
Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

Different Rewrite Methods available
with mod_rewrite for

BLACKLISTING
To facilitating site security, the techniques presented in this E-Book will improve your

understanding of the different rewrite methods available with mod_rewrite.

CHETAN SONI

(Cyber Security Specialist)

Email – chetansoni@live.com

Facebook – http://facebook.com/er.chetansoni

Twitter – http://twitter.com/iamchetansoni

mailto:chetansoni@live.com
http://facebook.com/er.chetansoni
http://twitter.com/iamchetansoni

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

About Me –

I am a social-techno-learner who believes in its own efficiency first and then implements with

the suggestions of my strong and enthusiastic Team which helps me takes everything into its

perfection level.

The young and dynamic personality has not only assisted in solving complex cases but has also

played an instrumental role in creating awareness about Information Security and Cyber crimes.

I conducted more than 100 workshops on topics like “Botnets, Metasploit Framework,

Networking, Vulnerability Assessment, Penetration Testing, Cyber Crime Investigation,

Cyber Forensics and Ethical Hacking” at various institutions/Colleges/Companies all across

the world.

Achievements –

1. Experience as System Administrator, Support Engineer, Network Engineer, IT faculty,

Technical consultant.

2. Extensive Experience in Red Hat Enterprise Linux.

3. Experience in designing cable and wireless networks, network cabling such as STP, UTP,

coaxial etc., installation and configuration of LAN, WAN and wireless networks with active

components such as hub, bridge, routers, switches, modems, repeaters etc. break / fix

engineering.

4. Energetic and self-motivated team player. Proven ability to work in tight schedule and both

independent and team environments.

5. Extensive Experience in Backtrack Operating System which is a Linux based OS.

6. Analysis and Monitoring of Packets in a Wireless Network.

7. Published more than 50 E-Books and 24 Tools in Seculabs – Online Digital Library related

to Hacking, Cracking, Backtrack, Metasploit, Digital Forensics, Wi-Fi Hacking, and Website

Hacking.

8. Brand Ambassador of the year 2011 at Secugenius Security Solutions.

9. Published My Paper on “Complete WordPress Security” at Packet Storm Security

Website which is a Global Security Resource.

10. Research Paper Published on “Capturing of HTTP Protocol Packets in a Wireless

Network” in IJECCE (International Journal of Electronics Communication and Computer

Engineering)

11. Got “Best Speaker of the year – 2013″ Award in Chakravyuh IT Conference held at IIT-

Delhi.

Professional EXPERIENCE

Working as a Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS,

LUDHIANA from June ’2011 & Sr. Author at Seculabs – Online Digital Library from

January 2012.

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

Different Rewrite Methods available
with mod_rewrite for

BLACKLISTING

Chetan Soni

It includes;

1. Blacklist via Request Method

2. Blacklist via the Request

3. Blacklist via the Referrer

4. Blacklist via Cookies

5. Blacklist via Request URI

6. Blacklist via the User Agent

7. Blacklist via the Query String

8. Blacklist via IP Address

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

1. Blacklist via Request Method

It evaluates the client’s request method. When a client attempts to connect to your server,
it directly sends a message indicating the type of connection it wishes to make.

There are many different types of request methods recognized by Apache like GET, PUT,
POST, DELETE, CONNECT, OPTIONS, TRACE, PATCH, PROPFIND, PROPPATCH, MKCOL,
COPY, MOVE, LOCK, UNLOCK, VERSION_CONTROL, CHECKOUT, UNCHECKOUT,
CHECKIN, UPDATE, LABEL, REPORT, MKWORKSPACE, MKACTIVITY,
BASELINE_CONTROL, MERGE and INVALID.

The most common methods are GET and POST requests, which are required for “getting”
and “posting” data to and from the server.

