

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0

Cybersecurity Information

Memory Safe Languages: Reducing Vulnerabilities

in Modern Software Development

Executive summary

Memory safe languages (MSLs) are gaining momentum. In 2022, the National Security

Agency (NSA) released a cybersecurity information sheet (CSI), “Software Memory

Safety.” [1] In 2023, the Cybersecurity and Infrastructure Security Agency (CISA)

published the joint guide, “The Case for Memory Safe Roadmaps,” [2] and in 2024, the

White House issued “Back to the Building Blocks: A Path Toward Secure and

Measurable Software.” [3] Though these each address the problem of memory-unsafe

code from a different perspective, they all agree that adopting MSLs is a key part to

decreasing vulnerabilities and reducing the risk of security incidents.

The goal of these documents is to strengthen national cybersecurity by reducing

memory-related vulnerabilities, which requires more than developer discipline and best

practices. Achieving better memory safety demands language-level protections, library

support, robust tooling, and developer training. While decades of experience with non-

MSLs have shown that secure coding standards and analysis tools can mitigate many

risks, they cannot fully eliminate memory safety vulnerabilities inherent to these

languages as effectively as the safeguards used in MSL.

MSLs offer built-in safeguards that shift safety burdens from developers to the language

and the development environment. By integrating safety mechanisms directly at the

language level, MSLs enhance security outcomes and reduce reliance on after-the-fact

analysis tools. However, adoption comes with challenges. Selecting the appropriate

MSL depends on factors such as concurrency and performance, which may increase in

difficulty with large or complex existing codebases. Starting MSL adoption is not

currently practical in all circumstances or solution areas; additional investments may be

necessary to reduce memory safety bugs.

This report, released by NSA and CISA, acknowledges the challenges and aims to

provide a balanced view of the state of MSLs. Reducing memory safety vulnerabilities

requires understanding when MSLs are appropriate, knowing how to adopt them

effectively, and recognizing where non-MSLs remain practical necessities.

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.cisa.gov/case-memory-safe-roadmaps
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 2

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

Introduction

Memory safety vulnerabilities, such as buffer overflows, have long plagued software

systems. The Heartbleed and BadAlloc vulnerabilities exemplify the dangers posed by

poor memory management. Heartbleed affected over 800,000 of the most visited

websites and resulted in the theft of sensitive personal data, including millions of

hospital patient records. [4],[5] BadAlloc impacted embedded devices, industrial control

systems, and over 195 million vehicles, demonstrating how memory vulnerabilities

threaten national security and critical infrastructure. [6] These examples underscore the

urgency of finding better solutions. MSLs such as Ada, C#, Delphi/Object Pascal, Go,

Java, Python, Ruby, Rust, and Swift offer built-in protections against memory safety

issues, making them a strategic choice for developing more secure software. MSLs can

prevent entire classes of vulnerabilities, such as buffer overflows, dangling pointers, and

numerous other Common Weakness Enumeration (CWE) vulnerabilities. [7] Unlike non-

MSLs, which rely heavily on developer discipline to ensure safe memory handling,

MSLs embed memory safety mechanisms directly into the language itself, making them

more secure by design. [1]

MSLs represent a significant evolution in the approach to

software security, moving beyond existing measures to

proactively prevent vulnerabilities by default during development at compile time and/or

during runtime. The importance of memory safety cannot be overstated: a 2019 study

estimated that 66% of Common Vulnerabilities and Exposures (CVEs) for iOS 12 and

71% of CVEs for Mojave were caused by memory safety issues. [8] The consequences

of memory safety vulnerabilities can be severe, ranging from data breaches to system

crashes and operational disruptions. For example, a Google Project Zero review of

exploits detected in-the-wild estimates that 75% of CVEs used in those exploits were

memory safety vulnerabilities. [9] Out of the 58 in-the-wild zero-days discovered in

2021, 67% were memory safety vulnerabilities. [10] As a result, the adoption of MSLs is

regarded as a key strategy in improving software security and reducing the risk of costly

security incidents. This aligns with CISA's Secure by Design principles, which advocate

for reducing vulnerability classes by default. [11]

The Office of the National Cyber Director (ONCD) and CISA have strongly advocated

for the adoption of MSLs with multiple publications emphasizing MSLs’ importance. [2],

[12],[13],[14],[15],[16],[17] CISA's Secure by Design program specifically calls for

integrating proactive security measures throughout the software development lifecycle,

The importance of memory

safety cannot be overstated.

https://www.cisa.gov/securebydesign

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 3

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

with MSLs as a central component. [11] Consistent support for MSLs underscores the

benefits of this transition for national security and resilience.

