
@MrTaharAmine www.taharamine.me taharamine@tuta.io 

 

1 

 

Cross Site Scripting ‘XSS’ in a Nutshell 
 

Tahar Amine ELHOUARI 

Penetration Tester | IT Security Consultant 

 

 

 

 

All information written here are for educational purposes only. I am not responsible to any thing 

that could happen after using the techniques and attacks shown in this Security Paper. 

 

 

Date: 2018/03/25 



@MrTaharAmine www.taharamine.me taharamine@tuta.io 

 

2 

 

Summary: 
 

▪ Overview. 

▪ What is XSS? 

▪ How the Malicious JavaScript is Injected? 

▪ What is Malicious JavaScript? 

▪ The Consequences of Malicious JavaScript. 

▪ XSS Attacks. 

▪ Parties Involved in XSS Attack. 

▪ Attack Scenario Example. 

▪ Types of XSS. 

▪ Persistent XSS. 

▪ Reflected XSS. 

▪ How Can Reflected XSS Succeed? 

▪ DOM-Based XSS. 

▪ What Makes DOM-Based XSS Different? 

▪ Appendix. 

▪ Terminology. 

▪ Resources. 

▪ Thanks. 

▪ Author. 

▪ Links. 

 

 

 

 

 

 

 

 

 

 

 



@MrTaharAmine www.taharamine.me taharamine@tuta.io 

 

3 

Overview 
What is XSS? 
Cross-Site Scripting (XSS) is a code injection attack that allows an attacker to execute 

malicious JavaScript in another user's browser. 

The attacker exploits an XSS vulnerability in a website that the victim visits, in order to deliver the 

malicious JavaScript through the website to the victim's browser, the malicious JavaScript appears 

to be a legitimate part of the website. 

 

How the Malicious JavaScript is Injected? 

The only way for the attacker to run his malicious JavaScript in the victim's browser is to inject it 

into one of the pages that the victim visits from the website. This can happen if the website 

directly includes user input in its pages, because the attacker can then insert a string that will be 

treated as code by the victim's browser. 

In the example below, a simple server-side script is used to display the latest comment on a 

website: 

 

The script assumes that a comment consists only of text. However, since the user input is 

included directly, an attacker could submit this comment: "<script>PAYLOAD</script>". 

Any user visiting the page would now receive the following response: 

 

When the user's browser loads the page, it will execute whatever JavaScript code is contained 

inside the <script> tags. The attacker has now succeeded with his attack. 

 

 

 

https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Code_injection


@MrTaharAmine www.taharamine.me taharamine@tuta.io 

 

4 

What is Malicious JavaScript? 
At first, the ability to execute JavaScript in the victim's browser might not seem particularly 

malicious. After all, JavaScript runs in a very restricted environment that has extremely limited 

access to the user's files and operating system. 

However, the possibility of JavaScript being malicious becomes clearer when you consider the 

following facts: 

• JavaScript has access to some of the user's sensitive information, such as cookies. 

• JavaScript can send HTTP requests with arbitrary content to arbitrary destinations by using 

XMLHttpRequest and other mechanisms. 

• JavaScript can make arbitrary modifications to the HTML of the current page by using DOM 

manipulation methods. 

 

The Consequences of Malicious JavaScript: 
Among many other things, the ability to execute arbitrary JavaScript in another user's browser 

allows an attacker to perform the following types of attacks: 

• Cookie Theft: The attacker can access the victim's cookies associated with the website 

using document.cookie, send them to his own server, and use them to extract sensitive 

information like session IDs. 

• Keylogging: The attacker can register a keyboard event listener using addEventListener 

and then send all of the user's keystrokes to his own server, potentially recording sensitive 

information such as passwords and credit card numbers. 

• Phishing: The attacker can insert a fake login form into the page using DOM 

manipulation, set the form's action attribute to target his own server, and then trick the 

user into submitting sensitive information. 