GET Method –
/abc/form.asp?name1=value1&name2=value2

POST Method –
POST /abc/form.asp HTTP/1.1
Host: chetansonisecurityspecialist.com
name1=value1&name2=value2

To restrict the types of request methods available to clients, we use this block of Apache
directives:

<IfModule mod_rewrite.c>
 RewriteEngine On
 ServerSignature Off
 Options +FollowSymLinks
 RewriteCond %{REQUEST_METHOD} ^(delete|head|trace|track) [NC]
 RewriteRule ^(.*)$ - [F,L]
</IfModule>

GET Requests POST Requests
a. GET requests can be cached
b. GET requests remain in the browser

history
c. GET requests can be bookmarked
d. GET requests should never be used

when dealing with sensitive data
e. GET requests have length restrictions
f. GET requests should be used only to

retrieve data

a. POST requests are never cached
b. POST requests do not remain in the

browser history
c. POST requests cannot be bookmarked
d. POST requests have no restrictions on

data length

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

2. Blacklist via the Request

It is totally based on client’s request. When a client attempts to connect to the server, it
sends a full HTTP request string that specifies the request method, request URI, and
transfer-protocol version and the additional headers sent by the browser are not included
in the request string.

Example:-

GET blog/index.html HTTP/1.1

Here is an example of sanitizing client requests by way of Apache’s THE_REQUEST
variable:-

<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{THE_REQUEST} ^.*(\\r|\\n|%0A|%0D).* [NC]
 RewriteRule ^(.*)$ - [F,L]
</IfModule>

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

3. Blacklist via the Referrer

Blacklisting via the HTTP referrer is an excellent way to block referrer spam, defend
against penetration tests, and protect against other malicious activity.

The HTTP referrer is identified as the source of an incoming link to a web page. For example,
if a visitor arrives at your site through a link they found in the Google search results, the
referrer would be the Google page from whence the visitor came.

Unfortunately, one of the biggest spam problems on the Web involves the abuse of HTTP
referrer data. In order to improve search-engine rank, spam bots will repeatedly visit your
site using their spam domain as the referrer. The referrer is generally faked, and the bots
frequently visit via HEAD requests for the sake of efficiency. If the target site publicizes their
access logs, the spam sites will receive a search-engine boost from links in the referrer
statistics.

Fortunately, by taking advantage of mod_rewrite’s HTTP_REFERER variable, we can
forge a powerful, customized referrer blacklist.

Here’s our example:

<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{HTTP_REFERER} ^(.*)(<|>|'|%0A|%0D|%27|%3C|%3E|%00).* [NC,OR]
 RewriteCond %{HTTP_REFERER} ^http://(www\.)?.*(-|.)?adult(-|.).*$ [NC,OR]
 RewriteCond %{HTTP_REFERER} ^http://(www\.)?.*(-|.)?poker(-|.).*$ [NC,OR]
 RewriteCond %{HTTP_REFERER} ^http://(www\.)?.*(-|.)?drugs(-|.).*$ [NC]
 RewriteRule ^(.*)$ - [F,L]
</IfModule>

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

4. Blacklist via Cookies

Protecting your site against malicious cookie exploits is greatly facilitated by using
Apache’s HTTP_COOKIE variable.

HTTP cookies are chunks of data sent by the server to the web client upon initialization.
The browser then sends the cookie information back to the server for each subsequent
visit.

This enables the server to authenticate users, track sessions, and store preferences. A
common example of the type of functionality enabled by cookies is the shopping cart.
Information about the items placed in a user’s shopping cart may be stored in a cookie,
thereby enabling server scripts to respond accordingly.

Generally, a cookie consists of a unique string of alphanumeric text and persists for the
duration of a user’s session. Apache’s mod_cookie module generates cookie values
randomly and upon request. Once a cookie has been set, it may be used as a database key
for further processing, behavior logging, session tracking, and much more.

Unfortunately, this useful technology may be abused by attackers to penetrate and
infiltrate your server’s defenses. Cookie-based protocols are vulnerable to a variety of
exploits, including cookie poisoning, cross-site scripting, and cross-site cooking. By adding
malicious characters, scripts, and other content to cookies, attackers may find and exploit
sensitive vulnerabilities.

Here is an example that does the job:

<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{HTTP_COOKIE} ^.*(<|>|'|%0A|%0D|%27|%3C|%3E|%00).* [NC]
 RewriteRule ^(.*)$ - [F,L]
</IfModule>

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

5. Blacklist via Request URI

Use of Apache’s REQUEST_URI variable is frequently seen in conjunction with URL
canonicalization.