A balanced approach acknowledges that MSLs are not a panacea and that transitioning

involves significant challenges, particularly for organizations with large existing

codebases or mission-critical systems. However, several benefits, such as increased

reliability, reduced attack surface, and decreased long-term costs, make a strong case

for MSL adoption.

Memory vulnerabilities explained

Memory is where a computer stores and accesses data. Memory safety bugs occur

when a computer program incorrectly uses memory. They often arise from languages

that allow control over memory allocation and access, combined with improper memory

management by developers. MSLs are designed to enforce memory safety by default,

reducing the risk of security breaches caused by memory mismanagement.

Technical examples of memory bugs

These memory bugs are common in non-MSLs that use manually managed memory

environments.

 Buffer overflow: a program allocates a fixed buffer size for data and writes

data intended to be contained inside the buffer outside the bounds of the

buffer, usually overwriting adjacent memory and corrupting data outside the

allocated buffer.

 Use-after-free: a program allocates memory for an intended purpose,

deallocates the memory and continues to use the memory after it was freed. If

the memory was reclaimed and allocated for something else, the process of

freeing and reallocating and/or the use of the same memory for different

purposes causes data corruption.

 Data races: when two or more threads in a single application concurrently

access the same memory location and one or more threads are writing data,

the resulting value in memory or the value read can be timing and architecture

specific, leading to data corruption.

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 4

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

 Initialization safety: occurs when a programmer assumes memory was

initialized correctly and reads its data without proper initialization. The

uninitialized data is essentially corrupted data compared to what the

programmer expected.

Some memory bugs may be memory vulnerabilities exploitable by attackers. For

example, suppose a programmer, by accident, allocates only 100 bytes of memory to

store 300 bytes of public information. Because the memory holding the last 200 bytes of

public data was never allocated, the program may later allocate that same memory to

store confidential data. Later when the program intends to display the 300 bytes of

public data, it could actually retrieve and divulge 100 bytes of public data and 200 bytes

of confidential data. In other cases, memory corruption can allow an attacker to fully

control program execution and actions or trigger crashes that impact system availability.

Key features addressing memory safety

MSLs use built-in mechanisms to prevent memory bugs. They embed safety features

directly into the language by default to avoid most memory mismanagement

vulnerabilities. Examples are:

 Bounds checking: prevents buffer overflows by keeping memory accesses

within allocated boundaries. Some languages enforce bounds checking through

type safety, which restricts the operations that can be performed on each data

type. Type safety ensures the bounds and behavior of an object are known when

the object is created and enforced whenever it is accessed.

 Memory management: minimizes the likelihood of manual memory

management errors by forcing memory initialization before use and employing

either garbage collection (e.g., as in Go or Java) or strict ownership and

borrowing rules for each region of memory allocated by default (as in Rust).

Garbage collection is a technique where while a program is active, a memory

management engine automatically runs in the background (usually with compile

time support) that manages memory allocation and periodically frees memory

that is no longer being used. A way to determine whether memory is not used

anymore is by verifying no program variables point to the memory anymore.

Strict ownership ensures that only the data owner can modify the data at an

acceptable time and that memory is freed when it no longer has an owner. Both

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 5

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

approaches for memory management help prevent bugs, such as use-after-free

ones.

 Data race prevention: prevents unsynchronized concurrent access to a piece of

data from two or more threads by default.

Memory safety in practice

Security by design

A core strength of MSLs lies in their proactive security by design. Unlike non-MSL

approaches to detecting memory issues after the code is written, such as fuzzing or

exploit mitigations, MSLs embed safety mechanisms directly into the language. This

design prevents memory safety bugs from the outset.

This approach represents a paradigm shift in approaching security. It builds on proven

successes in other domains, such as XSS and SQL Injection vulnerabilities, where

some software manufacturers have implemented secure by design APIs and libraries

that have virtually eliminated the occurrence of these flaws in their products.

Figure 1: Microsoft CVEs | Memory Safety Vs Non-Memory Safety Patches

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 6

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

Figure 1 shows all Microsoft’s CVEs from 2016 through 2023 as a percentage of

memory related issues versus the total number each year. In 2016, Microsoft attributed

nearly 70% of their CVEs to memory safety. [18] In recent years the percentage has

declined to approximately 50%. Despite improvements, approximately half of Microsoft’s

patches still address memory safety CVEs, which may be further reduced with greater

use of MSLs.

