
Parsing Binary File
Formats with

PowerShell
M a t t G ra eber

@ma t t ifestation

www. exploi t-monday.com

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
1

PS> Get-Bio
Security Researcher

Former U.S. Navy Chinese linguist and U.S. Army Red Team member

Alphabet soup of irrelevant certifications

Avid PowerShell Enthusiast
Original inspiration: Dave Kennedy and Josh Kelley "Defcon 18 PowerShell
OMFG…", Black Hat 2010

Continued motivation from @obscuresec

Creator of the PowerSploit module
A collection of tools to aid reverse engineers, forensic analysts, and
penetration testers during all phases of an assessment.

Love Windows internals, esoteric APIs, and file formats

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
2

Why parse binary file formats?
Malware Analysis

You need the ability to compare a malicious/malformed file against known
good files.

Fuzzing
You want to generate thousand or millions of malformed files of a certain
format in order to stress test or find vulnerabilities in programs that open
that particular file format.

Curiosity
You simply want to gain an understanding of how a piece of software
interprets a particular file format.

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
3

Why use PowerShell to parse
binary file formats?

Once parsed, file formats can be represented as objects
Objects can be inspected, analyzed, and/or manipulated with ease.

Its output can be passed to other functions/cmdlets/scripts for further
processing.

Automation!
Once a parser is written, you can analyze a large number of file formats,
quickly perform analysis, and gather statistics on a large collection of files.

Example: You could analyze all known good file formats on a clean system,
take a baseline of known good and use that as a heuristic to determine if an
unknown file is potentially malicious or malformed.

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
4

Requirements
A solid understanding of C/C++, .NET, and PowerShell data types is a

must!
Windows C/C++ data types are described here:

http://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx

C# value types are described here:
http://msdn.microsoft.com/en-us/library/s1ax56ch(v=vs.110).aspx

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
5

http://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/s1ax56ch(v=vs.110).aspx

Validating data type equality
Goal: Convert C/C++ DWORD to PowerShell type

MSDN Definition: DWORD – “A 32-bit unsigned integer. The range is 0
through 4294967295 decimal.”

32-bit == 4 bytes

Best guess: [UInt32]

Validation steps:
1) Validate minimum value - [UInt32]::MinValue # 0

2) Validate maximum value - [UInt32]::MaxValue # 4294967295

3) Validate type size -
[Runtime.InteropServices.Marshal]::SizeOf([UInt32]) # 4

DWORD == [System.UInt32]

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
6

Example: DOS Header
The DOS header is a legacy artifact of the DOS era.

The first 64 bytes of any portable executable file
.exe, .dll, .sys, .cpl, .scr, .com, .ocx, etc…

Size of the DOS header can be confirmed using my favorite debugger – WinDbg

`dt -v ntdll!_IMAGE_DOS_HEADER` or `?? sizeof(ntdll!_IMAGE_DOS_HEADER)`

Per specification, the first two bytes of a DOS header are ‘MZ’
(0x4D,0x5A).

Trivia – What does MZ stand for?

Nowadays, the only useful field of the DOS header is e_lfanew – the offset
to the PE header.

The fields of a non-malicious DOS header are relatively consistent.
To see an awesome abuse of the PE file format and DOS header, check out
Alexander Sotirov’s TinyPE project.

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
7

Example: DOS Header
#define IMAGE_DOS_SIGNATURE 0x5A4D // MZ

#define IMAGE_OS2_SIGNATURE 0x454E // NE

#define IMAGE_VXD_SIGNATURE 0x454C // LE

typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header

WORD e_magic; // Magic number

WORD e_cblp; // Bytes on last page of file

WORD e_cp; // Pages in file

WORD e_crlc; // Relocations

WORD e_cparhdr; // Size of header in paragraphs

WORD e_minalloc; // Minimum extra paragraphs needed

WORD e_maxalloc; // Maximum extra paragraphs needed

WORD e_ss; // Initial (relative) SS value

WORD e_sp; // Initial SP value

WORD e_csum; // Checksum

WORD e_ip; // Initial IP value

WORD e_cs; // Initial (relative) CS value

WORD e_lfarlc; // File address of relocation table

WORD e_ovno; // Overlay number

WORD e_res[4]; // Reserved words

WORD e_oemid; // OEM identifier (for e_oeminfo)

WORD e_oeminfo; // OEM information; e_oemid specific

WORD e_res2[10]; // Reserved words

LONG e_lfanew; // File address of new exe header

} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

Windows SDK winnt.h
DOS header definition

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
8

Example: DOS Header
The DOS header is comprised of the following data types:

Optional: An enum representation of e_magic since it contains only three
possible, mutually-exclusive values.

