

64-bit calc.exe Stack Overflow Root Cause Analysis :

Author : Souhail Hammou

Blog : http://rce4fun.blogspot.com

Twitter : https://twitter.com/Dark_Puzzle

Contact : dark-puzzle@live.fr

http://rce4fun.blogspot.com/
https://twitter.com/Dark_Puzzle

Introduction :
I was surfing around the net when I found by chance a blog post about a bug found in calc.exe under Win7

64bit.

http://marcoramilli.blogspot.com/2013/08/bug-in-wincalcexe.html

I've tried to reproduce right away in the same environment and then calc.exe crashed. I hadn't any stuff going

on so I said to myself why not do a root cause analysis of the bug ? and as I started taking notes it turned out

to be an article... So here it is :

This article is about my analysis of the bug so if you noticed something that appears to be wrong or

unclear don't mind e-mailing me about it, I'll be glad :) .

Reproducing the crash :

The crash can be simply reproduced by following these steps :

 - Open calc.exe and calculate 1/255.

 - Choose the [F-E] button.

 - Crash !! .

I reproduced with calc.exe attached to Windbg and the following was displayed :

(2f0c.2618): Stack overflow - code c00000fd (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

ntdll!RtlpAllocateHeap+0x30:

00000000`77c23520 89542434 mov dword ptr [rsp+34h],edx

The status code shows us that this is a stack overflow , and the exception is triggered when an instruction will

try to write to an address that is believed to belong to the stack but it's not. This is because the stack has run

out of memory and can't commit anymore space.

The stack committed and reserved memory can be examined by dumping the PE header using "!dh"

commadn under Windbg :

0000000000080000 size of stack reserve

0000000000002000 size of stack commit

size of stack reserve : The total stack size used by the application.

size of stack commit : The stack space that can be used by the application until hitting the guarded page (a

page from reserved memory). The access to that page is now granted and the page guard is the next page.This

process will continue until "size of stack reserve" is reached which will result in a STACK OVERFLOW

EXCEPTION, for the simple reason that the application will try to write out of the stack bound.

Now we need to know at least what has caused the Stack Overflow Exception , so all we have to do is check

the call stack.

RETADDR CALL SITE

00000000`77c234d8 : ntdll!RtlpAllocateHeap+0x30

00000000`77ca70dd : ntdll!RtlAllocateHeap+0x16c

00000000`77c6b5aa : ntdll!RtlDebugAllocateHeap+0xcd

00000000`77c234d8 : ntdll! ?? ::FNODOBFM::`string'+0x18b42

000007fe`fdb81635 : ntdll!RtlAllocateHeap+0x16c

00000000`ff5d1d89 : KERNELBASE!LocalAlloc+0x71

00000000`ff5d5ed4 : calc!_createnum+0x2d

00000000`ff5d5c4d : calc!_addnum+0x64

00000000`ff5d7514 : calc!addnum+0x67

00000000`ff5d27da : calc!_divnum+0x154

00000000`ff5d5aa8 : calc!putnum+0x14d

00000000`ff5d5aa8 : calc!putnum+0x22d

00000000`ff5d5aa8 : calc!putnum+0x22d

00000000`ff5d5aa8 : calc!putnum+0x22d

00000000`ff5d5aa8 : calc!putnum+0x22d

00000000`ff5d5aa8 : calc!putnum+0x22d

00000000`ff5d5aa8 : calc!putnum+0x22d

[...]

00000000`ff5d5aa8 : calc!putnum+0x22d

Oops, the cause of the problem is a recursive call . It has written its arguments , return address and local

variable and arguments to other function calls so many times until the stack has been exhausted.

But why ? that's the question we'll be answering until the last sentence of this article.

For some of you , it appears useless to look for a root cause of this kind of bug and maybe it is. But I found

working on this enjoyable cause this is the first bug I encountred in calc.exe and also it was a good

opportunity for me to become more familiar with x64 reversing.

The first thing I started with is the calc!putnum function itself , what's its prototype and what are its

parameters.

