of 1-day/n-day exploits (Table I in Section VII).
The testbed leverages virtualization to enables scalable hosting
of expensive/hard-to-replicate embedded devices (e.g., smart
grid transformers). A dedicated server hosting the REFN
framework will generate the VNF fixes and deploy them on
the edge security gateway for enforcement.

Alternative approaches: As shown in Table II, we eval-
uated seven categories of alternative vulnerability fixing ap-
proaches for comparison: 1) manual patching: we conducted
an IRB-approved study with 10 security admins patching
devices using official documentation; 2) patch management
software: we tested 9 business-grade solutions (detailed in
Table V in Appendix C) [17], [12], [10], [20], [15], [27], [14],
[21], [25]; 3) generic ML-based patching: we evaluated typical

Table II: Overall effectiveness comparison of REFN and alternative approaches.

Approaches FPR FNR Accuracy F1-Score
manual patching 0.068 0.819 0.556 0.290
patch management software 0.034 0.910 0.528 0.161
generic ML-based patching 0.017 0.881 0.551 0.209
generic LLM-based patching 0.033 0.904 0.531 0.170
manual network filtering 0.032 0.893 0.537 0.188
generic ML-based network filtering 0.144 0.630 0.819 0.238
generic LLM-based network filtering 0 1 0.925 0
REFN 0.003 0.071 0.992 0.945
REFN’s improvement - ≥ 88.7% ≥ 21.1% ≥ 225.9%

Lack of context
44%

Lack of traces 25%

Encrypted Traffic
19% Others12%

REFN
Not compatible

18%

No source code
13%Physical Update

17%
Longevity 10%

Benign Anomaly
26% Limited Resources

10% Others6%

Others

Figure 9: Pie graph analysis of invalid fixes.
ML-based patching approaches including GraphSPD [63],
RNNPatch [64], PAVUDI [45] and SPI [66]; 4) generic LLM-
based patching: we evaluated the patch generation capabil-
ity of ChatGPT-4o [11], DeepSeek-R1 [35] and Gemma3-
12B [36] (2025-July version); 5) manual network filtering:
we conducted an IRB-approved study with 10 security admins
creating Snort 2.9.8.0 [26] rules; 6) generic ML-based network
filtering: we evaluated ML-based network filtering approaches
including Kitsune [57] and ODDS [48]; 7) generic LLM-
based network filtering: we evaluated the network filtering rule
generation capability of ChatGPT-4o [11], DeepSeek-R1 [35]
and Gemma3-12B [36] (2025-July version). More details
about the IRB-approved study are presented in Section XI. To
have fair comparison, for the seven categories of alternative
approaches, we synthesized the best results across methods to
represent the category’s performance.

B. Effectiveness

Overall effectiveness: We evaluate the effectiveness of
REFN and alternative approaches over 22 families of 1-day/n-
day exploits and benign samples from 65 types of devices
(detailed in REFN’s dataset Section VII) on four metrics: 1)
FPR (False Positive Rate), defined as FP

FP+TN ; 2) FNR (False
Negative Rate), defined as FN

FN+TP ; 3) Accuracy, defined
as TP+TN

P+N ; 4) F1-Score, defined as 2∗Precision∗Recall
Precision+Recall . We

choose these four metrics because the 1-day/n-day exploit
scenario is highly biased (benign samples > malicious sam-
ples) [41]. Therefore, relying solely on Accuracy is danger-
ously misleading, as a model can achieve high scores by
always predicting benign. FPR reveals how often legitimate
activities are wrongly flagged (causing operational disruption),
while FNR measures the failure to detect actual attacks (lead-
ing to undetected breaches). The F1-score provides a crucial
balanced metric over both FPs and FNs, offering a more
complete picture of model effectiveness.