Case study: Android's transition

The Android operating system, a complex platform with a vast codebase, provides a

compelling illustration of the impact of MSLs. In 2019, memory safety issues accounted

for 76% of all Android vulnerabilities—typical for projects predominantly developed in

memory-unsafe languages. [19]

Recognizing the high concentration of memory-related vulnerabilities in new code, the

Android team made a strategic decision to prioritize MSLs, specifically Rust and Java,

for all new development. Rather than attempting a massive and complex rewrite of

existing code, they focused on preventing new vulnerabilities from entering the system.

By 2024, memory safety vulnerabilities had plummeted to 24% of the total, representing

an improvement that had not been seen with previous approaches to memory safety.

This success underscores the effectiveness of MSLs in proactively building a more

secure foundation for software. [19]

Reliability and productivity benefits

Adopting MSLs not only produces more secure systems but also more reliable and

stable ones. By preventing memory bugs that often lead to crashes and unpredictable

behavior, MSLs drive down costs that would otherwise be spent addressing

vulnerabilities and contribute to increased uptime and smoother operations.

MSLs make it easier to write correct and reliable software, which improves software

quality as well as developer productivity by eliminating entire classes of bugs and

integrating runtime checks:

 Elimination of bug classes: By default, MSLs prevent certain classes of bugs

from ever occurring. For instance, use-after-free bugs, a common source of

crashes in non-MSLs, are impossible to have without overriding the default

language settings. These built-in controls inherently lower the probability of

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 7

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

incorrect program behavior or crashes. In addition, the higher specificity of MSL

type systems can also prevent programs from entering invalid or unintended

states.

 Runtime safety checks: MSLs incorporate runtime safety checks that detect

and prevent memory corruptions, preventing potentially silent data corruption and

leading to more informative error messages that aid in faster debugging.

These same advantages translate to increased developer productivity. Early error

detection during compilation or runtime testing accelerates debugging, reduces

troubleshooting time, and minimizes the risk of costly incidents. This quality

improvement empowers developers to focus on innovation and feature development

rather than constantly battling memory safety issues.

Fewer crashes and unexpected errors during operation also translate to reduced

downtime and improved system availability, which are essential for businesses that rely

on continuous operation.

Scalability

Adopting MSLs does not necessitate a complete rewrite of existing codebases. As

demonstrated in Android, prioritizing MSL adoption in new code, and leveraging

interoperability to integrate with existing codebases, offers a practical and cost-effective

path toward enhanced security.

While not as effective as adopting an MSL, applications written in non-MSLs can also

be made safer by:

 enabling bounds checking, [20]

 avoiding inherently unsafe functions,

 adopting smart pointers,

 using recommended compiler options, and

 performing static and dynamic analysis.

Deciding on a balanced adoption approach

When considering the adoption of MSLs, it is essential to weigh the benefits of reducing

security incidents and achieving long-term cost savings against the initial investments

that may be incurred. Additionally, aligning with security best practices, regulatory

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 8

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

requirements, and industry standards, while carefully selecting an MSL that integrates

with existing codebases, is crucial for a successful adoption strategy.

Adoption considerations

 Adopt MSLs to help reduce security incidents, minimize emergency patching,

and achieve long-term cost savings.

 Invest initially in training, tools, and refactoring. This investment can usually be

offset by long-term savings through reduced downtime, fewer vulnerabilities, and

enhanced developer efficiency.

 Carefully select an MSL to help ensure it can integrate seamlessly with existing

codebases, APIs, and external libraries.

 Align with security best practices

 Approach security holistically using MSLs as one risk mitigation technique

to be combined with others, such as practices in the National Institute of

Standards and Technology (NIST) Secure Software Development

Framework (SSDF). [21]

 Align MSL efforts with industry standards, such as NIST, International

Standards Organization (ISO) / International Engineering Consortium

(IEC), and any applicable sector-specific guidance.

 Factor in regulatory and internal compliance requirements throughout the

product lifecycle. As necessary, find ways to satisfy language specific

requirements, potentially through new compliance or conformance

approaches, developing supportive tooling or by engaging with regulators.

 Begin adoption by starting new code or projects with MSLs because most

memory vulnerabilities arise in new code. [9]

 Make increasing the usage of MSLs a company priority and plan investments

accordingly. CISA urges software manufacturers to create and publish a memory

safety adoption roadmap. [22]

Engineering the MSL adoption decision

For technical teams, adopting MSLs presents opportunities to improve security,

reliability, and development efficiency while minimizing vulnerabilities related to memory

safety issues. This approach aligns with the NIST SSDF by emphasizing proactive

security measures, structured documentation, and incremental improvements for a

secure by design development culture. [21],[23]

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 9

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

Strategic adoption

New development

Prioritizing MSL adoption in new projects is a relatively low-risk way to introduce

memory safety benefits without overhauling the workflows of existing codebases.

