SCADA TROJANS

ATTACKING THE GRID RUBEN SANTAMARTA /Rootəd[®]CON 2011

3-4-5 Marzo 2011 Madrid

¿What are we going to talk about?

- SCADA / EMS
- **F** TROJANS
- **ATTACKS VECTORS**
- ✓ REVERSE ENGINEERING
- ELECTRICAL ENERGY SYSTEM

/Rootəd^o

1. SCADA

Supervisory Control And Data Acquisition (Supervisión, Control y Adquisición de Datos).

/Rootəd^e

•FIELD DEVICES

•PLC/RTU/IED

•HMI / SCADA SERVER

2.Electrical Energy System I

Biggest industrial system ever

• TRANSFORMER INVENTION – WIN! +V -I \rightarrow Transmission over long distances

2.Electrical Energy System II

Generation

Primary Source \rightarrow Station \rightarrow Three-Phase AC Generator \rightarrow Step up Transformer \rightarrow Transmission lines

2.Electrical Energy System III

Transmission

Power Lines

Substations

2.Electrical Energy System IV

Transmission – Substations I

RUNNING METASPLOIT AGAINST A SUBST. :)

2.Electrical Energy System IV

Transmission – Substations II

A Substation is a place where we can found

- Interconnection buses for lines
- Step down transformers
- Measurement, protection, interruption and dispatch equipment
 - Disconnect Switches
 - Load Break Switches
 - Circuit Switchers
 - Power Fuses
 - Circuit Breakers

Types of Substations

 \rightarrow Transmission \rightarrow Distribution \rightarrow Collector \rightarrow Switching

2.Electrical Energy System V Transmission – Substation Automation I

Remote Connection Level (Routers, Firewalls, Modems...)

HMI Level (Substation automation software, Server...)

Station Level (LAN, Concentrator, Additional devices...)

Bay Level (IEDs, Protection Devices...)

Process Level (Breakers, Switchers, Transformers...)

2.Electrical Energy System V Transmission – Substation Automation III

- HMI
- One-line diagrams

2.Electrical Energy System V Transmission – Substation Automation IV

- Protocols
 - DNP3
 - Modbus
 - IEC 60870-5-10(1,3,4)
 - IEC 61850
 - ICCP
 - OPC
 - RS-232/485
 - UCA2 MMS
 - Vendor specific
 - Harris
 - Westinhouse
 - ABB

Application Layer 7 UPPER LAYERS ✓ Message format, Human-Machine Interfaces **Presentation Layer** 6 ✓ Coding into 1s and 0s; encryption, compression **Session Layer** 5 ✓ Authentication, permissions, session restoration **Transport Layer** 4 ✓ End-to-end error control TRANSPORT SERVICE **Network Layer** 3 ✓ Network addressing; routing or switching **Data Link Layer** 2 ✓ Error detection, flow control on physical link **Physical Layer** 1 ✓ Bit stream: physical medium, method of representing bits

2.Electrical Energy System V Distribution

www.mrsite.com

3. EMS / SCADA

ENERGY MANAGEMENT SYSTEMS I

Computer based tools for...

KEY CONCEPT: DECISSION SUPPORT TO OPERATORS

2. EMS / SCADA I ENERGY MANAGEMENT SYSTEMS II

3. EMS / SCADA ENERGY MANAGEMENT SYSTEMS III

3. EMS / SCADA

ENERGY MANAGEMENT SYSTEMS III

THE SYSTEM MUST SURVIVE IN ANY CASE

SECURITY CONTROL

DETERMINE THE STATE OF THE SYSTEM

PROCESS CONTINGENCIES

DETERMINE PROPER ACTIONS

3. EMS / SCADA ENERGY MANAGEMENT SYSTEMS IV

SECURITY CONTROL FUNCTIONS

TOPOLOGY PROCESSOR

STATE ESTIMATOR

POWER FLOW

OPTIMAL POWER FLOW

CONTINGENCY ANALYSIS

BUS LOAD FORECASTING

4.SCADA TROJANS I

YOU'RE NOT A TARGET

- SPONSORED BY STATES, LARGE CORPORATIONS AND/OR 4CHAN
- TWO-STAGE TROJANS
- AUTONOMOUS AGENTS
- ✓ INTELLIGENCE INSIDE... AND OUTSIDE

/Rootəd°

4.SCADA TROJANS II

- ✔ YOU NEED TO POWN THE RIGHT PEOPLE
- OBTAIN NEEDED INFO
- ✔ REPLICATE THE TARGET
- DEPLOYMENT
- YOU CAN USE MONEY, TECHNOLOGY OR BOTH
- SOME DAY, SOMEWHERE THE 2nd STAGE WILL BE TRIGGERED

4.SCADA TROJANS III

ATTACK VECTORS

- REGGAETONIA PLANS TO HOLD THE BIGGEST REGGAETON FESTIVAL EVER.
- RUBENHISTAN IS DETERMINED TO STOP IT.