Table II presents the performance of REFN and alternative
approaches using FPR, FNR, Accuracy, and F1-Score. While

Table III: Time-To-Patch (TTP) for REFN.
Time-To-Patch Min Max P90 Mean
manual patching 3d 19.34h 7d 20.85h 5d 17.58h 5d 9.62h
patch software 3d 5.92h 7d 3.47h 5d 11.19h 4d 22.29h
manual network filtering 1d 21.23h 5d 4.79h 4d 18.76h 3d 6.61h
REFN 2.42h 5.29h 4.57h 3.65h
REFN improvement 94.7% 95.8% 96.0% 95.4%

the generic LLM-based network filtering approach achieves
the lowest FPR (0) and second-highest Accuracy (0.819), its
critical flaw is revealed by its FNR of 1.0 – it misclassifies
all malicious samples as benign. Our analysis attributes this
failure to the severe LLM hallucination during rule generation,
producing seemingly correct but ultimately flawed filtering
rules (exemplified in Figure 4). REFN effectively addresses
this limitation; leveraging RL training with negative rewards
for detected false positives, it achieves the second-lowest FPR
(0.003). Crucially, REFN achieves the lowest FNR (0.071),
representing an 88.7% reduction compared to the next best
(generic ML-based at 0.627). Although the generic ML-
based network filtering approach detects some 1-day/n-day
exploits, its reliance on network traffic anomalies results in the
highest FPR (0.144), causing significant disruption to benign
traffic. For F1-Score, manual patching achieves the second-
highest (0.290), but its manual nature hinders scalability.
Overall, REFN demonstrates superior effectiveness, delivering
≥ 21.1% higher Accuracy and ≥ 225.9% higher F1-Score
than the best alternative approaches.

Root Cause Analysis: We investigated the reasons behind
ineffective fixes for both REFN and alternative approaches,
as depicted in Figure 9. For alternative approaches, the key
factors are: 1) benign anomaly (26%), key factor for high FPs
in ML-based filtering; 2) not compatible (18%), key factor for
FNs in patching; 3) need physical update such as serial cable
(17%); 4) no source code available (13%); 5) limited resources
(10%); 6) vendor’s longevity issues (10%). For REFN, the key
factors are: 1) lack of contexts (44%); 2) lack of traces (25%);
3) encrypted traffic (19%). Different from other approaches,
REFN is not impacted by the compatibility issue. Notably, the
inference mechanism can alleviate the impact of encrypted
traffic (only 19%). The lack of contexts issue in REFN is
caused by the accessibility of the training data including
vulnerability descriptions and traces, and can be alleviated by
crowd sourcing in the future.

C. Efficiency

Evaluating the efficiency of fixing 1-day/n-day vulnerabili-
ties requires addressing two critical questions:
• Can vulnerability fixing outpace exploitation? Specifically,

given the Time-To-Patch (TTP) – defined as the duration
from vulnerability exposure to the deployment of a pro-
tective fix – does the system achieve a TTP consistently
less than one day? This threshold represents the minimum
exploitation window defined for 1-day/n-day vulnerabilities.
• Does the fix installation minimize operational disruption?

Specifically, given the Installation-Delay (iDelay) – defined
as the operational downtime imposed on a normal device
during the fix deployment process – the iDelay should be
low and ensuring minimal disruption to benign devices.
We evaluate the efficiency of REFN in terms of Time-To-

Patch (TTP) and Installation-Delay (iDelay), and compare it
with manual patching, patch management software, manual
network filtering (in the IRB study, 10 admins manually create
patches or network filters). We are unable to measure the
TTP and iDelay for common ML and LLM patching/filtering
approaches, because these approaches only provide trained
models and their training time and deployment time are not
disclosed (e.g., DeepSeek-R1 or the auto-encoder training in
Kitsune [57]). However, the TTP for common ML and LLM
patching/filtering approaches is estimated to be a few days
to several week based on online reports [37], exceeding the
critical 1-day threshold for outpacing the 1-day/n-day exploit.

Time-To-Patch (TTP): Table III presents the Min, Max,
P90 (90th percentile), and mean Time-To-Patch (TTP) met-
rics for REFN. As shown in Table III, the Mean-Time-To-
Patch (MTTP) for manual patching and patch management
software is at least 4 days 22 hours. This high duration
stems from the inherent complexity of host-based patching.
For instance, remediating a Log4j vulnerability on an Apache
server requires crafting JVM patches, testing compatibility
and effectiveness, and redeploying both the JVM and Apache
server – a costly procedure. Similarly, manual network filtering
also incurs a significant MTTP of at least 3 days and 6
hours due to the intricate, error-prone process of crafting
rules from vulnerability descriptions, parsing exploit packets,
and thoroughly testing and adjusting the filters against both
malicious and benign traffic. In contrast, REFN achieves a
dramatically lower MTTP of just 3.65 hours. This represents
a 95.4% improvement over the next fastest method (manual
network filtering at 3 days 6.61 hours). Crucially, REFN’s
fixing speed is significantly faster than the critical 1-day
threshold associated with 1-day/n-day exploits. This efficiency
is attributed to REFN’s key components: its Genetic-RAG-
Based Knowledge Distillation for rapid data collection, the
RL-from-NFV pipeline for efficient model training, and the
Online Agentic Validator for swift validation and adjustment.