Starting fresh with MSLs improves code quality by avoiding technical debt and

incorporating memory safety from the beginning.

Incremental adoption for existing code

Completely rewriting existing codebases is often impractical. Instead, an incremental

adoption strategy for existing systems is often more feasible:

 Write new components and features in MSLs. When tight coupling becomes

unwieldy, break down tightly coupled codebases into self-contained components.

Modular design simplifies integrating new MSL code with non-MSL systems,

allowing for smoother transitions through well-defined APIs.

 Identify high-risk components or modules that have significant attack surfaces or

are operationally critical. Rewriting these parts using MSLs helps mitigate

vulnerabilities.

 Examples of high-risk areas include network-facing services, file parsers,

codecs, and cryptographic operations.

Interlanguage integration and API considerations

When transitioning to MSLs, managing interlanguage integration is critical. Establishing

robust APIs for communication between MSL and non-MSL components helps ensure

secure and efficient interoperability. Data marshaling—converting data formats between

languages—is commonly used to maintain compatibility and preserve memory safety

across different components.

Adoption challenges

Selecting the appropriate MSL depends on multiple factors that influence the

requirements and constraints of the software project. Key determinants include:

 The need for low-level access and high efficiency, especially in media processing

or cryptographic functions.

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 10

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

 Whether systems are highly concurrent, such as servers handling numerous

simultaneous requests.

 The ease of learning and adopting a new language, which might delay

onboarding and productivity.

 The need to integrate seamlessly with existing codebases or third-party libraries.

 The availability of tools, libraries, and community support is critical for effective

development.

Managing dependencies and ecosystem maturity

While MSLs enhance security, challenges remain around dependency management,

such as when critical external libraries were not developed using MSLs. Managing

dependencies in a memory safe way is crucial to minimizing security risks. Teams can

implement strict version control practices and dependency review processes to help

ensure long-term supply chain and overall safety in MSL projects.

Handling legacy systems and tightly coupled code

Existing systems often consist of tightly coupled code, which can make adoption

challenging. To address this, focus on breaking down existing codebases into smaller,

modular components. This approach allows for easier isolation of high-risk areas and

facilitates targeted rewrites using MSLs. Establishing well-defined APIs facilitates

compatibility and helps gradually replace non-MSL components without causing

significant disruptions.

Performance and scalability considerations

Interlanguage communication between MSL and non-MSL components can introduce

performance overhead. To mitigate this, organizations can carefully design

interoperability layers and conduct rigorous performance testing to identify and address

potential bottlenecks. The adoption of MSLs does not need to compromise the

performance or scalability of critical systems.

Training and upskilling teams

Adoption may require equipping teams with relevant skills. Effective training programs

can:

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 11

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

 Include memory safety as a core aspect of developer training, focusing on secure

by design practices.

 Adapt training paths to the experience of developers. For those familiar with

writing low-level firmware or high-performance code in C or C++, highlight

similarities to an MSL with manual memory management capabilities. Others

might benefit from starting with higher-level MSLs that automatically manage

memory allocation and garbage collection.

Language considerations

Selecting an MSL includes several key aspects for technical teams to consider:

 Adopting a language solely because it is currently in vogue can be risky, as it

may not have the long-term support or community backing needed for sustained

use. The concept of memory safety and other inherent protections within a

language is not a passing trend. However, adopting a language that has only a

niche market or lacks a strong community can bring significant challenges, even

if that language has certain technical advantages.

 Many MSLs, particularly those that are relatively new, evolve at a faster rate than

more mature languages. This rapid evolution can be both an advantage and a

challenge, as it may lead to frequent changes in language features, tooling, and

best practices.

 The ecosystem of tools and libraries available for an MSL can significantly impact

its adoption. While MSLs have growing ecosystems, they may still lack extensive

tooling and library support found in more established languages. Addressing this

gap is an area of ongoing work for various organizations, which are studying and

developing recommendations on tooling, library support, and other aspects

needed for a competitive MSL ecosystem.

Organizational roles

Organizations in academia, the U.S. Government, and private industry play key roles in

the long-term adoption of MSLs. These organizations:

 increase awareness of memory safety,

 develop materials to promote MSLs,

 invest in key programs, and

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 12

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

 create demand for MSL skillsets as industry integrates MSLs into real-world

applications.

Academia

While there are many pathways to becoming a software developer, including

independent learning, academia can play a key role in increasing awareness of memory

safety and the importance of adopting MSLs. Software developers could be taught both

about MSLs that they will use professionally and about the fundamentals of memory

safety as a cybersecurity concern.

