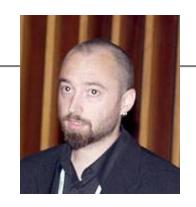

SinFP3

More Than a Complete Framework for Operating System Fingerprinting - v1.1

Patrice <GomoR> Auffret

@PatriceAuffret


@networecon

whoami`

- Patrice <GomoR> Auffret
 - 10+ years of InfoSec experience
 - www.gomor.org
 - www.protocol-hacking.org (french only)
 - www.secure-side.com (FreeBSD Web hosting company)
 - www.networecon.com (where the tool will be released)
 - Currently working for technicolor (security assessments coordinator)
- Network protocol « Hacker »
 - Net::Frame Perl modules
 - 8021.Q, LLTD, OSPF, IPv4/6, ICMPv4/6, TCP/UDP, STP, ...
 - Net::SinFP & Net::SinFP3 Perl modules
 - That is the subject of today
- FreeBSD addict & Perl developer (http://search.cpan.org/~gomor/)

Agenda

- Operating system fingerprinting
 - What is it? (quickly)
 - What is SinFP?
- Current tools and their limitations
 - Nmap & p0f
- SinFP approach to active and passive fingerprinting
- SinFP3 matching algorithm and database
- Demo 1
- SinFP3 architecture and advances
 - Comparison with previous versions of SinFP
 - Zoom on Input::SynScan, Input::Connect, Input::ArpDiscovery
- Demo 2 & 3 (if time permits)
- Conclusion

What is operating system fingerprinting (one slide)

- Yes, what's that stuff? (pretty sure everyone knows already)
 - The art or remotely identifying the nature of an Operating System by analyzing how its TCP/IP stack is crafting network packets
- Two approaches
 - Active mode
 - Sends probes to elicit responses
 - Analyst decides on the format of requests (very important)
 - Passive mode
 - Listen to the network
 - Analyst does not decide on the format of requests (also very important)
- These two approaches give a different signature (or fingerprint)
 - More on that later...
- Why not simply using application-level « banners »?
 - If you have the choice, use this option
 - Or correlate with OSFP to have a better identification

What is SinFP? (before SinFP3)

- An Operating System FingerPrinting tool (OSFP)
 - Written in Perl (the best language, /troll)
 - Module based, for easy integration in other (Perl?) projects
 - Based on the Net::Frame Perl modules (since SinFP3)
 - 1st tool to implement IPv6 fingerprinting (active and passive)

History

- V0.92: June 2005
- V1.00: March 2006
- V2.02: September 2006 (complete rewrite)
- V2.09: March 2011
- SinFP3 v1.00: now ③
- Was integrated in BackTrack, but no more in latest versions
 - Who knows why?

Current tools and their limitations (Nmap 1/2)

Nmap philosophy: one target IP has only one operating system

Nmap probes

- 6 TCP SYN (open port)
- 1 ICMP echo
- 1 TCP ECN (open port)
- 1 TCP null (open port)
- 1 TCP SYN|FIN|URG|PSH (open port)
- 1 TCP ACK (open port)
- 1 TCP SYN (closed port)
- 1 TCP ACK (closed port)
- 1 TCP FIN|PSH|URG (closed port)
- 1 UDP (closed port)
- For a complete fingerprint, target MUST:
 - Have one open TCP port
 - Have one closed TCP port
 - Allow ICMP echo requests
 - Have one closed UDP port (those who answer ICMP port unreachable)

Current tools and their limitations (Nmap 2/2)

- Problem 1: what if some of target's answers are spoofed?
 - A fitering device in-between answers to:
 - UDP requests
 - Out-of-state probes
 - You have a fingerprint composed of different TCP/IP stacks
 - TurtleOS, anyone?
- Problem 2: filtering, packet normalization and stateful inspection
 - Nmap tests remaining:
 - 6 TCP SYN (open port)
 - 1 TCP ECN (open port) (not sure this one will resist packet normalization)
- Problem 3: easily detected by IDSs/IPSs
 - Too noisy and packet format too easy to classify as Nmap fingerprinting
- Conclusion
 - Nmap is only ok for LAN-side OS fingerprinting in today's Internet conditions