Installation-Delay (iDelay): Figure 10 presents the iDelay
of manual patching, patch management software, manual
network filtering, and REFN. iDelay measures the operational
downtime imposed on a normal device during vulnerabil-

0 5 10 15 20 25 30
Fix Installation Runs

100

101

102

103

iD
el

ay
 (s

)

manual patching
patch management software

manual network filtering
REFN

Figure 10: Installation-Delay (iDelay).

0 10000 20000 30000 40000 50000
RL Training Time(s)

0.0

0.1

0.2

0.3

0.4

0.5

RM
SE

(A
DU

)

1-Fix (Log4j)
10-Fixes
22-Fixes

Figure 11: Batched Training Time (BTT).
ity fix deployment. To ensure a comprehensive evaluation,
we conducted multiple runs (31) per approach over fixable
vulnerabilities for all approaches, and sorted the results in
ascending order. REFN achieves a significantly lower iDe-
lay than alternatives, consistently requiring only around 1
second per deployment. In contrast, manual patching and
patch management software incur delays of several minutes,
primarily due to mandatory device/software restarts in host-
based patching. Manual network filtering exhibits an iDelay
of around 10 seconds, attributed to the need for administrator
intervention and IPS hot restarts. This translates to REFN
delivering at least a 10x reduction in iDelay compared to
the next fastest feasible approach (manual network filtering)
and a remarkable around 80x reduction compared to patching
methods. This efficiency stems from REFN’s RL-supported
and validated Virtual Network Function (VNF) deployment,
leveraging agile middlebox update techniques [53] for near-
instantaneous updates and minimum disruption.

D. Scalability

There are two key questions that needs to be answered in
evaluating the scalability of fixing 1-day/n-day vulnerabilities:
• How do the training time increases when the number of

vulnerabilities scales up? Can the training be batched? We
define Batched Training Time (BTT) as REFN’s time cost
for training multiple vulnerabilities at once.
• What is the overall operation disruption for fix installation

when the number of devices scales up? We define Accu-
mulative Downtime (ADT) as the total time of all devices’
normal function being disrupted by the fixing process.
Batched Training Time (BTT): As shown in We measured

how REFN’s batched training time (BTT) shift from training
1-fix (Log4j) to training 10-fixes, to training 22-fixes. The x

Table IV: Accumulative Downtime (ADT).
Devices 10 100 1000 10000
manual patching 1136s 12182s - -
patch software 689s 6608s 65521s -
manual network filtering 82s 1038s - -
REFN 6s 56s 575s 5486s

axis is the overall training time at each iteration. An iteration
is the process between the training start to the time the result is
validated. The y axis is the RMSE (Root Mean Square Error)
of the result when validated in each iteration. The RMSE is
calculated based on correctly matched Application Data Units
(ADUs) during the validation process. In Figure 11, the 1-
Fix’s (red line, Log4j) training process took 5 iterations to
complete. The total training time was 3.40 hours (12250s). The
batched 10-fixes (green line line) took 8 iterations to complete.
The total training time was 7.45 hours (26807s). The batched
22-fixes (green line line) took 14 iterations to complete. The
total training time was 11.80 hours (42463s). From the result
we can see that, REFN scales well when used for generating
batches fixes for multiple vulnerabilities emerged in the same
day. Comparing with 1-Fix, batched 10-fixes only take 2.2X
of training time instead of 10X, batched 22-fixes only take
3.5X of training time instead of 22X. Also, REFN’s training
time for all 22 families of vulnerabilities (each with one fix)
is less than 0.5 day, which is much lower than the critical time
threshold of 1 day for 1-day/n-day vulnerabilities.