Software development curricula

MSL education in academic institutions for computer science majors almost universally

includes at least one garbage collected MSL, such as Python or Java. As such, most

developers with formal education are already taught to use an MSL. Most institutions

also offer courses on “systems programming,” which involves teaching non-garbage

collected memory-unsafe languages.

Academics are beginning to develop curricular materials to promote MSL courses within

academic institutions. Non-garbage collected MSLs are relatively new, so few

institutions teach them. In the case of Rust, most available learning resources are either

online textbooks on Rust’s website, Google's training materials, or vocational training

books for sale. [24],[25]

Memory safety education

Separate from individual MSLs, developers can be educated in the general principles of

memory safety as a cybersecurity concern that spans all programming languages.

Research has shown that understanding memory safety is a key part in helping

developers use non-garbage collected MSLs. [26] Many institutions offer a

cybersecurity course that includes discussion of memory bugs, such as buffer

overflows. However, two factors limit the impact of these courses:

1. Many professional developers have not taken these courses. They are often

designated as electives rather than required.

2. These courses rarely describe how to prevent memory bugs by design. [27]

One promising direction is an increased focus on "secure coding” within cybersecurity

curricula. Secure coding teaches how developers can architect their software to reduce

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 13

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

the chance of security vulnerabilities, as opposed to relying on post hoc security

measures, such as stack layout randomization.

U.S. Government

The U.S. Government has long invested in many areas to advance and secure

computer science. Some recent programs are:

 The new Safety, Security, and Privacy of Open-Source Ecosystems (Safe-OSE)

program, by the National Science Foundation (NSF) Pathways to Enable Open-

Source Ecosystems (POSE) team, which includes a focus on funding for safety-

oriented projects. [28]

 The Defense Advanced Research Projects Agency (DARPA) Translating All C to

Rust (TRACTOR) program, which aims to automate the translation of existing C

code to Rust. [29]

 DARPA’s Verified Security and Performance Enhancement of Large Legacy

Software (V-SPELLS) program, which aims to create practical tools to help

developers with legacy software modernization. For example, many

vulnerabilities in software occur where untrusted inputs, such as from the

network, are initially being parsed and understood. V-SPELLS tools will aid

developers in replacing hand-written parsing code with machine-generated

parsers that are proven to be free of vulnerabilities. [30]

 Safe Documents (SafeDocs), a 2018 DARPA program, which is finding success

at the intersection of MSLs and data format parsing. [31]

Industry

Along with the many roles private industry plays, one to highlight is their ability to create

demand. Companies can set and advertise job requirements that include MSL

expertise. This action will signal demand for these skills that is felt not only throughout

the job market, but also in studies and in future funding of academic and certification

programs.

Prossimo, a project of the Internet Security Research Group (ISRG) and the Open

Source Security Foundation (OpenSSF), states that it plans to transition the Internet’s

critical infrastructure to memory safe code and develop memory safe essential software.

[32] The OpenSSF, which focuses on enhancing the security of open-source software,

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 14

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

promotes the use of MSLs to address vulnerabilities across software repositories and

supply chains. [33]

Open questions and study areas

This section outlines the ongoing and future areas of research, highlighting open

questions and topics that are critical for understanding and adopting MSLs.

 Choosing the right MSL for different requirements

 How can organizations assess which MSL is best suited for different

applications (e.g., high-performance systems vs. web development)?

 What trade-offs exist between security, performance, and ease of use for

different MSLs?

 Incremental adoption and prioritization

 What are the best strategies for prioritizing MSL adoption within complex

legacy codebases?

 How can organizations plan incremental transitions while balancing

business requirements?

 Handling constrained environments

 What challenges do MSLs face in specialized environments like industrial

control systems, embedded systems, or other resource-constrained

environments?

 How can the performance and compatibility issues in such systems be

mitigated?

 Non-MSL safety enhancements

 For cases where adoption is not feasible, what alternatives exist to

enhance safety in non-MSL environments? Can implementing new

security features in existing languages enhance safety when MSL

adoption is not an option?

 Alternative vulnerability mitigation approaches include hardware

capabilities, such as the Memory Tagging Extension (MTE), and

compiler controls.

 Training and tooling challenges

 What are the barriers to effective MSL education, and how can the

availability of training resources be improved?

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 15

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

 How mature are the current tooling ecosystems for various MSLs, and

what are the gaps that need to be addressed?

 How can the cybersecurity community ensure that the benefits of MSLs do

not create complacency among developers, particularly when addressing

non-memory-related vulnerabilities?

 Ecosystem problems

 How do the training, library, and tool gaps for MSLs affect their broader

adoption?

 What incentives can be provided to developers and institutions to

accelerate MSL ecosystem growth?