In our case the putnum function is called by calc!putrat :
Caller : (calc!Putrat)

00000000`ff29571c 488d542448 lea rdx,[rsp+48h]

00000000`ff295721 448bc5 mov r8d,ebp

00000000`ff295724 498bcc mov rcx,r12

00000000`ff295727 e834010000 call calc!putnum (00000000`ff295860)

00000000`ff29572c 488b4c2448 mov rcx,qword ptr [rsp+48h]

Callee : (calc!Putnum)

00000000`ffd55860 488bc4 mov rax,rsp

00000000`ffd55863 44894018 mov dword ptr [rax+18h],r8d (argument_3)

00000000`ffd55867 48895010 mov qword ptr [rax+10h],rdx (argument_2)

00000000`ffd5586b 48894808 mov qword ptr [rax+8],rcx (argument_1)

00000000`ffd5586f 53 push rbx

00000000`ffd55870 55 push rbp

...

00000000`ffd55873 4883ec48 sub rsp,48h

Keep in mind that these arguments will be accessed from now on using rax , and rsp will be used to store the

functions' local variables.

In x64 , argument passing consists the use of rcx,rdx,r8 and r9 , any other additional parameters passed will

be pushed on stack.

Here in our case the callee will place arguments passed to it (in rcx,rdx,r8d) on stack in the same way the

caller would have pushed them.

The image above shows :

 - calc!putrat stack frame .

 - the return address for the calc!putnum (return to calc!putrat+0xb8) being just pushed.

 - the arguments freshly placed on stack by the callee.

Full disassembly of calc!putnum : http://pastebin.com/imDN8DUa
After some analysis here's what I came to concerning the putnum function :

Argument_1 appears to be a pointer to a stack address which has the value "00000000`00000001" (was set

originally as a dword so it is of type int).

Argument_2 appears to be a pointer also to a stack address which has a pointer also.Thus,Argument_2 is a

pointer to a pointer.

Argument_3 this appears to be of type int : mov dword ptr [rax+18h],r8d.

Argument_2 is a pointer to a pointer to an Array of integers that we will see in detail soon.

The function returns a pointer to a unicode string . The string is nothing but the "valid" array integers

converted to be ready for the display.

C/C++ Function prototype :

 wchar_t* putnum(int* arg1,int** arr,int arg3);
We will be mainly interested in argument_2 (int** arr).

Now all we need to do is spot the recursive call and see how it's reached following conditional and

unconditional jumps.

cmp edi,edx : In the case when the call to putnum isn't made : edi = edx which means that edi value is

NULL. EDX always equals 0 before the comparison , thus now only EDI now is the problem.

I found that EDI switches its value between 1 and 0.

When triggering the bug , EDI value is always 1 before the comparison. (Putnum is called everytime).

This value of edi is returned from calc!stripzeroesnum in eax.

The Array that I talked about is something like this :

http://pastebin.com/imDN8DUa

arr[2] has a negative value , we add to it the difference between the previous and current total .

This will increase its value , because zeroe(s) have been stripped.

The value (arr[2] - 1) is the length of the whole array. In my opinion , the negative value describes that the

integers are stored in the inverted way.

More information about calc!stripzeroesnum :

Full disassembly of the function : http://pastebin.com/jSt2Ufh0

I worked also on manually decompiling the function because it's important for us:

A part of this function compares an element of the array to NULL , if it is : it simply increments the index and

set the return value to 1 then compare again again until finding a value that is different from NULL. Besides,

it calls a function calc!memmove which will Strip all the zeros from the array so the starting of the array

(where the integers to convert are stored , however the first element of the array is at (first_integer_index - 3))

will be the first element different from NULL. This function also uses ebx as a counter for the elements in the

array so it decrements whenever the next element is accessed.

P.S : The function is supplied a Maximum value that the valid integers in the array don't have to exceed , this

value is supplied through edx . The array contains more than just the integers for example the array[1]

contains the total numbers of the integers to process .

http://pastebin.com/jSt2Ufh0

If total_int > MAX then the array will be accessed from the element array[total_int-MAX] to make the

number of integers in the wanted interval and then the Max value itself will be used as a counter. If total_int <

MAX then the counter will still ebx by default and the array will be accessed from index 3.

The compare instruction is : cmp dword ptr [rdx],0

RCX is supplied to the function and RCX+0xC is the first element of the array which holds the integers .