Accumulative Downtime (ADT): We systematically in-
crease the number of vulnerable devices (each with one
vulnerability) from 1 to 10000 and measure the accumulative
downtime across all devices. Table IV shows the ADT for
manual patching, patch management software, manual network
filtering and REFN. For manual patching and manual network
filtering, their manual process can hardly scale beyond 100
devices given the 10 security admin (which is already high in
manual cost) constrains in our IRB-study. patch management
software can automated by scripts but its ADT is already
18.2 hours (65521s) when device number scale to 1000,
and cannot scale to 10000 given resource constrains in our
experiment. In comparison, REFN can reduce the ADT by at
least 10X comparing with other approaches, and REFN can
scale to 10000 vulnerable devices with 1.5h ADT (5486s),
easily supporting a branch office with thousands of employees
(suppose each employee correspond to less than 10 devices).
Note that the ADT is the sum of downtime of all devices, not
every device.

E. Ablation Study

As shown in Figure 12, we perform the ablation study
and evaluate the benefit introduced by each of REFN’s
component with the following settings: Distillation(a)-without
agents; Distillation(b)-without RAG; Distillation(c)-remove all
(manual text only); RL-From-VNF(a)-without VNF-reward
function; RL-From-VNF(b)-without VNF-GRPO; RL-From-
VNF(c)-remove all (SFT only); Validator(a)-without fuzzing &
trimming; Validator(b)-without NToT; Validator(c)-remove all
(no validation, random reward). Figure 12 shows the F1-Score
for each setting. Without the Agentic-RAG-based Knowledge

0.0 0.2 0.4 0.6 0.8
F1-Score

Distillation

RL-From-VNF

Validator

0.749

0.809

0.861

0.862

0.658

0.812

0.723

0.658

0.786

REFN (All) (a) (b) (c)

Figure 12: Ablation study on REFN components.

Distillation (Distillation(c)), the F1-Score (0.723) is lower than
REFN (blue line) by 23.5%. This is because the training
data and knowledge is the key for the RL process. More
specifically, the effectiveness impact of removing the Agent
(Distillation(a), F1-Score 0.749, 20.7% reduction) is greater
than removing the RAG (Distillation(b)). When replacing
the RL-From-VNF Pipeline (RL-From-VNF(c)) with common
SFT (Supervised Finetuning), the F1-Score (0.658) is lower
than REFN by 30.4%. More specifically, the VNF-GRPO
algorithm is absolutely necessary and without it (RL-From-
VNF(b)), the F1-Score (0.658) is equally bad as removing
the whole part. Without the Online Agentic Validator (Valida-
tor(c), random rewards), the F1-Score (0.786) is lower than
REFN by 16.8%. Even though random rewards still demon-
strates some effectiveness as it facilitates multiple iterations
of training, the validation process as well as the fuzzing &
trimming (Validator(a)) and the NToT (Validator(b)) is still
important as it further improves the F1-Score. This is because
the Online Agentic Validator is key to ensure the fix is correct
and reduce the error-susceptability.

IX. DISCUSSION

Relation with traditional host-based patching: REFN is not
designed to replace traditional host-based patching, but rather
to complement it by providing rapid edge protection. The
framework generates and deploys vulnerability-fixing filters
rapidly to prevent large-scale exploitation during the critical
window before host-based patches can be applied. This ap-
proach is particularly valuable for protecting legacy/embedded
devices where patching is prohibitively difficult or costly.
Handling encrypted traffic: Currently, REFN relies on the
edge security gateway decryption (common in business/em-
ployee networks, e.g., Cisco Meraki scenarios) or context-
inference mechanism to handle the exploitation via encrypted
traffic. In the future, we will explore enhanced methods includ-
ing enterprise proxy integration and zero-trust authentication
solutions to strengthen encrypted threat prevention.
Handling LLM-based exploit tools: Theoretically, REFN
can counter LLM-powered attack tools (e.g., HackerGPT [31],
WormGPT [29]) through knowledge distillation that extracts
exploit patterns from these adversarial systems. By analyzing
outputs from tools like WormGPT, REFN’s distillation pipeline
could preemptively identify and block novel attack vectors
generated by malicious LLMs. Practical validation of this

capability remains future work, with planned testing in real-
world attack scenarios.

X. CONCLUSION

The 1-day/n-day vulnerabilities pose severe threats to di-
verse networked devices at massive scales. To combat this
challenge, we introduce REFN, a novel framework that provide
network-driven Reinforcement Learning to train LLMs and
automatically generate and deploy vulnerability-fixing filters at
the edge. REFN effectively addresses large-scale exploitation
across heterogeneous environments, demonstrating exceptional
efficiency and scalability. Looking forward, REFN serves
as an initial step toward rapidly preventing massive-scale
exploitations at the edge.