 Software supply chains

 How can supply chain security investments and resources be adapted to

MSLs?

 Supply chains, including Software Bill of Materials (SBOM),

continue to be a consideration for secure software development

processes. Significant resources may have already been invested

in non-MSL supply chain security that may need to be adapted to

support MSLs. There are many reasons to have a strong supply

chain initiative and memory safety is one.

 Secure by demand

 What role can customers play in creating incentives for software

manufacturers to adopt MSLs?

 How can customers create demand for greater transparency into the use

of secure software development practices in the products they buy?

 Transpiler use cases

 When should transpilers be used during the MSL adoption process?

 A transpiler is software that translates source code from one

language to another at approximately the same level of functionality

and level of abstraction. [34],[35]

 There are positive industry reports of this assistive technology, but

they are not included in the body of this report because:

- They may be niche.

- Recent technology trends may have unpredictable impact.

- It may be a distraction from the other, more scientifically

sound lessons.

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 16

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

 Automated transpiling offers several advantages:

- Transpilers can provide a starting point to move to an MSL

when development teams want to maintain the behavior of a

legacy component.

- Transpiling provides operational code in the new language

immediately. However, the code requires further review and

probable intervention to ensure quality consistent with the

original.

- Developers can iteratively improve code quality while

maintaining functionality.

 These advantages may allow teams to balance immediate

functional outcomes and gradual improvement in code quality and

safety, making automated transpiling a potential practical bridge

during the MSL adoption process.

Conclusion

Memory vulnerabilities pose serious risks to national security and critical infrastructure.

MSLs offer the most comprehensive mitigation against this pervasive and dangerous

class of vulnerability. Adopting MSLs can accelerate modern software development and

enhance security by eliminating these vulnerabilities at their root.

Strategic MSL adoption is an investment in a secure software future. By defining

memory safety roadmaps and leading the adoption of best practices, organizations can

significantly improve software resilience and help ensure a safer digital landscape.

Acknowledgements

The NSA Cybersecurity Collaboration Center, along with CISA, acknowledges the

Communications Sector Coordinating Council (CSCC), the DIB Sector Coordinating

Council (DIBSCC), and the IT Sector Coordinating Council (ITSCC) for their

collaboration on this guidance.

Works cited

[1] National Security Agency (NSA). Software Memory Safety. 2023.

https://media.defense.gov/2022/Nov/10/2003112742/-1/-

1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 17

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

[2] Cybersecurity and Infrastructure Security Agency (CISA) et al. The Case for Memory

Safe Roadmaps. https://www.cisa.gov/case-memory-safe-roadmaps

[3] The White House. Back to the Building Blocks: A Path Toward Secure and Measurable

Software. 2024. https://bidenwhitehouse.archives.gov/wp-

content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

[4] TIME. Report: Devastating Heartbleed Flaw Was Used in Hospital Hack. 2014.

https://time.com/3148773/report-devastating-heartbleed-flaw-was-used-in-hospital-

hack/

[5] The Register. AVG on Heartbleed: It's dangerous to go alone. Take this (an AVG tool).

2014. https://www.theregister.com/2014/05/20/heartbleed_still_prevalent/

[6] Claroty. What You Need to Know About BadAlloc and OT. 2021.

https://claroty.com/team82/blog/what-you-need-to-know-about-badalloc-and-ot

[7] MITRE. Common Weakness Enumeration (CWE): CWE CATEGORY: Comprehensive

Categorization: Memory Safety. 2025. https://cwe.mitre.org/data/definitions/1399.html

[8] Kehrer, Paul. Memory Unsafety in Apple's Operating Systems. 2019.

https://langui.sh/2019/07/23/apple-memory-safety

[9] Google. Safer with Google: Advancing Memory Safety. 2024.

https://security.googleblog.com/2024/10/safer-with-google-advancing-memory.html

[10] Google. The More You Know, The More You Know You Don’t Know. 2022.

https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-

you.html

[11] CISA. Secure by Design. 2023. https://www.cisa.gov/securebydesign

[12] The White House. Press Release: Future Software Should Be Memory Safe. 2024.

https://bidenwhitehouse.archives.gov/oncd/briefing-room/2024/02/26/press-release-

technical-report/

[13] The White House. Summary of the 2023 Request for Information for Information on

Open-Source Software Security. 2024. https://bidenwhitehouse.archives.gov/wp-

content/uploads/2024/08/Summary-of-the-2023-Request-for-Information-on-Open-

Source-Software-Security.pdf

[14] CISA et al. Exploring Memory Safety in Critical Open Source Projects. 2024.

https://www.cisa.gov/sites/default/files/2024-06/joint-guidance-exploring-memory-

safety-in-critical-open-source-projects-508c.pdf

[15] CISA Cybersecurity Advisory Committee. Report to the CISA Director: Memory Safety.

