
 HONEYD

(OPEN SOURCE HONEYPOT

SOFTWARE)

Author:

Avinash Singh

Avinash Singh is a Technical Evangelist currently worksing at Appin Technology Lab,

Noida.

Educational Qualification:

• B.Tech from Punjab Technical University

He holds the following certifications in the field of Ethical Hacking & Information

Security Appin Certified Ethical Hacker (ACEH).

He has also done training in the field of Network Security, which includes IDS (Intrusion

Detection Systems), Firewalls and Honeypot Technology.

He is also trained in other fields such as Linux, Microsoft Certified IT Professional

(MCITP), Firewall and CISCO Certified Network Associate.

Got an article published in Pentest magazine and also published a Research Paper on VoIP

Hacking published on packetstormsecurity.com

He is also the admin and lead author at TechSpectrum.in.

He has a total experience of around 2.5 year in the field of Training and Security, and has

successfully delivered more than 60 workshops and training programmes till now.

1

Table of contents :

1. Introduction... 2

2. What is a honeypot?... 2

2.1 Two honeypot categories.. 2

2.2 Level of involvement.. 2

3. Honeyd – A virtual honeypot... 4

3.1 Chosen setup... 4

3.2 Honeyd Installation... 4

3.3 Farpd... 5

3.4 Confiuration settings... 5

3.5 Configuration of honeypot.. 7

3.6 Starting honeyd... 8

3.7 Testing Honeyd locally…………………………………8

 1. Locally…………………………………………...8

 2. On Network……………………………………..10

3.8 Port Behaviour…………………………………………11

2

1. INTRODUCTION

Honeyd improves cyber security by providing mechanisms for threat detection and

assessment. It also deters adversaries by hiding real systems in the middle of virtual systems.

Honeyd is an application which enables the setup of multiple virtual honeypots on a single

machine, each with different characteristics and services. Let’s first have a look at the

honeypot technology.

2. WHAT IS A HONEYPOT ??

A honeypot is a system which is acting as a potential target for an attacker. The system itself

though isn’t of much value to the operator as no valuable information or important services

are located on that machine – it’s the opposite. All services running on a honeypot aren’t used

in the productive environment. The services aren’t promoted and so there shouldn’t be any

productive traffic going for these systems. Due to this fact, all traffic heading and reaching a

honeypot is of potential value and should be analyzed. A honeypot doesn’t need to deal with

false positives like an intrusion detection system as there are simply no false positives – all

traffic is suspicious as there shouldn’t be any traffic because nobody knows of the system, no

productive services are running and the system is not involved in “normal” activities.

2.1 TWO HONEYPOT CATEGORIES

Two categories of honeypots have evolved – research and productive honeypots.

Research honeypots are used primarily for research activities like detecting new kind of

attacks, retrieving new hacker tools or to get a better knowledge about the attackers, their

background, activities and goals. Research honeypots are valuable for developing new IDS

signatures, analyze new attack tools or detect new ways of hidden communications or

distributed denial of service (DDoS) tools. Research honeypots normally have great logging

capabilities to log a hacker’s activity once the attacks started or he gained root access.

The other category, the productive honeypots, is mostly used to distract an attacker from the

real target. A honeypot is used as a bait to bind his attacking attempts as long as possible to

the unproductive honeypot in order to gain time and protect the productive environment in

the meantime. A productive honeypot is primarily not interested in gaining new knowledge

about the blackhat community – its main interest is the protection of the real servers.

Productive honeypots sometimes are also used to gather enough evidence for a successful

prosecution of a hacker – But this application is still controversial and the legal side of such

procedures is also not clear.

2.2 Level of Involvement

Besides the two usage categories of honeypots we already seen, there are also three different

technical implementations of honeypots. The essential factor to distinguish here is the “level

of involvement”. A honeypot is acting like a “normal” server to the attacker – he offers

certain services on different ports and could have certain vulnerabilities.

Depending on the usage of a honeypot, having some real services on that machine is not

always desired or even needed. It could be enough to have a simple listener bound to a port

which just writes all incoming packets to a file and never answers to the received request. For

3

catching an infected Microsoft Internet Information Server this is enough, no real IIS is

needed. On the other hand, to study a hacker’s social network and ways of communicating it

could be necessary to “offer a real shell” and allow the attacker to gain root privileges. Once

a hacker is root on a system it could be very interesting to see what he’s going to do and for

what he does need his newly gained system. These different honeypots can be described with

the level of involvement

• Low involvement: They are listening on a certain port for incoming connections. All

packets are logged. No answer to the request is sent. Low involvement honeypots have no

interaction with the attacker. No traffic is ever leaving the honeypot – It’s a simple logging

machine.

• Mid involvement: Mid involvement honeypots also listen on different ports. But in

contradiction to low involvement they send information back to the attacker. A request is

answered and the attacker has the possibility to issue commands. Normally, mid involvement

honeypots don’t use real daemons, instead scripts or small programs are used to imitate the

behavior of a service. The provided functionality depends on the script – in most cases, the

provided commands are very limited. The big advantage of using such scripts is their logging

capabilities and the circumvention of possible vulnerabilities of real services.

• High involvement: High involvement honeypots are the most advanced honeypots. They

use real daemons and provide the full set of functionality. An attacker can do whatever he

could do to a productive system – no limitations in functionality, vulnerability or behavior.

Unfortunately, logging all attempts with high details isn’t always easy and the risk of a

compromise is growing. Mostly, high involvement honeypots are used when a compromise of

a system is desired.