 

Although these attacks differ significantly, they all have one crucial similarity: because the attacker 

has injected code into a page served by the website, the malicious JavaScript is executed in the 

context of that website. 

This means that it is treated like any other script from that website: it has access to the victim's 

data for that website (such as cookies) and the host name shown in the URL bar will be that of 

the website. So, the script is considered a legitimate part of the website, allowing it to do anything 

that the actual website can. 

 

This fact highlights a key issue: If an attacker can use your website to execute arbitrary JavaScript 

in another user's browser, the security of your website and its users has been compromised. 

 

 

 

 



@MrTaharAmine www.taharamine.me taharamine@tuta.io 

 

5 

XSS Attacks 
Parties Involved in XSS Attack: 
Before we describe in detail how an XSS attack works, we need to define the involved parties in 

an XSS attack. 

• The website serves HTML pages to users who request them. In our examples, it is located 

at http://website/. 

• The website's database is a database that stores some of the user input included in the 

website's pages. 

• The victim is a normal user of the website who requests pages using his browser. 

• The attacker is a malicious user of the website who intends to launch an attack on the 

victim by exploiting an XSS vulnerability in the website. 

• The attacker's server is a web server controlled by an attacker to steal the victim's 

sensitive information. In our examples, it is located at http://attacker/. 

 

Attack Scenario Example: 
In this example, we will assume that the attacker's ultimate goal is to steal the victim's cookies by 

exploiting an XSS vulnerability in the website. This can be done by having the victim's browser 

parse the following HTML code: 

 

This script navigates the user's browser to a different URL, triggering an HTTP request to the 

attacker's server. The URL includes the victim's cookies as a query parameter, which the attacker 

can extract from the request when it arrives to his server. Once the attacker has acquired the 

cookies, he can use them to impersonate the victim and launch further attacks. 

From now on, the HTML code above will be referred to as the malicious string or the malicious 

script. It is important to note that the string itself is only malicious if it ultimately gets parsed as 

HTML in the victim's browser, which can only happen as the result of an XSS vulnerability in the 

website. 

 

 

 
 

 

 

 

 



@MrTaharAmine www.taharamine.me taharamine@tuta.io 

 

6 

Types of XSS: 
While the goal of an XSS attack is always to execute malicious JavaScript in the victim's browser, 

there are few fundamentally different ways of achieving that goal. XSS attacks are often divided 

into three types: 

▪ Persistent XSS: known as stored XSS, where the malicious string comes from the 

website's database. 

▪ Reflected XSS: where the malicious string originates from the victim's request. 

▪ DOM-Based XSS: where the vulnerability is in the client-side code rather than the server-

side code. 

Persistent XSS: 
The diagram below illustrates how the Stored-XSS attack can be performed by an attacker: 

 

1. The attacker uses one of the website's forms to insert a malicious string into the website's 

database. 

2. The victim requests a page from the website. 

3. The website includes the malicious string from the database in the response and sends it to 

the victim. 

4. The victim's browser executes the malicious script inside the response, sending the victim's 

cookies to the attacker's server. 



@MrTaharAmine www.taharamine.me taharamine@tuta.io 

 

7 

Reflected XSS: 
In a reflected XSS attack, the malicious string is part of the victim's request to the website. The 

diagram below illustrates this scenario: 

 

1. The attacker crafts a URL containing a malicious string and sends it to the victim. 

2. The victim is tricked by the attacker into requesting the URL from the website. 

3. The website includes the malicious string from the URL in the response. 

4. The victim's browser executes the malicious script inside the response, sending the victim's 

cookies to the attacker's server. 

 

How Can Reflected XSS Succeed? 
At first, reflected XSS might seem harmless because it requires the victim himself to actually send 

a request containing a malicious string. Since nobody would willingly attack himself, there seems 

to be no way of actually performing the attack. 