XI. ETHICS CONSIDERATIONS

In this research, we conduct an IRB-approved study and
invited ten security personal with vulnerability mining com-
petition experiences to perform three tasks. The first task is a
manual patch experiment, which requires the security admins
to manually patch the vulnerable devices, using any available
official documents and websites of the devices as the patching
guide. The second task is writing common network filter rules,
which requires the security admins to manually generate the
vulnerability fixing rules on top of basic prevention rules in
Snort 2.9.8.0. The third task is to use common LLMs to gener-
ate and deploy patches and network filter rules, which requires
the security admins to manually craft the LLM prompts and
perform filter deployments. Our Institutional Review Board
(IRB) have censored the above evaluation and concluded that
human subjects are not evolved (because for any data used in
this study, all the sensitive information including the personal’s
identity have been removed) and the highest ethical standards
are met. The experiment of this research is conducted in
securely contained environment that satisfies the highest ethic
standards.

REFERENCES

[1] Hisilicon dvr hack. https://github.com/tothi/pwn-hisilicon-dvr, 2018.
[2] Amazon eero. https://eero.com/, 2021.
[3] Cisco meraki. https://meraki.cisco.com/, 2021.
[4] How cisco meraki mx with advanced security can detect and block

log4j exploits? https://community.meraki.com/t5/Security-SD-WAN/
Log4J-detection/m-p/135718, 2021.

[5] Linksys velop. https://www.linksys.com/us/velop/, 2021.
[6] Netgear orbi. https://www.netgear.com/home/wifi/mesh/, 2021.
[7] Threat advisory: Critical apache log4j vulnerability being

exploited in the wild. https://blog.talosintelligence.com/
apache-log4j-rce-vulnerability/, 2021.

[8] Us warns log4j flaw puts hundreds of millions of devices at risk. https:
//www.zdnet.com/article/log4j-flaw, 2021.

[9] National vulnerability database. https://nvd.nist.gov/, 2022.
[10] Avira antivirus. https://www.avira.com/zh-cn, 2023.
[11] Chatgpt. https://openai.com/chatgpt, 2023.
[12] Chocolatey-the package manager for windows. https://chocolatey.org/,

2023.
[13] Cisco ios. https://www.cisco.com/c/en/us/products/ios-nx-os-software/

index.html, 2023.
[14] Free software update for windows.download heimdal free. https:

//heimdalsecurity.com/products/free-software-updater, 2023.
[15] Home updater: Overview and download—patch my pc. https://

patchmypc.com/home-updater, 2023.
[16] Langchain. https://github.com/langchain-ai/langchain, 2023.
[17] Manageengine patch manager plus. https://www.manageengine.cn/

patch-management/, 2023.
[18] Microsoft copilot. https://www.microsoft.com/en-us/microsoft-copilot,

2023.
[19] mttp. https://fieldeffect.com/blog/1-day-0-day-vulnerabilities-explained,

2023.
[20] Ninite-install or update multiple apps at once. https://ninite.com/, 2023.
[21] Npackd. https://npackd.org/, 2023.
[22] Openwrt. https://openwrt.org/, 2023.
[23] Qemu. https://www.qemu.org/, 2023.
[24] Rasberrypi. https://www.raspberrypi.com/, 2023.
[25] Ruckzuck software package manager for windows. https://ruckzuck.

tools/, 2023.
[26] Snort. https://www.snort.org/, 2023.
[27] Sumo documentation. https://sumo.dlr.de/docs/index.html, 2023.
[28] What is the log4j vulnerability? https://www.ibm.com/topics/log4j,

2023.

https://github.com/tothi/pwn-hisilicon-dvr
https://eero.com/
https://meraki.cisco.com/
https://community.meraki.com/t5/Security-SD-WAN/Log4J-detection/m-p/135718
https://community.meraki.com/t5/Security-SD-WAN/Log4J-detection/m-p/135718
https://www.linksys.com/us/velop/
https://www.netgear.com/home/wifi/mesh/
https://blog.talosintelligence.com/apache-log4j-rce-vulnerability/
https://blog.talosintelligence.com/apache-log4j-rce-vulnerability/
https://www.zdnet.com/article/log4j-flaw
https://www.zdnet.com/article/log4j-flaw
https://nvd.nist.gov/
https://www.avira.com/zh-cn
https://openai.com/chatgpt
https://chocolatey.org/
https://www.cisco.com/c/en/us/products/ios-nx-os-software/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/index.html
https://heimdalsecurity.com/products/free-software-updater
https://heimdalsecurity.com/products/free-software-updater
https://patchmypc.com/home-updater
https://patchmypc.com/home-updater
https://github.com/langchain-ai/langchain
https://www.manageengine.cn/patch-management/
https://www.manageengine.cn/patch-management/
https://www.microsoft.com/en-us/microsoft-copilot
https://fieldeffect.com/blog/1-day-0-day-vulnerabilities-explained
https://ninite.com/
https://npackd.org/
https://openwrt.org/
https://www.qemu.org/
https://www.raspberrypi.com/
https://ruckzuck.tools/
https://ruckzuck.tools/
https://www.snort.org/
https://sumo.dlr.de/docs/index.html
https://www.ibm.com/topics/log4j

