
Insecure Authentication control in J2EE implemented using

sendRedirect()

INTRODUCTION

There are a few myths or misconceptions about certain programming entities in J2EE, which if left

unexplored, can inadvertently lead to major programming flaws in the application.

Let’s take the response.sendRedirect() method.

Let’s first understand what does this method do?

response.sendRedirect(“home.html”);

The server sends a redirection response to the user who then gets redirected to the desired web

component, passed as an argument to the method –in this case home.html, which processes the

request further.

A misconception here is that the execution within a Servlet/JSP stops, after a call to

response.sendRedirect(another page/servlet).

What happens if the execution flow continues even after a

response.sendRedirect()? Is there a security flaw in it?

To understand that we would require a little demonstration; take a look at the code snippet below,

it checks for authenticated session using an “if” condition and If the condition fails the

response.sendRedirect() redirects the user to an error page.

Note that there is code present after the If condition, which continues to take request parameters

and adds a branch into the system. Hence, in this case if the execution flow in the above JSP page

continues even after response.sendRedirect() then the branch would get added even for invalid

requests.

Let’s check how does this flaw manifest?

This flaw manifests as a result of the misconception that sendRedirect method terminates the

execution flow in the calling JSP/Servlet class. In the above scenario the JSP page uses a session

based authentication check, and redirects the user to an error page, if an authenticated username is

not found in the session variable. However, in reality as the execution of the JSP page does not stop

after the “sendRedirect” call, the request would get processed even for unauthenticated requests.

Thus, an authentication or any other security control built in this way can be easily bypassed and

results into a big security flaw in the application.

How do we exploit this flaw?

In our scenario an application allows only admin users to create new branches. If we try accessing

the ADD branch page without authentication we will redirected to an error page, due to the

“sendRedirect” call present in the authentication check of the JSP page.

Let’s see how we can bypass this check with detailed steps

EXPLOIT STEPS

Let us understand how the "add a branch" feature works.

Login to the application as an admin user

View the current set of branches available, with view branches option

Next go to the ADD branches section and proceed to add a new Test branch.

Fill in the form

Proceed to click ADD. You will notice in a Web Proxy editing tool like Paros that the request is sent to

ADDbranch.jsp page, along with a set of branch parameters.

Notice that the Test branch was created.

Now logout of the application.

Now, attempt to send the same request to ADDbranch.jsp page with all the parameters to for adding

a branch as query string, directly without authentication.

We will be immediately redirected to the error page, since the authentication check would fail, and

sendRedirect() method would be invoked.

Now login the application as an admin, to check if the malicious request actually added a branch.

You will notice in the screenshot below, the request got added.

Since the control flow in the JSP page is not terminated even after a redirect, the rest of JSP page

code, which is meant to process the incoming request and add the branch details into the system,

gets executed, as shown below. And a new branch is added to the database.

Thus, we were able to access the internal features of the application without authentication. Due to

insecure authentication check present in the JSP page built only using – “sendRedirect” method.

Note: The fact that execution of a servlet or JSP continues even after sendRedirect() method, also

applies to Forward method of the RequestDispatcher Class.

However, <jsp:forward> tag is an exception, it was observed that the execution flow stops after the

use of <jsp:forward> tag.

RECOMMENDED FIX

Since this flaw resulted from the assumption made by developers that control flow execution

terminates after a sendRedirect call, the recommendation would be to ensure that the execution

flow is terminated.

The fix is to use a return; statement after the sendRedirect() call within the if condition check for

authenticated session. As shown in a dummy code below:

if (<request is invalid>) {

response.sendRedirect(“Errorpage”);

return;

}

REFERENCES

Control flow myths busted in Java - http://palizine.plynt.com/issues/2011Dec/java-myths/

PLATFORM/VERSIONS AFFECTED

All applications developed using JSP/Servlets

About Author

Ashish Rao

Ashish Rao is a Security Consultant at Paladion Networks Pvt. Ltd. He has a good application

development background and is an expert in performing secure code reviews for J2EE and ASP.Net

applications. He has reviewed many complex multi-tiered web and standalone applications of

different frameworks and programming languages. He has authored articles and blogs about secure

coding and security best practices. He has also worked closely with development teams across the

globe and has helped them to secure applications at the design and architecture level. He also has

the working knowledge of many static code analysis tools and has contributed immensely to

enhance Paladion's automated review capabilities by writing various easy-to-use code review scripts.

Other than secure code reviews, he possesses extensive knowledge regarding Penetration Tests and

Vulnerability Assessment projects, and has conducted various internal and external trainings for

Paladion. He has recently conducted workshops in OWASP India 2012 and Clubhack 2012

conferences. Personal Blog: http://artechtalks.blogspot.in