4.SCADA TROJANS V

OPERATION SNOW-HAMS

- **RUBENHISTAN's Secret Service maintains a list** of companies that operate Reguetonia's facilities.
- RUBENHISTAN's Secret Service also consults public open source intelligence sources as a city's urban planning to determine substations coverage.
- RUBENHISTAN's Secret Service launches a Targeted attack against the operators who control a key substation and even the Reguetonia's EMS

LET'S SEE HOW TO PROCEED

/Rootəd°

4.SCADA TROJANS VI POWNING THE SUBSTATION | PURE FICTION

It's known the company who operates the SubStation implements a HMI client/server software from Advantech.

Advantech WebAccess

WebAccess Installation

Open eAutomation

Advantech WebAccess

/Rootəd^e

WebAccess Project Node

WebAccess Client

Demo Project

Release Note

Browse CD

Exit

Web Browser-Based HMI/SCADA Software

- Browser-Based Project Development Environment
- Browser-Based Remote Monitor and Control
- Powerful Remote Diagnosis and Maintenance
- B/S Architecture, Data Integration
- Free, Permanent Development Environment

Advantech Co.,Ltd. www.advantech.com

Boundless Integration

4.SCADA TROJANS VI POWNING THE SUBSTATION II

c:\windows\system32\bwocxrun.ocx [WebAccess Client]

Implements IObjectSafety: True IDisp Safe: Safe for untrusted: caller,data IPersist Safe: Safe for untrusted: caller,data IPStorage Safe: Safe for untrusted: caller,data

New TypeLib Viewer	
File View	
E SWOCXRUNLib (bwocxrun ActiveX Control module)	[id(0x00000001)]
🚊 🗹 dispinterface _DBwocxrun	VARIANI_BOUL CreateFrocess(BSTR CmdLine
	short ShowType,
m CreateProcess	short WaitMode);
m GetStringValue	
m GetWebBrowser2	
m CloseWebBrowser2	
m BrowseFolder	
m OpenUrlToFile	
m OpenUrlToBuffer	
m OpenUrlToBufferTimeout	
m OpenUrIToFileTimeout	
m OcxSpool	
m GetValue	
m SendCmd	

4.SCADA TROJANS VI POWNING THE SUBSTATION III

After enticing one of the operators into visiting a specially crafted web, our bwocxrun.ocx exploit worked. We landed.

Time to map the Substation network.

At Bay level we find CSE-Semaphore RTUs/IEDs

http://www.cse-semaphore.com/

TBOX LITE 200 - Ethernet

2 counters (I) 6 Analog (I) 4/20mA
8 digital (I/O) 2 Temperature (I) 4 relays 230 V ac 3A(O)
EMBEDDED HTTP Server, FTP, SNMP, EMAIL ...

DNP3, IEC 60870-5 MODBUS

+40 Drivers

http://www.cse-semaphore.com/pdf/brochure_T-BOX-Lite.pdf

4.SCADA TROJANS VI POWNING THE SUBSTATION IV

TVIEW

SECURITY MODBUS: (Optional) ACCESS CODE- 4 Hexa Chars. HTTP AUTH (Optional) CUSTOM PASSWORD PROTECTION VIA SOURCE CODE

IP

4.SCADA TROJANS VI POWNING THE SUBSTATION V

HEY, I'M HERE TO POWN YOU

OK, BUT FIRST INSTALL THIS ACTIVEX

OK, DONE.

COOL. DOWNLOAD THESE .TWF FILES

4.SCADA TROJANS VI POWNING THE SUBSTATION VI

TWF FILES

- Compressed
- Contains code compiled by the original programmer
- VBasic Script code \rightarrow executed by vbscript.dll
- Propietary Format. Parsed by WebFormParser.dll
- Contains fixed "classes"
 - CStationList
 - CTagList
 - CTag...

Inside the TWF, each CTag entry contains its name, MODBUS address and length.