Current tools and their limitations (p0f)

- p0f performs
 - IPv4 and IPv6 passive fingerprinting
 - TCP SYN and TCP SYN|ACK
- p0f
 - No real limitation (except for SYN|ACK fingerprinting?)
 - But at the time of SinFP introduction, p0f did not support IPv6 passive fingerprinting
- A very comprehensive signature database
 - SinFP3 lacks this
 - @lcamtuf: relationship between window size and MTU does not survive modification of MTU by a device in-between. And we don't need that if we keep the value of both window size and MSS as a signature element.

SinFP approach, active mode

- Philisophy: one target IP/port has only one operating system
 - Every probes MUST generate an answer from the true target
 - Every probes MUST reach the true target (filtering evasion)
- We come with 3 TCP packets all targeted at one open TCP port
 - One TCP SYN with just MSS TCP option (SinFP2 hadn't options at all)
 - One TCP SYN with many valid TCP options
 - One TCP SYN|ACK (used for LAN-side fingerprinting)
- One operating system has only one signature in the database
 - Matching algorithm takes care of modified fingerprints due to
 - Filtering device in-between (MTU change, for instance)
 - Customization of TCP/IP stack on the system
- During our tests, usually only one TCP SYN is enough to fingerprint reliably a target

SinFP approach, passive mode (1/2)

- SinFP2 passive fingerprinting
 - TCP SYN and TCP SYN|ACK
- SinFP2 limitations
 - No passive signature in the database
 - A transform was applied on a fingerprint to make use of active signatures
 - It was failure *
- Conclusion: SYN|ACK fingerprinting does not work
 - SYN|ACKs are generated compared to the original SYN probe
 - You don't control how SYNs are generated by different equipments you are monitoring
 - So, there exists a multitude of SYN|ACK fingerprints for one unique operating system
 - p0fv3 uses this approach

^{* @}GoulagParkinson: thanks for catching this up

SinFP approach, passive mode (2/2)

- SinFP3 approach:
 - Only TCP SYNs are fingerprinted
 - Signature database schema update to have passive signatures appart from active signatures
- But still work in progress, not many signatures right now
 - Need contributions, please send signatures to sinfp[AT]networecon.com

```
% sqlite3 bin/sinfp3.db
sqlite> select count(*) from SignatureP;
21
sqlite> select count(*) from Signature;
275
```


A fingerprinting example: Nmap

nmap -P0 -p 80 -O ovh1.secure-side.com

Running (JUST GUESSING): FreeBSD 7.X|6.X|8.X (98%)

Aggressive OS guesses: FreeBSD 7.0-RELEASE (98%), FreeBSD 6.3-RELEASE (98%),

FreeBSD 7.1-PRERELEASE 7.2-STABLE (98%), FreeBSD 7.2-RELEASE - 8.0-RELEASE

(94%), FreeBSD 8.1-RELEASE (94%), FreeBSD 7.1-PRERELEASE - 7.3-RELEASE (93%),

FreeBSD 7.1-RELEASE - 9.0-CURRENT (93%), FreeBSD 8.0-STABLE (93%), FreeBSD

7.0-STABLE (93%), FreeBSD 7.0-RELEASE - 8.0-STABLE (92%)

A fingerprinting example: SinFP3

```
# sinfp3.pl -input-ipport -target ovh1.secure-side.com -port 80 -threshold 70 -active-2
Result for target [213.251.166.100]:80:
S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4
S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144 M1460 S3 L20
IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.4 (7.4-RELEASE)
IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.0 (7.0-RELEASE)
IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.3 (7.3-RELEASE)
IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.1 (8.1-RELEASE)
IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.0 (8.0-RELEASE)
IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.1 (7.1-RELEASE)
IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.2 (8.2-RELEASE)
IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.3 (8.3-RELEASE)
IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.2 (7.2-RELEASE)
IPv4: [score:94]: BH0FH0WH0OH0MH0SH1LH0/S1S2: BSD: OSS: FreeBSD: 9.0 (9.0-RELEASE)
```