Again, you can manually validate that these data types match – e.g.
◦ LONG-> System.Int32. A 32-bit signed integer. The range is –2147483648 through

2147483647 decimal.
◦ Min value: [Int32]::MinValue

◦ Max Value: [Int32]::MaxValue

◦ Size: [System.Runtime.InteropServices.Marshal]::SizeOf([UInt32])

C Data Type C# Data Type PowerShell Data Type

WORD ushort [UInt16]

WORD[] ushort[] [UInt16[]]

LONG int [Int32]

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
9

Parsing binary file formats in
PowerShell – Technique (1/3)
There are three ways to tackle this problem in PowerShell:

1. Easy - Pure PowerShell

2. Moderate – C# Compilation

3. Hard - Reflection

Pure PowerShell – Strictly using only the PowerShell scripting language
and built-in cmdlets

Pros:
Not complicated. Thus, easy to implement.

Works in PowerShell on the Surface RT tablet – i.e. PowerShell running in a ‘Constrained’
language mode.

Cons:
Very slow when dealing with large, complicated binary files

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
10

Parsing binary file formats in
PowerShell – Technique (2/3)

C# Compilation – Using the Add-Type cmdlet
Pros:

Structures and enums are easy to define and read when defined in C#

Many structures and enums are already defined for you on pinvoke.net.

After compilation occurs, this technique is much faster than the pure PowerShell approach when
dealing with large, complicated file formats. Get-PEHeader in PowerSploit uses this approach.

Cons:
Doesn’t work on the Surface RT tablet. You are restricted from using Add-Type.

Involves calling csc.exe and writing temporary files to disk in order to compile code. This is
undesirable if you are trying to maintain a minimal forensic footprint.

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
11

Parsing binary file formats in
PowerShell – Technique (3/3)

Reflection – Manual assembly of data types in memory
Pros:

Fast, minimal forensic footprint (i.e. csc.exe not called and no temporary files created).

Ideally suited for parsing complicated, dynamic structures – i.e. structures that are defined
based upon runtime information. Get-PEB in PowerSploit uses this technique.

Cons:
Doesn’t work on the Surface RT tablet. You are restricted from using the .NET reflection
namespace.

Reflection can be a difficult concept to grasp if you are not comfortable with .NET.

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
12

Reading a binary file in
PowerShell
There are two generic methods for reading in a file as a byte array:

Get-Content cmdlet
Great for reading small files

Works on the Surface RT tablet

You can optionally read a fixed number of bytes

Example: Get-Content C:\Windows\System32\calc.exe -Encoding Byte -
TotalCount 64

[System.IO.File]::ReadAllBytes(string path)
Quickly reads large files

Does not work on the Surface RT tablet

Reads all bytes in a file

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
13

Converting bytes to their
respective data types

Recall the following:

WORD == 16-bit unsigned number == 2 bytes

DWORD == 32-bit unsigned number == 4 bytes

LONG == 32-bit signed number == 4 bytes, etc…

Note: many file formats store their values in little-endian so you must
swap their values in order to read the proper values.

Helper function to convert
bytes into either a UInt16
or an Int32.

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
14

DOS header parsing script
requirements

Defines the necessary structures and enums present in the DOS
header

Reads in a file (or set of files) as a byte array via a function parameter
or via the pipeline – i.e. BEGIN/PROCESS/END and
ValueFromPipelineByPropertyName property

Converts the flat byte array to a properly parsed DOS header –
represented as either a custom object or a .NET type

Only returns output from files with a valid DOS header size and
e_magic field

Displays a properly formatted DOS header using a ps1xml file.
I want all the fields to be displayed in hexadecimal rather than the default
decimal.

Provides detailed comment-based help

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
15

Building a DOS header parser
Technique: Pure PowerShell

This technique relies heavily on reading offsets into a byte array using
array offset notation. For example:

PS> $array = [Byte[]] @(1,2,3,4,5,6)
PS> # If these were little-endian fields, then the array offsets
would need to be reversed.
PS> $array[1..0]
2
1
PS> $array[0..1]
1
2

A custom object will be formed in this technique since the PowerShell
scripting language has no way to define a native .NET type.