As it turns out, there are at least two common ways of causing a victim to launch a reflected XSS 

attack against himself: 

• If the user targets a specific individual, the attacker can send the malicious URL to the 

victim (using e-mail or instant messaging, for example) and trick him into visiting it. 

• If the user targets a large group of people, the attacker can publish a link to the malicious 

URL (on his own website or on a social network) and wait for visitors to click it. 

 

These two methods are similar, and both can be more successful with the use of a URL shortening 

service, which masks the malicious string from users who might otherwise identify it. 

 



@MrTaharAmine www.taharamine.me taharamine@tuta.io 

 

8 

DOM-Based XSS: 
DOM-based XSS is a variant of both persistent and reflected XSS. In a DOM-based XSS attack, the 

malicious string is not actually parsed by the victim's browser until the website's legitimate 

JavaScript is executed. The diagram below illustrates this scenario: 

 

1. The attacker crafts a URL containing a malicious string and sends it to the victim. 

2. The victim is tricked by the attacker into requesting the URL from the website. 

3. The website receives the request but does not include the malicious string in the response. 

4. The victim's browser executes the legitimate script inside the response, causing the 

malicious script to be inserted into the page. 

5. The victim's browser executes the malicious script inserted into the page, sending the 

victim's cookies to the attacker's server. 

What Makes DOM-Based XSS Different? 
In the example of a DOM-based XSS attack, there is no malicious script inserted as part of the 

page; the only script that is automatically executed during page load is a legitimate part of the 

page. The problem is that this legitimate script directly makes use of user input in order to add 

HTML to the page. Because the malicious string is inserted into the page using innerHTML, it is 

parsed as HTML, causing the malicious script to be executed. The difference is subtle but 

important: 

• In traditional XSS, the malicious JavaScript is executed when the page is loaded, as part of 

the HTML sent by the server. 

• In DOM-based XSS, the malicious JavaScript is executed at some point after the page has 

loaded, as a result of the page's legitimate JavaScript treating user input in an unsafe way. 

 



@MrTaharAmine www.taharamine.me taharamine@tuta.io 

 

9 

Appendix 

Terminology: 
It should be noted that there is overlap in the terminology currently used to describe XSS: a DOM-

based XSS attack is also either persistent or reflected at the same time; it's not a separate type of 

attack. There is no widely accepted terminology that covers all types of XSS without overlap. 

Regardless of the terminology used to describe XSS, however, the most important thing to identify 

about any given attack is where the malicious input comes from and where the vulnerability is 

located. 

 

Resources: 
• Awesome-XSS: Awesome XSS Stuff. 

• XSS Cheat Sheet: Start to master the fine art of Cross-Site Scripting (XSS). 

 

Thanks: 
• Bellal Arezki Mustapha: Sudo_root Team Leader <3 

• BruteLogic: XSS GodLike. 

• THC: The Hacker Community Members. 

• Exploit-DB: Offensive Security’s Exploit Database Archive. 

 

Author: 
Lead Penetration Tester at Taghellist Technology. Active Member at Shellmates Club. 

Former CTF-Player at Sudo_root Team, Former Bug Bounty Hunter. 

 

Links: 

• Blog: https://www.taharamine.me/ 

• LinkedIn: https://www.linkedin.com/in/mrtaharamine/ 

• Twitter: https://twitter.com/MrTaharAmine/ 

• Github: https://github.com/TaharAmine/ 

• Email: taharamine@tuta.io 

 

 

 

THANKS FOR READING MY PAPER 

https://github.com/UltimateHackers/AwesomeXSS
https://leanpub.com/xss
https://www.facebook.com/bellal.arezki.mustapha
https://twitter.com/brutelogic
https://twitter.com/TheHackerCom
https://www.exploit-db.com/
https://www.taharamine.me/
https://www.linkedin.com/in/mrtaharamine/
https://twitter.com/MrTaharAmine/
https://github.com/TaharAmine/
mailto:taharamine@tuta.io