2023. https://www.cisa.gov/sites/default/files/2023-12/CSAC_TAC_Recommendations-

Memory-Safety_Final_20231205_508.pdf

[16] CISA and Federal Bureau of Investigation (FBI). Product Security Bad Practices. 2024.

https://www.cisa.gov/sites/default/files/2024-10/joint-guidance-product-security-bad-

practices-508c.pdf

[17] The White House. National Cybersecurity Strategy Implementation Plan. 2023.

https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/07/National-

Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf

[18] Microsoft. A proactive approach to more secure code. 2019.

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

https://www.cisa.gov/case-memory-safe-roadmaps
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://time.com/3148773/report-devastating-heartbleed-flaw-was-used-in-hospital-hack/
https://time.com/3148773/report-devastating-heartbleed-flaw-was-used-in-hospital-hack/
https://www.theregister.com/2014/05/20/heartbleed_still_prevalent/
https://claroty.com/team82/blog/what-you-need-to-know-about-badalloc-and-ot
https://cwe.mitre.org/data/definitions/1399.html
https://langui.sh/2019/07/23/apple-memory-safety
https://security.googleblog.com/2024/10/safer-with-google-advancing-memory.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://www.cisa.gov/securebydesign
https://bidenwhitehouse.archives.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://bidenwhitehouse.archives.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/08/Summary-of-the-2023-Request-for-Information-on-Open-Source-Software-Security.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/08/Summary-of-the-2023-Request-for-Information-on-Open-Source-Software-Security.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/08/Summary-of-the-2023-Request-for-Information-on-Open-Source-Software-Security.pdf
https://www.cisa.gov/sites/default/files/2024-06/joint-guidance-exploring-memory-safety-in-critical-open-source-projects-508c.pdf
https://www.cisa.gov/sites/default/files/2024-06/joint-guidance-exploring-memory-safety-in-critical-open-source-projects-508c.pdf
https://www.cisa.gov/sites/default/files/2023-12/CSAC_TAC_Recommendations-Memory-Safety_Final_20231205_508.pdf
https://www.cisa.gov/sites/default/files/2023-12/CSAC_TAC_Recommendations-Memory-Safety_Final_20231205_508.pdf
https://www.cisa.gov/sites/default/files/2024-10/joint-guidance-product-security-bad-practices-508c.pdf
https://www.cisa.gov/sites/default/files/2024-10/joint-guidance-product-security-bad-practices-508c.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 18

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

[19] Google. Eliminating Memory Safety Vulnerabilities at the Source. 2024.

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-

Android.html

[20] LLVM Project. Hardening Modes. 2025. https://libcxx.llvm.org/Hardening.html

[21] National Institute of Standards and Technology (NIST). NIST Special Publication 800-

218: Secure Software Development Framework (SSDF) Version 1.1:

Recommendations for Mitigating the Risk of Software Vulnerabilities. 2022.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

[22] CISA. The Case for Memory Safe Roadmaps. https://www.cisa.gov/case-memory-safe-

roadmaps

[23] Secure Software Development Framework. 2025. https://csrc.nist.gov/Projects/ssdf

[24] The Rust Foundation. Learn Rust. 2025. https://www.rust-lang.org/learn

[25] Google. Comprehensive Rust. 2025. https://google.github.io/comprehensive-rust/

[26] Crichton, Will, et al. A Grounded Conceptual Model for Ownership Types in Rust. 2023.

https://dl.acm.org/doi/abs/10.1145/3622841

[27] The Linux Foundation. Secure Software Development Education 2024 Survey:

Understanding Current Needs. 2024.

https://www.linuxfoundation.org/hubfs/LF%20Research/Secure_Software_Development

_Education_2024_Survey.pdf

[28] U.S. National Science Foundation. Safety, Security, and Privacy of Open-Source

Ecosystems (Safe-OSE). 2024. https://www.nsf.gov/funding/opportunities/safe-ose-

safety-security-privacy-open-source-ecosystems

[29] Defense Advanced Research Projects Agency (DARPA). TRACTOR: Translating All C

to Rust. https://www.darpa.mil/program/translating-all-c-to-rust

[30] DARPA. V-SPELLS: Verified Security and Performance Enhancement of Large Legacy

Software. https://www.darpa.mil/program/verified-security-and-performance-

enhancement-of-large-legacy-software

[31] DARPA. SafeDocs: Safe Documents. https://www.darpa.mil/program/safe-documents