You must be aware of the offsets to each field in the DOS header definition

Demo: Source code analysis and script usage

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
16

Building a DOS header parser
Technique: C# Compilation

The DOS header is defined in C# code. It is then compiled using the
Add-Type cmdlet.

After compilation, a custom .NET type is created and can be used
directly in PowerShell - [PE+_IMAGE_DOS_HEADER] in out example.

Note: Once a .NET type is defined, it cannot be redefined in the same
PowerShell session. Restart PowerShell if you need to make changes to
your C# code.

The C# technique relies upon obtaining a pointer to our byte array and
calling [System.Runtime.InteropServices.Marshal]::PtrToStructure to
cast the array into a [PE+_IMAGE_DOS_HEADER] structure.

Demo: Source code analysis and script usage

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
17

Building a DOS header parser
Technique: Reflection (1/2)

Rather than compiling our .NET type, we are going to manually
assembly it.

This technique, although more complicated to implement should be
preferred to C# compilation if maintaining a minimal forensic footprint
is your goal or if you are creating dynamic structures that must be
defined at runtime.

Reflection allows you to perform code introspection and code
assembly. Requires a basic understanding of the .NET architecture.

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
18

.NET assembly layout

Assembly

Module

AppDomain

Type

NestedType

Constructor

Field Property

Method Event

AppDomain – An execution ‘sandbox’ for a set of assemblies
Assembly – The dll or exe containing your code
Module – A container for a logical grouping if types. Most assemblies only have a single module.
Type – A class definition
Members – The components that make up a type – Constructor, Method, Event, Field, Property, NestedType

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
19

Building a DOS header parser
Technique: Reflection (2/2)

The following steps are required to build the DOS header .NET type
using reflection:

1. Define a dynamic assembly in the current AppDomain.

2. Define a dynamic module.

3. Define an enum type to represent e_magic values.

4. Define a structure type to represent the remainder of the DOS
header.

5. e_res and e_res2 fields require custom attributes to be defined
since they are arrays.

Once the type is defined, a .NET type representing the DOS header will
be defined and be nearly identical to the type created in C# previously.

Demo: Source code analysis and script usage

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
20

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
21

The DOS header parser is complete. Now what?
Let analyze every the DOS header of every PE in Windows!
With analysis complete, we can find commonality across DOS headers and form the
basis for what a ‘normal’ DOS header should look like.

Conclusion
Parsing binary file formats in PowerShell is not a trivial matter.

However, once structure is applied to a binary blob and is stored in an
object, this is where PowerShell really shines.

There are three primary strategies for parsing binary data in
PowerShell: pure PowerShell, C# compilation, and reflection. Each
strategy has their respective pros and cons.

Parsing binary data in PowerShell requires knowledge of C-style
structure definitions and data types.

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
22

Thanks!
Twitter: @mattifestation

Blog: www.exploit-monday.com

Github: PowerSploit

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
23

https://twitter.com/mattifestation
http://www.exploit-monday.com/
http://www.exploit-monday.com/

Bonus: Rich Signature (1/2)
Located between the DOS header and the NT header (i.e. PE header)

An XOR encoded blob produced by Microsoft compilers and describes information
about the linker used to link external dependencies.

Not documented by Microsoft. Daniel Pistelli gives a throuough description here:
http://ntcore.com/files/richsign.htm

Completely useless part of a binary aside from being semi-useful in malware
analysis.

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
24

http://ntcore.com/files/richsign.htm

Bonus: Rich Signature (2/2)
After XOR decoding, the Rich signature is comprised of the following:

A Rich signature ‘signature’ – ‘DanS’
Legend has it, ‘DanS’ is named after Dan Ruder -
http://web.archive.org/web/20111219190947/http://mirror.sweon.net/madchat/vxdevl/vxmag
s/29a-8/Articles/29A-8.009

An array or three fields containing linker information:
Build Number

Product Identifier

Link Count

The word ‘Rich’ to indicate the presence of a Rich signature

The DWORD XOR used to decode the signature

Let’s extend our DOS header parser to parse the Rich signature…

MATTHEW GRAEBER - CREATIVE COMMONS ATTRIBUTION 3.0

UNPORTED LICENSE.
25

http://web.archive.org/web/20111219190947/http:/mirror.sweon.net/madchat/vxdevl/vxmags/29a-8/Articles/29A-8.009