The REQUEST_URI variable targets the requested resource specified in the full HTTP request
string. Thus, we may use Apache’s THE_REQUEST variable to target the entire request string,
while using the REQUEST_URI variable to target the actual request URI.

For example, the REQUEST_URI variable refers to the “blog/index.html” portion of the
following, full HTTP request line:

GET blog/index.html HTTP/1.1

For canonicalization purposes, this is exactly the type of information that must be focused
on and manipulated in order to achieve precise, uniform URLs.

Likewise, for blacklisting malicious request activity such as the kind of nonsense usually
exposed in your server’s access and error logs, targeting, evaluating, and denying malicious
URL requests is easily accomplished by taking advantage of Apache’s REQUEST_URI variable.

As you can imagine, blacklisting via REQUEST_URI is an excellent way to eliminate scores of
malicious behavior.

Here is an example that includes some of the same characters and strings that are blocked
in the upcoming 4G Blacklist:

<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{REQUEST_URI} ^.*(,|;|:|<|>|">|"<|/|\\\.\.\\).* [NC,OR]
 RewriteCond %{REQUEST_URI} ^.*(\=|\@|\[|\]|\^|\`|\{|\}|\~).* [NC,OR]
 RewriteCond %{REQUEST_URI} ^.*(\'|%0A|%0D|%27|%3C|%3E|%00).* [NC]
 RewriteRule ^(.*)$ - [F,L]
</IfModule>

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

6. Blacklist via the User Agent

Blacklisting via user-agent is a commonly seen strategy that yields questionable results.
The concept of blacklisting user-agents revolves around the idea that every browser, bot,
and spider that visits your server identifies itself with a specific user-agent character
string.

Thus, user-agents associated with malicious, unfriendly, or otherwise unwanted behavior
may be identified and blacklisted in order to prevent against future access. This is a well-
known blacklisting strategy that has resulted in some extensive and effective user-agent
blacklists.

Of course, the downside to this method involves the fact that user-agent information is
easily forged, making it difficult to know for certain the true identity of blacklisted clients.
By simply changing their user-agent to an unknown identity, malicious bots may bypass
every blacklist on the Internet. Many evil “scumbots” indeed do this very thing, which
explains the incredibly vast number of blacklisted user-agents.

Even so, there are certain limits to the extent to which certain user-agent strings may be
changed.

For example, GNU’s Wget and the cURL command-line tool are difficult to forge, and
many other clients have hard-coded user-agent strings that are difficult to change.

On Apache servers, user-agents are easily identified and blacklisted via the
HTTP_USER_AGENT variable.

Here is an example:

<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{HTTP_USER_AGENT} ^$ [OR]
 RewriteCond %{HTTP_USER_AGENT} ^.*(<|>|'|%0A|%0D|%27|%3C|%3E|%00).* [NC,OR]
 RewriteCond %{HTTP_USER_AGENT} ^.*(HTTrack|clshttp|archiver|loader|email|nikto|miner|python).* [NC,OR]
 RewriteCond %{HTTP_USER_AGENT} ^.*(winhttp|libwww\-perl|curl|wget|harvest|scan|grab|extract).* [NC]
 RewriteRule ^(.*)$ - [F,L]
</IfModule>

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

7. Blacklist via the Query String

Protecting your server against malicious query-string activity is extremely important.
Whereas static URLs summon pages, their appended query strings transmit data and pass
variables throughout the domain.

Query-string information interacts with scripts and databases, influencing behavior and
determining results. This relatively open channel of communication is easily accessible and
prone to external manipulation.

By altering data and inserting malicious code, attackers may penetrate and exploit your
sever directly through the query string.

Fortunately, we can protect our server against malicious query-string exploits with the
help of Apache’s invaluable QUERY_STRING variable. By taking advantage of this variable, we
can ensure the legitimacy and quality of query-string input by screening out and denying
access to a known collection of potentially harmful character strings. Here is an example
that will keep our query strings squeaky clean:

<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{QUERY_STRING} ^.*(localhost|loopback|127\.0\.0\.1).* [NC,OR]
 RewriteCond %{QUERY_STRING} ^.*(\.|*|;|<|>|'|"|\)|%0A|%0D|%22|%27|%3C|%3E|%00).* [NC,OR]
 RewriteCond %{QUERY_STRING} ^.*(md5|benchmark|union|select|insert|cast|set|declare|drop|update).* [NC]
 RewriteRule ^(.*)$ - [F,L]
</IfModule>

As you can see, here we are using the QUERY_STRING variable to check all query-string input
against a list of prohibited alphanumeric characters strings. This strategy will deny access
to any URL-request that includes a query-string containing localhost references, invalid
punctuation, hexadecimal equivalents, and various SQL commands.