00000070	00 43 54 61 67 04 00 00 00 07 56 69 73 69 62 6C .CTag	Visibl
00000080	65 01 00 00 00 00 50 00 00 00 00 00 00 20 00 00 eP	
00000098	00 05 80 03 00 00 00 09 50 61 73 73 77 6F 72 64	ssword
000000A0	31 01 00 00 00 00 50 00 00 00 00 00 00 22 06 00 1p	"

4.SCADA TROJANS VI POWNING THE SUBSTATION VII

HEY, TCOMM.DLL USES MODBUS AGAINST YOU

THAT'S RIGHT. IT'S HOW YOU CAN INTERACT WITH ME

/Rootəd^e

WHAT IS CLIENT-SIDE?

4.SCADA TROJANS VI POWNING THE SUBSTATION VIII

Break on vbscript!COleScript::Compile to modify TWF's basic code before being compiled.

REAL EXAMPLE

If txt_Password.Text <> Dlb_SMSPassword.Value Or txt_password.text = "" Then

msgbox "The Password is incorrect!!" & vbCrlf & "A passord is" & vbCrlf & "Contact your local distributor to get the password.",Vbexclamation,"Password" Exit Sub End If

/Rootəd°

CHANGE "<>" BY "=" ... WE ARE IN!

4.SCADA TROJANS VI POWNING THE SUBSTATION IX

YOU REALIZE EVERYONE CAN SEND YOU RAW MODBUS REQUESTS?

DON'T BE EVIL!

🎒 Т	CommAttachSocket	1000B180	5
🛅 Т	CommCloseCom	1000C420	6
🛅 Т	CommCloseFileContext	10006720	7
🛅 Т	CommCloseOverlappedFile	10006800	8
🛅 Т	CommConnectModbusSocket	1000CD50	9
🛅 Т	CommConnectModbusSocketA	1000C9D0	10
🏚 т	CommConnectModbusSocketW	1000C9F0	11
🛍 Т	CommConnectSocketA	1000C800	12
🛍 Т	CommConnectSocketW	1000C940	13
🗈 т	CommCopyRamImageToFlash	10010380	14
🗈 т	CommCreateFile	10006F00	15
È T	CommCreateSocket	1000C1E0	16

Tcomm.dll

4.SCADA TROJANS VI POWNING THE SUBSTATION X

We are already controlling Bay Level and Station Level However, still needed a vector to the EMS

SCADA Front-End + Network Service (webvrpcs.exe)

MIDA.plw + MIDL.exe + Opcode 0x00 + others...

void sub_401000(/* [in] */ handle_t arg_1, /* [in] */ long arg_2, /* [in] */ long arg_3, /* [in] */ long arg_4, /* [size_is][ref][in] */ unsigned char *arg_5, /* [in] */ long arg_6, /* [size_is][ref][out] */ unsigned char *arg_7, /* [ref][out] */ long *arg_8)

/Rootəd°

4.SCADA TROJANS VI POWNING THE SUBSTATION XI

.text:00403E92
.text:00403E95
.text:00403E97
.text:00403E99
.text:00403E9C
.text:00403E9E
.text:00403EA0
.text:00403EA5
.text:00403EA8
.text:00403EA9
.text:00403EAC
.text:00403EAD
.text:00403EB0
.text:00403EB1
.text:00403EB4
.text:00403EB5
.text:00403EB6
.text:00403EB7

webvrpcs.exe

mov	eax, [edi+	4] ;	edi	==	controlled
test	eax, eax	_			
jz	short loc_	403F 07			
mov	eax, [edi+	8]			
test	eax, eax	-			
jz	short loc_	403F 07			
push	offset sub	402CB0			
mov	edx, [ebp+	arg_10]			
push	edx				
mov	edx, [ebp+	arg_14]			
push	edx				
mov	edx, [ebp+	arg_8]			
push	edx				
mov	esi, [ebp+	Str1]			
push	esi				
push	ecx				
push	edi				
call	eax	;	Win		
port 4	4592				
LAND	ED!				

4.SCADA TROJANS VII

Recalling

Station/Operator p0wned via bwocxrun.ocx 0day

Bay Level p0wned via TBOX flawed logic 0day

SCADA Front-End p0wned via webvrpcs.exe RPC 0day

3 Odays! Almost Stuxnet! ;)

4.SCADA TROJANS VIII THE 2nd STAGE I

- We deploy an autonomous agent to attack the State Estimator.
- Its goal is generating unexpected contingencies, which may end up causing a blackout.
- **Operators will deal with fake results. Only "in memory". Everything else is correct.**
- The entire EMS is no longer operating within a secure state.

4.SCADA TROJANS VIII THE 2nd STAGE II

4.SCADA TROJANS VIII THE 2nd STAGE III

Why an State Estimator?