4

3. HONEYD – A VIRTUAL HONEYPOT

Honeyd is a freely available framework for setting up virtual honeypots. With honeyd it is

possible to setup honeypots with different personalities and services on one machine. Honeyd

emulates the different operating system’s IP stack and binds certain script to a desired port to

emulate a specific service. Honeyd is able to fool network fingerprinting tools to think they

are dealing with a real operating system ranging from a Windows NT to an AIX box. Even

different router’s IP stacks can be emulated. Honeyd relies on the nmap fingerprinting file

which is used to characterize different kind of operating systems and their IP stacks. Before

honeyd is inserting a packet into the IP stream, the personality of the packet is adjusted

according to the desired operating system and the corresponding TCP/IP flags. With honeyd

it is even possible to emulate complex network architectures and their characteristics. Virtual

routing topologies can be defined including different brands of routers, the latency of a

network connection as well as the packet loss. When using tools to map the network (like

traceroute), the network traffic appears to follow the configured routers and network

connections.

The setup of virtual machines is very easy. A configuration file is used to tell honeyd what

kind of operating system is desired, how it does respond to closed ports and what kind of

service is listening on which port. Honeyd is capable of binding a script to a network port.

The script can be a standard shell script which simulates a certain service. Most scripts are

built as state machines where a command triggers a certain response or advances to a new

state with new possibilities. Scripts for the most popular well known services like SMTP,

HTTP and telnet are available at several locations on the Internet.

3.1 CHOSEN SETUP

As honeyd runs on a Linux/UNIX/BSD so i chose the following setup :

Linux OS – Ubuntu 10.10 (Debian based) installed on a system with 1 GB of RAM and an

Ethernet Card.

3.2 HONEYD INSTALLATION

In debian based linux versions honeyd can be installed by the following command:

apt-get install honeyd

5

3.3 FARPD

The honeypot is going to run on a machine with a specific IP (eg 192.168.1.22) .Our

honeypot (eg 192.168.1.50) would be visible from the Internet with a quantity of open ports.

But the problem is that the router don’t know our honeypot (192.168.1.50). To solve this we

run in Honeyd computer:

farpd 192.168.1.50 –i eth0

farpd is a program made by Niels Povos. With that program the computer with Honeyd

(192.168.1.22) will send is MAC address when a ARP request is made to the network. This

ARP request happens because the router don’t know who is 192.168.1.50. After 192.168.1.22

sending his MAC address the router will send the package to Honeyd computer

(192.168.1.22), and Honeyd program will take care of them, sending it to the virtual host.

3.4 CONFIGURATION SETTINGS

Now we have to configure how Honeyd will run, the file can be found in /etc/default/honeyd

6

RUN=”yes”

INTERFACE=”eth0”

NETWORK=192.168.1.50

OPTIONS=”-c localhost:12345:username:password”

The -c flag will collect to us some statistics, that we will put in a pie chart further. This flag

receives the hostname, the port, username and password to can access to the statistics.

You may want to configure also the /etc/init.d/honeyd file, here are the first lines of the file:

7

Note that log files from Honeyd will be written in LOGDIR directory.

3.5 CONFIGURATION OF HONEYPOT

The following is a default configuration with some editing, a lot of these can be found on

internet.

Each system is first created with a create command.

The system then is further specified and configured with add and set commands.

With the set personality command, a personality is assigned to a created system. It is further

possible to choose the default action for the supported network protocols like block, reset or

8

open. If the default value is set to be open, all ports for the desired protocol are in a listening

state. The value reset defines all ports to be closed while block is used to drop all packets for

the designated protocol.

Adding services, therefore binding scripts to a certain port, is done by using the add

command. Instead of binding a script to a port it is also possible to forward the traffic to

another IP by using the keyword proxy.

Here I create a win2k operative system (Microsoft Windows 2000 with SP2) with a lot of

open ports {23,21,25,80,110,143,389,5901,137,138,139}TCP and {161,137,138,445}UDP.

These port’s must be open in your router, and pointing to the honeypot – (eg 172.16.0.55).

3.6 STARTING THE HONEYPOT

And now the time to start Honeyd, the following command is used to start honeyd :

/etc/init.d/honeyd start

/etc/init.d/honeyd stop to stop the service

3.7 TESTING HONEYPOT

1. LOCALLY

Started testing Honeyd locally , (i.e accessing virtual host from the hosting machine) using

the sample configuration file “config.sample ” by redirecting the traffic for the 10.0.0.0/8

network to the physical machines loopback interface. First add the route in the routing table

to direct Honeyd traffic to the loopback.

route -n add -net 10.0.0.0/8 gw 127.0.0.1

Start Honeyd by the simple command below, and check that it is running under list of

running process, or check any other way.

honeyd -f config.sample 10.0.0.0/8

-f :- load configuration from file

Config.sample – path of honeyd.conf file or the file in which honeyd configuration is stored.

The following configuration was used :

http://www.citi.umich.edu/u/provos/honeyd/config.localhost

9

Honeyd can be seen in the list of runnin process :

Starting honeyd with nmap configurations :

10

2. ON NETWORK

The following configuration was used to emulate a windows machine :

Pinging the virtual honeypot for testing :

11

3.8 PORT BEHAVIOR

TCP (default is Open)

 - Open: Respond with Syn/Ack, establish connection

 - Block: Drop packet and do not reply

 - Reset: Respond with RST

 - Tarpit: Sticky connection

UDP (default is Closed)

 - Open: No response

 - Block: Drop packet and do not reply

 - Reset: Respond with ICMP port error message

ICMP (default is Open)

 - Open: Reply to ICMP packets

 - Block: Drop packet and do not reply

OTHER CONFIGURATIONS (EMULATIONS)

A lot of these configurations can be found on the internet. Some of them are available on

http://www.honeyd.org/configuration.php . This includes network emulation also.