SinFP3 matching algorithm (signatures 1/8)

■ Binary flags, comparison between probe and response IP/TCP headers

S1: **B11113** F0x12 W65535 O0204ffff M1460 S0 L4

S2: **B11113** F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

- Some comparison methods were taken from Nmap (O2)
 - Comparison between TCP probes and replies on SEQ and ACK numbers
 - Not anymore binary, but kept the name

SinFP3 matching algorithm (signatures 2/8)

■ TCP flags

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

- Maybe a target will answer with more flags than SYN|ACK or RST?
 - Never seen yet

SinFP3 matching algorithm (signatures 3/8)

■ TCP window size

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 **W0** O0 M0 S0 L0

One of the most important element

SinFP3 matching algorithm (signatures 4/8)

■ TCP options, values are extracted (like MSS, WScale)

S1: B11113 F0x12 W65535 **O0204ffff** M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 **O0** M0 S0 L0

- The most important element
 - Number and order of TCP options is the best differientor between OSs
- Data may be returned from the target
 - It is integrated into this element
 - HP-UX loves to add « No TCP » data like this:

S3: B11120 F0x04 W0 **O4e6f20544350** M0 S0 L6

SinFP3 matching algorithm (signatures 5/8)

Extracted MSS value

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

- By extracting it, we make it easier to write our deformation masks
 - Explanation will come

SinFP3 matching algorithm (signatures 6/8)

Extracted WScale value

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 **S0** L0

Same here, easy to write deformation masks

SinFP3 matching algorithm (signatures 7/8)

Length of TCP options (in bytes)

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 **L20**

SinFP3 matching algorithm (signatures 8/8)

■ Complete IPv4 active signature (FreeBSD 8.3-RELEASE)

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B111113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

■ Complete IPv6 active signature (FreeBSD 8.3-RELEASE)

S1: B11013 F0x12 W65535 O0204ffff M1440 S0 L4

S2: B11013 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1440 S3 L20

S3: B10020 F0x04 W0 O0 M0 S0 L0

■ Complete IPv4 passive signature (Windows 7)

SP: F0x02 W8192 O0204ffff010303ff01010402 M1460 S8 L12

■ Complete IPv6 passive signature (Windows 7)

SP: F0x02 W8192 O0204ffff010303ff01010402 M1420 S8 L12

SinFP3 matching algorithm (masks 1/4)

- 3 level of deformation
 - Heuristic0: no deformation
 - Heuristic1: minor deformations
 - Heuristic2: major deformations
- Deformation mask takes care of devices modifying packets
 - No need to add many signatures for one same operating system
 - So, number of signatures is far less than from Nmap's database
- Example: all elements with heuristic1 deformation:

```
S1H1: B...13 F0x12 W6[45]... O0204ffff M1[34].. S. L4
S2H1: B...13 F0x12 W6[45]...
O0204ffff(?:01)?(?:0303ff)?(?:0402)?(?:080afffffffff44454144)? M1[34].. S.
L(?:8|9|[12].)
```

S3H1: B...20 F0x04 W0 O0 M0 S. L0

SinFP3 matching algorithm (masks 2/4)

Non-deformed signature

Match score: 100% (BH0FH0WH0OH0MH0SH0LH0)

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

SinFP3 matching algorithm (masks 3/4)

- Deformed signature because of reduced MTU (classic stuff)
 - Match score: 98% (BH0FH0WH0OH0MH1SH0LH0)

S1: B11113 F0x12 W65535 O0204ffff M1452 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1452 S3 L20

SinFP3 matching algorithm (masks 4/4)

- Deformed signature because of reduced MTU (classic stuff)
 - Match score: 98% (BH0FH0WH0OH0MH1SH0LH0)

S1: B11113 F0x12 W65535 O0204ffff M1[34].. S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1[34].. S3 L20

- Each element (B, F, W, O, M, S, L) has a weight
 - No deformation means higher weight (BH0, FH0, WH0, ...)
 - Most discriminent elements have higher weights (window size, options)
 - Match score is calculated by additioning these match scores