[29] Wormgpt: An ai tool for hackers. https://www.popularmechanics.com/
technology/security/a45533297/what-is-wormgpt/, 2023.

[30] Faiss. https://faiss.ai/, 2024.
[31] Hackergpt. https://github.com/Hacker-GPT/HackerGPT, 2024.
[32] Hypertext transfer protocol (http) specifications. https://www.rfc-editor.

org/rfc/rfc2616, 2024.
[33] Netresec: Publicly available pcap files. https://www.netresec.com/

?page=PcapFiles, 2024.
[34] Ollama. https://ollama.com/, 2024.
[35] Deepseek-r1. https://www.deepseek.com/en, 2025.
[36] Gemma3-12b. https://ollama.com/library/gemma3:12b, 2025.
[37] What is the training duration for deepseek’s r1 model? https://zilliz.com/

ai-faq/what-is-the-training-duration-for-deepseeks-r1-model, 2025.
[38] F. Alanazi, J. Kim, and E. Cotilla-Sánchez. Load oscillating attacks

of smart grids: Vulnerability analysis. IEEE Access, 11:36538–36549,
2023.

[39] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos, and
A. Madeira. Flowlens: Enabling efficient flow classification for ml-based
network security applications. In NDSS, 2021.

[40] K. Bartos, M. Sofka, and V. Franc. Optimized invariant representation
of network traffic for detecting unseen malware variants. In USENIX
security symposium, pages 807–822, 2016.

[41] S. Bhatt, P. K. Manadhata, and L. Zomlot. The operational role of
security information and event management systems. IEEE security &
Privacy, 12(5):35–41, 2014.

[42] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection
and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, pages 1285–1298, 2017.

[43] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar. BUZZ: Testing
Context-Dependent policies in stateful networks. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16). USENIX Association, 2016.

[44] C. Fu, Q. Li, M. Shen, and K. Xu. Realtime robust malicious traffic
detection via frequency domain analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
pages 3431–3446, 2021.

[45] T. Ganz, E. Imgrund, M. Härterich, and K. Rieck. Pavudi: Patch-based
vulnerability discovery using machine learning. In Proceedings of the
39th Annual Computer Security Applications Conference, pages 704–
717, 2023.

[46] S. Garcia, A. Parmisano, and M. J. Erquiaga. Iot-23: A labeled dataset
with malicious and benign iot network traffic (version 1.0.0). 2020.

[47] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes, and
B. Ur. Rethinking access control and authentication for the home internet
of things (iot). In 27th {USENIX} Security Symposium ({USENIX}
Security 18), pages 255–272, 2018.

[48] S. T. Jan, Q. Hao, T. Hu, J. Pu, S. Oswal, G. Wang, and B. Viswanath.
Throwing darts in the dark? detecting bots with limited data using neural
data augmentation. In 2020 IEEE symposium on security and privacy
(SP), pages 1190–1206. IEEE, 2020.

[49] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.
Mao, A. Prakash, and S. J. Unviersity. Contexiot: Towards providing
contextual integrity to appified iot platforms. In Proceedings of The
Network and Distributed System Security Symposium, volume 2017,
2017.

[50] M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, and
A. Svyatkovskiy. Inferfix: End-to-end program repair with llms. arXiv
preprint arXiv:2303.07263, 2023.

[51] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov.
Fasttext. zip: Compressing text classification models. arXiv preprint
arXiv:1612.03651, 2016.

[52] J. Khalid and A. Akella. Correctness and performance for stateful
chained network functions. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages 501–516, 2019.

