Parsing Binary File
W Formats with

PowerShell

Matt Graeber
@mattifestation

www.exploit-monday.com

EEEEEEEEEEEEEEEE

PS> Get-Bio

¥ Security Researcher
¥ Former U.S. Navy Chinese linguist and U.S. Army Red Team member
* Alphabet soup of irrelevant certifications

¥ Avid PowerShell Enthusiast

¥ QOriginal inspiration: Dave Kennedy and Josh Kelley "Defcon 18 PowerShell
OMFG...", Black Hat 2010

¥ Continued motivation from @obscuresec

¥ Creator of the PowerSploit module

¥ A collection of tools to aid reverse engineers, forensic analysts, and
penetration testers during all phases of an assessment.

¥ Love Windows internals, esoteric APIs, and file formats

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0
UNPORTED LICENSE.

Why parse binary file formats?

* Malware Analysis

¥ You need the abilityto compare a malicious/malformed file against known
good files.

¥ Fuzzing

¥ You want to generate thousand or millions of malformed files of a certain
format in order to stress test or find vulnerabilitiesin programs that open
that particular file format.

¥ Curiosity

¥ You simply want to gain an understanding of how a piece of software
interprets a particular file format.

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0
UNPORTED LICENSE.

Why use PowerShell to parse
binary file formats?

¥ Once parsed, file formats can be represented as objects
¥ Objects can be inspected, analyzed, and/or manipulated with ease.

¥ |ts output can be passed to other functions/cmdlets/scripts for further
processing.

¥ Automation!

¥ Once a parser is written, you can analyze a large number of file formats,
quickly perform analysis, and gather statistics on a large collection of files.

¥ Example: You could analyze all known good file formats on a clean system,
take a baseline of known good and use that as a heuristicto determine if an
unknown file is potentially malicious or malformed.

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0
UNPORTED LICENSE.

Requirements

¥ A solid understanding of C/C++, .NET, and PowerShell data types is a
must!

¥ Windows C/C++ datatypes are described here:
¥ http://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx

¥ C# valuetypes are described here:
¥ http://msdn.microsoft.com/en-us/library/slax56ch(v=vs.110).aspx

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0
UNPORTED LICENSE.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/s1ax56ch(v=vs.110).aspx

Validating data type equality

¥ Goal: Convert C/C++ DWORD to PowerShell type

MSDN Definition: DWORD — “A 32-bit unsigned integer. The range is 0
through 4294967295 decimal.”

32-bit == 4 bytes
Best guess: [UInt32]

Validation steps:
1) Validateminimumvalue- [UInt32]::MinValue # 0

2) Validatemaximumvalue- [UInt32]: :MaxValue # 4294967295

3) Validatetypesize -
[Runtime.InteropServices.Marshal]::SizeOf ([UInt32]) # 4

DWORD == [System.UInt32]

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0
UNPORTED LICENSE.

Example: DOS Header

¥ The DOS header is a legacy artifact of the DOS era.

¥ The first 64 bytes of any portable executable file
r exe, .dll, .sys, .cpl, .scr, .com, .ocx, etc...
¥ Size of the DOS header can be confirmed using my favorite debugger — WinDbg
* ‘dt-v ntdll!_IMAGE_DOS_HEADER' or ‘?? sizeof(ntdIl! IMAGE_DOS_HEADER)'

¥ Per specification, the first two bytes of a DOS header are ‘MZ’
(0x4D,0x5A).

¥ Trivia — What does MZ stand for?

¥ Nowadays, the only useful field of the DOS header is e_|fanew — the offset
to the PE header.

¥ The fields of a non-malicious DOS header are relatively consistent.

¥ To see an awesome abuse of the PE file format and DOS header, check out
Alexander Sotirov’s TinyPE project.

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0
UNPORTED LICENSE.

Example: DOS Header

#define IMAGE DOS SIGNATURE 0x5A4D // Mz
#define IMAGE 0S2 SIGNATURE 0x454E // NE . .
#define IMAGE VXD SIGNATURE 0x454C // LE WlndOWS SDK Wlnnt'h
DOS header definition

typedef struct IMAGE DOS HEADER { // DOS .EXE header

WORD e magic; // Magic number

WORD e cblp; // Bytes on last page of file

WORD e cp; // Pages in file

WORD e erleg // Relocations

WORD e cparhdr; // Size of header in paragraphs

WORD e minalloc; // Minimum extra paragraphs needed

WORD e maxalloc; // Maximum extra paragraphs needed

WORD ERSER // Initial (relative) SS value

WORD e sp; // Initial SP value

WORD e csum; // Checksum

WORD e 1'pl; // Initial IP value

WORD e cs; // Initial (relative) CS value

WORD e lfarlc; // File address of relocation table

WORD e ovno; // Overlay number

WORD e resl[4]; // Reserved words

WORD e oemid; // OEM identifier (for e oeminfo)

WORD e oeminfo; // OEM information; e ocemid specific

WORD e res2[10]; // Reserved words

LONG e lfanew; // File address of new exe header

} IMAGE DOS HEADER, *PIMAGE DOS_ HEADER;

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0
UNPORTED LICENSE.

Example: DOS Header

The DOS header is comprised of the following data types:

C Data Type C# Data Type PowerShell Data Type
ushort [UInt1l6]

ushort[] [UIntl6[]]
int [Int32]

Optional: An enum representation of e_magic since it contains only three
possible, mutually-exclusive values.

Again, you can manually validate that these data types match —e.g.

° LONG->System.Int32. A32-bit signed integer. The range is —2147483648 through
2147483647 decimal.