SinFP3 matching algorithm (intersection)

- Every element has heurisitic0 (no deformation), heuristic1 and heuristic2 patterns in the database
- A match is found when:
 - Intersection exists between S1, S2 and S3 signatures
 - And by applying deformation masks when no match is found
 - Highest score are kept as a matched fingerprint
 - Then S1 intersection with S2, then only S2
- For IPv6:
 - A matching signature is found: OK
 - Nothing found, try searching against IPv4 signatures
 - This works great, thanks to deformation masks
- For passive fingerprinting:
 - Same algorithm, but against passive signatures

SinFP3 database

- SQLite based
 - Table Signature (active ones; 275 at this day)
 - Table SignatureP (passive ones; 21 at this day)
- Not every signature is integrated
 - Only taken from best conditions (usually target is installed on a VM)
 - Only one signature per operating system version
 - Trusted and untrusted signatures (flag in the database)
- All pcap traces are kept
 - Ready for changes on analysis in the future
 - A pretty good pcap database of operating systems
 - Complete SinFP exchange for active mode, and SYN only for passive mode
- Need contributors for passive signature
 - Did I said it already?;) => sinfp[at]networecon.com

Demo 1 - enough for the theory right now

- SYN scan a C-class, output results on Console, IPv4 fingerprinting
 - And also works for IPv6, add -6 parameter

Default modules

Input::SynScan

■ DB::SinFP3

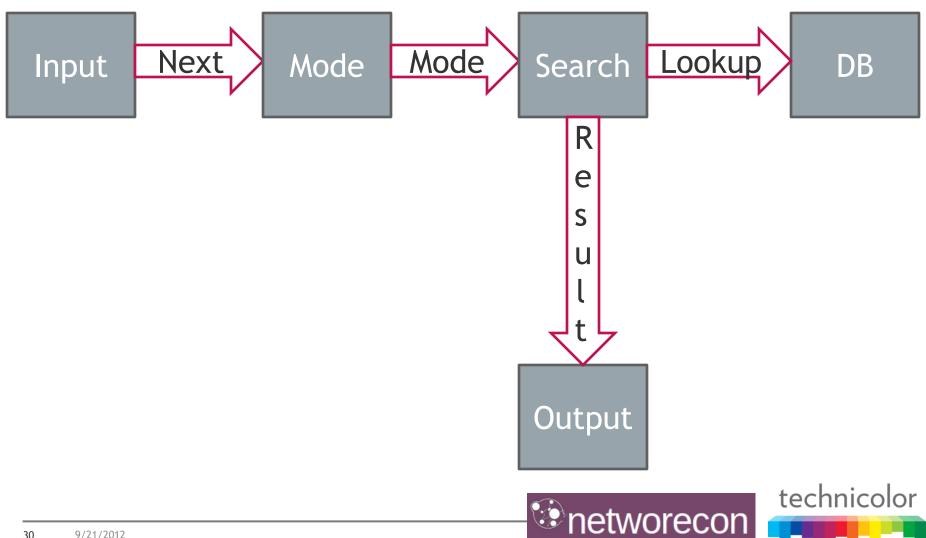
Mode::Active

Search::Active

Output::Console

Command line

sinfp3.pl -target 192.168.1.0/24 -port 80 -verbose 1 -active-2 -threshold 80


SinFP3 architecture and advances (1/2)

- Architecture and features
 - Plugin-based
 - Input, Mode, Search, DB, Output
- Improvements
 - Matching algorithm
 - Deformation masks were written manually
 - No match score
 - Probe requests
 - Probe P1 has now a TCP MSS option
 - Autonomous passive mode
 - Passive signature database is no more correlated with active one
 - And of course, the plugin-based architecture
 - Allowing massive parallel scanning (for instance)

SinFP3 architecture and advances (2/2)