[53] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella. Paving the way for {NFV}: Simplifying middlebox modifi-
cations using {StateAlyzr}. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 239–253, 2016.

[54] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar. Jaqen: A high-performance switch-native
approach for detecting and mitigating volumetric ddos attacks with
programmable switches. In USENIX Security Symposium, 2021.

[55] M. Miettinen, S. Marchal, I. Hafeez, T. Frassetto, N. Asokan, A.-
R. Sadeghi, and S. Tarkoma. Iot sentinel: Automated device-type
identification for security enforcement in iot. In ICDCS, 2017.

[56] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and
L. Zettlemoyer. Rethinking the role of demonstrations: What makes
in-context learning work? arXiv preprint arXiv:2202.12837, 2022.

[57] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. Kitsune: an
ensemble of autoencoders for online network intrusion detection. 2018.

[58] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R.
López, K. Papagiannaki, P. Rodriguez Rodriguez, and P. Steenkiste.
Multi-context tls (mctls) enabling secure in-network functionality in
tls. ACM SIGCOMM Computer Communication Review, 45(4):199–212,
2015.

[59] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[60] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang,
Y. Li, Y. Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300,
2024.

[61] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

[62] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
Vulnerability-driven network filters for preventing known vulnerability
exploits. In Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer communications,
pages 193–204, 2004.

[63] S. Wang, X. Wang, K. Sun, S. Jajodia, H. Wang, and Q. Li. Graphspd:
Graph-based security patch detection with enriched code semantics. In
2023 IEEE Symposium on Security and Privacy (SP), pages 2409–2426.
IEEE, 2023.

[64] X. Wang, S. Wang, P. Feng, K. Sun, S. Jajodia, S. Benchaaboun, and
F. Geck. Patchrnn: A deep learning-based system for security patch
identification. In MILCOM 2021-2021 IEEE Military Communications
Conference (MILCOM), pages 595–600. IEEE, 2021.

[65] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and
Y. Cao. React: Synergizing reasoning and acting in language models.
In International Conference on Learning Representations (ICLR), 2023.

[66] Y. Zhou, J. K. Siow, C. Wang, S. Liu, and Y. Liu. Spi: Automated
identification of security patches via commits. ACM Transactions on
Software Engineering and Methodology (TOSEM), 31(1):1–27, 2021.

https://www.popularmechanics.com/technology/security/a45533297/what-is-wormgpt/
https://www.popularmechanics.com/technology/security/a45533297/what-is-wormgpt/
https://faiss.ai/
https://github.com/Hacker-GPT/HackerGPT
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://ollama.com/
https://www.deepseek.com/en
https://ollama.com/library/gemma3:12b
https://zilliz.com/ai-faq/what-is-the-training-duration-for-deepseeks-r1-model
https://zilliz.com/ai-faq/what-is-the-training-duration-for-deepseeks-r1-model

APPENDIX

A. Evaluation Testbed

Pentesting Network

Virtualized Devices

Physical DevicesLLM Patch

Gateway

Attack Launchpads

LLM Patch Server

Figure 13: Evaluation Testbed.

B. OTNW ICS Network.

Figure 14: OTNW ICS network topology.

C. Patch Management Software List

Name Version
ManageEngine Patch Manager
Plus

10.1.2220.20

Chocolatey 2.2.0
Avira 1.1.92.6
Ninite d0021
Patch My PC Home Updater 4.5.0.3
SUMo 5.17.9.541
Heimdal Free 3.6.4
Npackd 1.26.9.0
RuckZuck 1.7.3.1

Table V: Patch management software.

	Introduction
	Motivations and Related Works
	Current vulnerability fixing approaches
	Issues with current approaches
	New vantage point to prevent 1-day/n-day vulnerabilities

	Overview
	Agentic-RAG-Based Knowledge Distillation
	Router Agent
	Context Search Agents
	Knowledge Distillation Agents

	RL-From-VNF Pipeline
	Comparison with RLHF and DPO
	VNF-GRPO Algorithm
	VNF Reward Function

	Online Agentic Validator
	Fuzzing & Trimming Agent
	Network Tree-of-Thought (NToT) Agent

	Dataset and Implementation
	Evaluation
	Experiment Setting
	Effectiveness
	Efficiency
	Scalability
	Ablation Study

	Discussion
	Conclusion
	Ethics considerations
	References
	Appendix
	Evaluation Testbed
	OTNW ICS Network.
	Patch Management Software List