[32] Internet Security Research Group (ISRG). Building a Better Internet: 2024 Annual

Report. https://www.abetterinternet.org/documents/2024-ISRG-Annual-Report.pdf

[33] Open Source Security Foundation. OpenSSF Responds to US Federal Government

RFI on Open Source Software Security. 2023.

https://openssf.org/blog/2023/11/08/openssf-responds-to-us-federal-government-rfi-on-

open-source-software-security

[34] ISRG. A Safer High Performance AV1 Decoder. 2023.

https://www.memorysafety.org/blog/safer-av1-decoder/

[35] ISRG. AWS commits $1M to bring memory safety to critical parts of the Web. 2023.

https://www.memorysafety.org/blog/aws-funding

Disclaimer of endorsement

The information and opinions contained in this document are provided "as is" and without any warranties or

guarantees. Reference herein to any specific commercial products, process, or service by trade name, trademark,

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html
https://libcxx.llvm.org/Hardening.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://www.cisa.gov/case-memory-safe-roadmaps
https://www.cisa.gov/case-memory-safe-roadmaps
https://csrc.nist.gov/Projects/ssdf
https://www.rust-lang.org/learn
https://google.github.io/comprehensive-rust/
https://dl.acm.org/doi/abs/10.1145/3622841
https://www.linuxfoundation.org/hubfs/LF%20Research/Secure_Software_Development_Education_2024_Survey.pdf
https://www.linuxfoundation.org/hubfs/LF%20Research/Secure_Software_Development_Education_2024_Survey.pdf
https://www.nsf.gov/funding/opportunities/safe-ose-safety-security-privacy-open-source-ecosystems
https://www.nsf.gov/funding/opportunities/safe-ose-safety-security-privacy-open-source-ecosystems
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/verified-security-and-performance-enhancement-of-large-legacy-software
https://www.darpa.mil/program/verified-security-and-performance-enhancement-of-large-legacy-software
https://www.darpa.mil/program/safe-documents
https://www.abetterinternet.org/documents/2024-ISRG-Annual-Report.pdf
https://openssf.org/blog/2023/11/08/openssf-responds-to-us-federal-government-rfi-on-open-source-software-security
https://openssf.org/blog/2023/11/08/openssf-responds-to-us-federal-government-rfi-on-open-source-software-security
https://www.memorysafety.org/blog/safer-av1-decoder/
https://www.memorysafety.org/blog/aws-funding

U/OO/172709-25 | PP-25-2574 | June 2025 Ver. 1.0 19

Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development

manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the United

States Government, and this guidance shall not be used for advertising or product endorsement purposes.

Purpose

This document was developed in furtherance of the authoring agency’s cybersecurity missions, including its

responsibilities to identify and disseminate threats and to develop and issue cybersecurity specifications and

mitigations. This information may be shared broadly to reach all appropriate stakeholders.

Contact

NSA

Cybersecurity Report Feedback: CybersecurityReports@nsa.gov

Defense Industrial Base Inquiries and Cybersecurity Services: DIB_Defense@cyber.nsa.gov

Media Inquiries / Press Desk: 443-634-0721, MediaRelations@nsa.gov

CISA

Organizations are encouraged to report suspicious or criminal activity related to information in this guide to CISA via

CISA’s 24/7 Operations Center (report@cisa.gov or 888-282-0870) or your local FBI field office. When available,

please include the following information regarding the incident: date, time, and location of the incident; type of activity;

number of people affected; type of equipment used for the activity; the name of the submitting company or

organization; and a designated point of contact.

mailto:CybersecurityReports@nsa.gov
mailto:DIB_Defense@cyber.nsa.gov
mailto:MediaRelations@nsa.gov
mailto:report@cisa.gov
https://www.fbi.gov/contact-us/field-offices

	Memory Safe Languages: Reducing Vulnerabilities in Modern Software Development
	Executive summary
	Introduction
	Memory vulnerabilities explained
	Key features addressing memory safety
	Memory safety in practice
	Security by design
	Case study: Android's transition
	Reliability and productivity benefits

	Scalability
	Deciding on a balanced adoption approach
	Adoption considerations

	Engineering the MSL adoption decision

	Strategic adoption
	New development
	Incremental adoption for existing code
	Interlanguage integration and API considerations

	Adoption challenges
	Managing dependencies and ecosystem maturity
	Handling legacy systems and tightly coupled code
	Performance and scalability considerations
	Training and upskilling teams

	Language considerations
	Organizational roles
	Academia
	Software development curricula
	Memory safety education

	U.S. Government
	Industry

	Open questions and study areas
	Conclusion
	Acknowledgements
	Works cited