Currently implemented plugins

- Input modules
 - Input::Pcap, Input::IpPort, Input::SynScan, Input::ArpDiscover, Input::Sniff
 - Input::Signature, Input::SignatureP, Input::Connect
- DB modules
 - DB::SinFP3
- Mode modules
 - Mode::Active, Mode::Passive
- Search modules
 - Search::Active, Search::Passive
- Output modules
 - Output::Console, Output::Pcap, Output::CSV, Output::OsOnly, Output::OsVersionFamily, Output::Ubigraph

Zoom on Input::SynScan

- Written in Perl/XS/C
 - IPv4 and IPv6 ready
 - Efficient enough
 - Deterministic
 - 20 minutes for TOP10 ports against a C-class
 - Default: 200 packets per second, 3 tries (around 10 kB/s)
 - KISS algorithm (do it yourself;))
- Writes TCP packets directly at layer 4
 - Don't bother with computing checksums and other IP headers
 - Works under GNU/Linux and BSD systems
 - Uses SinFP3 magic SYN packet
- Scan once, replay fingerprinting
 - Output::Pcap, then Input::Pcap

Zoom on Input::Connect

- Because SYN|ACK fingerprinting was a failure ...
- Use TCP connect() and send a classic « GET / HTTP/1.0 »
 - A listener is catching SYN probe and SYN|ACK reply
 - Mode::Active generates the fingerprint
 - Search::Active searches a matching signatures
- Works great from Linux (only?)
 - Cause the SYN probe is the same used in SinFP active mode
 - Same window size and TCP options
- Nearly stealthiest option for fingerprinting
 - Not seen as active fingerprinting by a potential target IDS/IPS

Zoom on Input::ArpDiscover

- On your LAN (of course)
 - Performs a standard ARP scanning against all LAN IP addresses
 - Gathers all live hosts
 - Then performs an active fingerprinting of all live hosts
 - Currently, you have to specify which target ports to test
- For IPv6
 - Performs a standard ARP scanning against all LAN IPv4 addresses
 - Gathers all live hosts
 - Apply EUI-64 transform against MAC addresses
 - You have the list of auto-configured link-local IPv6 addresses
 - Then performs an active fingerprinting of all live hosts
- For IPv6, you didn't thought of scanning the fe80::/64, did you?

Demo 2

- ARP discovery, IPv4 active fingerprinting
 - For IPv6 mode, it is as easy as adding -6 option
- Default modules
 - Input::SynScan (-input-synscan)
 - DB::SinFP3 (-db-sinfp3)
 - Mode::Active (-mode-active)
 - Search::Active (-search-active)
 - Output::Console (-output-console)

Command lines

```
# sinfp3.pl -input-arpdiscover -output-pcap
```

- % sinfp3.pl -input-pcap -pcap-file '*.pcap' -output-csv -threshold 80
- % sinfp3.pl -db-null -search-null -mode-null -input-null -output-ubigraph

Demo 3 – if time permits

- SYN scan a C-class, output results using Ubigraph, IPv4 fingerprinting
 - And also works for IPv6, add -6 parameter

Default modules

Input::SynScan

■ DB::SinFP3

Mode::Active

Search::Active

Output::Console

Command lines

```
# sinfp3.pl -target 192.168.0.0/24 -port top10 -output-pcap
% sinfp3.pl -input-pcap -pcap-file '*.pcap' -output-csv -threshold 80
% sinfp3.pl -db-null -search-null -mode-null -input-null -output-ubigraph
```


Conclusion

- Improvements on matching algorithm
 - No more manual deformation masks
 - Computes a matching score for easy human comprehension
- Improvements on architecture allowing to
 - Write new modules, like new matching algorithms or output methods
 - Perform more than OS fingerprinting
- Improvements on passive fingerprinting
 - But needs more signature (did I said that already?)
- Many more features
 - Plugin to add signatures to the database by yourself
 - Update database with -update-db
 - Logging modules
 - Design your own plugins ... limitless?
- Follow @networecon to get informed of releases
 - http://www.networecon.com/

Questions? (I can haz a beer now?)

http://www.networecon.com/

This document is for background informational purposes only. Some points may, for example, be simplified. No guarantees, implied or otherwise, are intended