These integers are nothing but the result of the arithmetic operation. The integers are stored in the reverse

order in memory so the last ones are the first ones listed in memory.

calc!stripzeroesnum+0x19: mov ebx,dword ptr [rsi+4] , ebx holds now the number of the elements.The

elements are only the Xs "0.XXX..." where X is different from NULL. This is the second element of the array

which holds the total number of valid integers (total_int).

e.i : for 0.000005 , ebx will hold the value 1.

PS : the screen can display 34 characters max for integers that start with 0,XXXX (0 and the point are

counted) and 33 characters for numbers that start with X,XXXXX... (the point is counted).

In this article we will be interested in 2 calls to calc!stripzeroesnum , conditions will control each execution

flow of the execution .

the first call is at : "calc!putnum+0x34".

The second one is at : "calc!putnum+0x203".

The main condition that controls the access to the array is a comparison between ebx and r8d :

cmp ebx,r8d

jg calc!stripzeroesnum+0x26

we dicussed the value of ebx earlier (total_int), and the value of r8d is supplied by the caller in edx.So we will

be studying 2 cases .

Concerning the call at "calc!putnum+0x34" : The caller supplies as an argument edx with a value of 0x20+2.

calc!g_maxout == 0x20 the value 2 is added in case the number to display contains a point and an additional

number (0.) for example.

Concerning the call to stripzeroesnum at "calc!putnum+0x203": In this call the array is accessed using an

index in RAX the comparison starts with the first element accessed.

This isn't done until the result is bigger to be displayed , to fix this , the array is accessed using an index

which simply is the result of the substraction between the total integers to process in the array and the max

value allowed.

 sub ebx,r8d

 movsxd rax,ebx

 mov ebx,r8d

 lea rdx,[rcx+rax*4]

Now the question is Why does the crash happen only when pressing [F-E] button and not when clicking "="

button ??!

Actually ,sometimes, there's a majoration when trying to display the result using the "=" button when the

value is long enough , a majoration would simply make the following value

0.009009009009009009009009009009... , this one 0.00900900900900901.

The function putnum calls a function (calc!addnum) which does that , and suprisingly this function does a

majoration just in case we want to display the number using "=" button and it does not do it when we're trying

to display the scientific notation using [F-E].

The Crash Cause :
A Quick Resumé :

- As was mentioned earlier, the addnum function will do a majoration if needed to decrease the length and

precision. Sometimes , in a normal case , the recursive call will be accessed but the MAX will be greater than

total_int so the execution will not reach calc!stripzeroesnum.

- Surprisingly , when choosing the [F-E] mode , the addnum will not do any majoration and will sometimes

add more precision to the number.

- Remember when I said that the array ignores the zeroes after the point and before the first number different

from zero ?

"0.0016316168515"

 ^^----Ignored.

Those will be added later to the total_int and then compared with calc!g_maxout global variable which is

equal 20.

calc!putnum+0x186:

mov eax,ecx

sub eax,esi <-- ESI has a negative value so it is added to eax.

cmp eax,r8d

jg calc!putnum+0x1b3

Conditions To Reproduce The Crash :

The difference is that when clicking "=" button a majoration of the number will be made to stop getting more

precision , then the zeroes at the end will be stripped off. However , when choosing [F-E] mode in special

cases (1/255 , 1/111 , 1/999) the addnum will always add precision, and total_int+zeros_after_the_point >

g_maxout , which will take us to stripzeroesnum at putnum+0x203 again .This one will access the array from

the index (total_int-MAX) which points always to a NULL elements then strip off zeros. When the recursive

call is made the stripzeroesnum+0x34 will get an array that is stripped off of zeroes. However total_int >

calc!g_maxout or total_int+zeros_after_the_point > calc!g_maxout.

Then As soon as the call to addnum is made : more precision will be added making the array larger. The array

should exceed the max value and making (total_int - MAX) poiting to a NULL element again which will

result in returning 1 (stripping the zero and numbers before in the array) and calling putnum again which will

call addnum etc until the stack is fully overflown.

Conclusion :

As demonstrated in this article , the use of recursive calls is strongly unappreciated because under special

circumstances they may cause a fatal stack overflow bug.

Well , That's all FOLKS ... And see you again soon.

 Thanks for your time.

 Regards,

 Souhail Hammou.