Flows → real + reactive Injections → real + reactive Voltage Current Virtual Measurements Pseudomeasurements

/Rootəd°

4.SCADA TROJANS VIII THE 2nd STAGE IV

We can describe previous measurements as a function of the system states. h_i are nonlinear.

$$Z = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ \vdots \\ z_m \end{bmatrix} = \begin{bmatrix} h_1(x_1, x_2, \dots, x_n) \\ h_2(x_1, x_2, \dots, x_n) \\ \vdots \\ \vdots \\ \vdots \\ h_m(x_1, x_2, \dots, x_n) \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ \vdots \\ \vdots \\ e_m \end{bmatrix} = h(x) + e$$

4.SCADA TROJANS VIII THE 2nd STAGE V

The following $h_i(x)$ are used Given the state vector $P_{i} = \sum_{j=1}^{N} V_{i} V_{j} (G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij})$ $P_{i} = \sum_{j=1}^{N} V_{i} V_{j} (G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij})$ Injections $\mathbf{x}^{T} = [\boldsymbol{\theta}_{2}\boldsymbol{\theta}_{3}...\boldsymbol{\theta}_{N} V_{1}V_{2}...V_{N}]$ V_{i}, V_{j} $\Theta_{ij} = \Theta_{i} - \Theta_{j}$ $G_{ij} + B_{ij}$ D_{ij}^{p} $P_{ij} = V_i V_j (G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij}) - G_{ij} V_i^2$ $P_{ij} = V_i V_j (G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij}) + V_i^2 (B_{ij} - b_{ij}^p)$ Flows

4.SCADA TROJANS VIII THE 2nd STAGE VI

 $\hat{z} = h(\hat{x})$ and $\hat{r} = z - \hat{z}$

4.SCADA TROJANS VIII THE 2nd STAGE VII

WLS BASED S.E ALGORITHM (Weighted Least Squares)

1.Initialize the state vector $x = x^0$ with the flat voltage profile ($V_i = 1$ pu, $\theta_i = 0$) and the iteration counter (k = 0).

- **2.** Compute the measurement residuals $r = z h(x^k)$.
- **3.** Obtain *H* and $G=H^TWH$.
- **4.** Solve the linear system: $\Delta x^k = G^{-1} H^T W r$
- **5.** Update the state vector $(x^{k+1} = x^k + \Delta x^k)$ and the iteration counter (k = k + 1).

6. If any of the elements of x exceeds the specified convergence threshold then return to step 2. Otherwise, stop.

4.SCADA TROJANS VIII THE 2nd STAGE VIII

4

Our trojan must be triggered during the WLS algorithm. So we have to reverse engineering the target EMS Software to find out where it performs the operations we have been seeing.

Due to the complexity of EMS products, we should use tools for "differential debugging". A great/free tool is "myNav", implemented as an IDA plugin developed by Joxean Koret.

http://code.google.com/p/mynav/

```
// Step 6 - WLS Algorithm - Obtain max value from \Delta x^k
for (dword 61C068[0] = 1; v9 > 0; --v9)
   db1 61BFC8 = fabs(*(double *)\&dword 61C6A8[2 * dword 61C068[0]]);
   if (dbl \ 61BFC8 > dbl \ 61BFD0)
    dbl 61BFD0 = dbl 61BFC8;
    dword 61C030 = dword 61C068[0];
   ++dword 61C068[0];
  v3 = db1 61BFD0;
  if (dbl 61BFD0 < dbl 937300[0]) //Max val from \Delta x^k < Tolerance
   dword 61C02C = 1;
   v43 = 0:
   goto No More iters;
  ++dword 94EDF4;
  --g K; // iterations
  if (g K \le 0)
   goto No More iters; // It didn't converge
```


5.SCADA TROJANS IX MISSION COMPLETED

4

4

After the successful attack, Reggaetonia suffered random blackouts for months till its own people ,tired of the situation, assaulted the institutions.

Every attempt to contract a considerable amount of MW for reggaeton festivals, ended up in an partial blackout.

RUBENHISTAN WINS.

6.CONCLUSIONS

Trojans designed for SCADA environments, should do their job stealthly,quietly... letting operators think still can trust their HMI/equipment.

Combined attacks against State Estimators give you 100% success guaranteed. In the near future, a massive adoption of PMU could set a point of inflection.

- False data injection, nowadays, is more an academic attack than a real world attack IMHO.
- We have presented a general attack against SE.

HACK THE PLANET TAKE YOUR MW!

RUBEN SANTAMARTA *(a)*reversemode