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

8. Blacklist via IP Address

Last but certainly not least, we can blacklist according to IP address. Blacklisting sites
based on IP is probably the oldest method in the book and works great for denying site
access to stalkers, scrapers, spammers, trolls, and many other types of troublesome
morons.

The catch is that the method only works when the perpetrators are coming from the same
location.

An easy way to bypass any IP blacklist is to simply use a different ISP or visit via proxy server.

Even so, there is no lack of mindless creeps out there roaming the Internet, who sit there,
using the same machine, day after day, relentlessly harassing innocent websites. For these
types of lazy, no-life losers, blacklisting via IP address is the perfect solution.

Here is a hypothetical example demonstrating several ways to blacklist IPs:

block individual IPs
<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{REMOTE_ADDR} ^123\.456\.789\.1 [OR]
 RewriteCond %{REMOTE_ADDR} ^456\.789\.123\.2 [OR]
 RewriteCond %{REMOTE_ADDR} ^789\.123\.456\.3 [OR]
 RewriteRule ^(.*)$ - [F,L]
</IfModule>

block ranges of IPs
<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{REMOTE_ADDR} ^123\. [OR]
 RewriteCond %{REMOTE_ADDR} ^456\.789\. [OR]
 RewriteCond %{REMOTE_ADDR} ^789\.123\.456\. [OR]
 RewriteRule ^(.*)$ - [F,L]
</IfModule>

alt block IP method
<Limit GET POST PUT>
 order allow,deny
 allow from all
 deny from 123.
 deny from 123.456.
 deny from 123.456.789.0
</Limit>

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

1. In the first block, we are blacklisting three specific IP addresses using Apache’s
mod_rewrite and its associated REMOTE_ADDR variable.

2. Then, in the next code block, we are blocking three different ranges of IPs by
omitting numerical data from the targeted IP string.

 In the first line we target any IP beginning with “123.”, which is an enormous
number of addresses.

 In the second line, we block a different, more restrictive range by including
the second portion of the address.

 Finally, in the third line, we block a different, much smaller range of IPs by
including a third portion of the address.

3. In 3rd block, this is an equally effective method that enables you to block IP
addresses and ranges as specifically as necessary. Each deny line pattern-matches
according to the specified IP string.

Chetan Soni – Sr. Security Specialist at SECUGENIUS SECURITY SOLUTIONS

Dealing with Blacklisted Visitors

In all blacklisting techniques, we respond to all blacklisted visitors with the server’s default
“403 Forbidden” error. This page serves its purpose and requires very little to deliver in
terms of system resources, however there is much more that you can do with blacklisted
traffic.

Here are a few ideas:

Redirect to home page

More subtle than the 403 error, this redirect strategy routes blocked traffic directly to the
home page. To use, replace the RewriteRule directive (i.e., the entire line) with the following
code:

RewriteRule ^(.*)$ http://yoursite.com/ [F,L]

Redirect to external site

The possibilities here are endless. Just make sure you think twice about the destination, as
any scum that you redirect to another site will be seen as coming from your own. Even so,
here is the code that you would use to replace the RewriteRule directive in any of the
examples above:

RewriteRule ^(.*)$ http://anothersite.com/new.html [F,L]

Redirect them back to their own site

It’s like having a magic shield that reflects attacks back at the attacker. Send a clear
message by using this code as the RewriteRule directive in any of our blacklisting methods:

RewriteRule ^(.*)$ http://%{REMOTE_ADDR}/ [F,L]

Custom processing

This is the most useful approach for understanding your traffic and developing an optimal
security strategy. The code would look something like this, depending on your file name
and its location:

RewriteRule ^(.*)$ /home/path/blacklisting-script.php [F,L]

For any query, please mail us at chetansoni@live.com

mailto:chetansoni@live.com