> Minvalue: [Int32]::MinvValue
> Max Value: [Int32]::MaxVvalue
> Size: [System.Runtime.InteropServices.Marshal]::Sizeof([UuInt32])

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0 9
UNPORTED LICENSE.

Parsing binary file formats in
PowerShell — Technique (1/3)

There are three ways to tackle this problem in PowerShell:
Easy - Pure PowerShell
Moderate — C# Compilation
Hard - Reflection

¥ Pure PowerShell — Strictly using only the PowerShell scripting language
and built-in cmdlets
¥ Pros:

* Not complicated. Thus, easy to implement.

¥ Works in PowerShell on the Surface RT tablet —i.e. PowerShell runningin a ‘Constrained’
language mode.

¥ Cons:

¥ Very slow when dealing with large, complicated binary files

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0

UNPORTED LICENSE. =

Parsing binary file formats in
PowerShell — Technique (2/3)

¥ C# Compilation — Using the Add-Type cmdlet
¥ Pros:
¥ Structures and enums are easy to define and read when defined in C#

¥ Many structures and enums are already defined for you on pinvoke.net.

r After compilation occurs, this technique is much faster than the pure PowerShell approach when
dealing with large, complicated file formats. Get-PEHeader in PowerSploit uses this approach.

¥ Cons:
¥ Doesn’twork onthe Surface RT tablet. You arerestricted from using Add-Type.

¥ |nvolves calling csc.exe and writing temporary files to disk in order to compile code. This is
undesirable if you are trying to maintain a minimal forensic footprint.

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0

UNPORTED LICENSE. =

Parsing binary file formats in
PowerShell — Technique (3/3)

¥ Reflection — Manual assembly of data types in memory
¥ Pros:

r Fast, minimal forensic footprint (i.e. csc.exe not called and no temporary files created).

¥ |deally suited for parsing complicated, dynamic structures —i.e. structures that are defined
based upon runtime information. Get-PEB in PowerSploit uses this technique.

¥ Cons:

¥ Doesn’twork onthe Surface RT tablet. You arerestricted from using the .NET reflection
namespace.

¥ Reflection can be a difficult concept to grasp if you are not comfortable with .NET.

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0

UNPORTED LICENSE. 1

Reading a binary file in
PowerShell

There are two generic methods for reading in a file as a byte array:

¥ Get-Content cmdlet
¥ Great for reading small files
¥ Works on the Surface RT tablet
¥ You can optionallyread a fixed number of bytes
¥ Example: Get-Content C:\windows\System32\calc.exe -Encoding Byte -
TotalCount 64

¥ [System.lO.File]::ReadAllBytes(string path)
¥ Quickly reads large files

¥ Does not work on the Surface RT tablet
¥ Reads all bytesin a file

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0

UNPORTED LICENSE. =

Converting bytes to their
respective data types

¥ Recall the following:

WORD == 16-bit unsigned number == 2 bytes
DWORD == 32-bit unsigned number == 4 bytes
LONG == 32-bit signed number == 4 bytes, etc...

¥ Note: many file formats store their values in little-endian so you must
swap their values in order to read the proper values.

unction Local :ConvertTo-Int
7 .
J —

3 E Param (

H'"F'T-E"E:PEIE-'it'iEIFI 1 Mar'ldatur"'_-.-' L) Helper function tO Convert

bytes into either a Ulntl6
oran Int32.

v convert words and dwords
{ Write-Output ([UIntle] ("Ox{ ¢ 15 . TaString('xX2"')})
rite-Output Int32

¢ {5__ToString('x2')})

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0 14
UNPORTED LICENSE.

DOS header parsing script
requirements

¥ Defines the necessary structures and enums present in the DOS
header

¥ Reads in a file (or set of files) as a byte array via a function parameter
or via the pipeline —i.e. BEGIN/PROCESS/END and
ValueFromPipelineByPropertyName property

¥ Converts the flat byte array to a properly parsed DOS header —
represented as either a custom object or a .NET type

¥ Only returns output from files with a valid DOS header size and
e_magic field

¥ Displays a properly formatted DOS header using a ps1xmlfile.

¥ | want all the fields to be displayed in hexadecimal rather than the default
decimal.

¥ Provides detailed comment-based help

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0

UNPORTED LICENSE. =

Building a DOS header parser
Technique: Pure PowerShell

¥ This technique relies heavily on reading offsets into a byte array using
array offset notation. For example:

PS> $array = [Byte[]] @(1,2,3,4,5,6)

PS> # If these were little-endian fields, then the array offsets
would need to be reversed.

PS> $array[1l..0]

2

1

PS> $array[0..1]

1

2

¥ A custom object will be formed in this technique since the PowerShell
scripting language has no way to define a native .NET type.

¥ You must be aware of the offsets to each field in the DOS header definition

¥ Demo: Source code analysis and script usage

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0

UNPORTED LICENSE. &

Building a DOS header parser

Technique: C

Compilation

¥ The DOS header is defined in C# code. It is then compiled using the

Add-Type cmdlet.

¥ After compilation, a custom .NET type is created and can be used
directly in PowerShell - [PE+_IMAGE_DOS_HEADER] in out example.

¥ Note: Once a .NET type is defined, it cannot be redefined in the same
PowerShell session. Restart PowerShell if you need to make changes to

your C# code.

¥ The C# technique relies upon obtaining a pointer to our byte array and
calling [System.Runtime.InteropServices.Marshal]::PtrToStructure to
cast the array intoa [PE+_IMAGE_DOS HEADER] structure.

¥ Demo: Source code analysis and script usage

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0

17

UNPORTED LICENSE.

Bui
Tec

ding a DOS header parser

nnique: Reflection (1/2)

¥ Rather than compiling our .NET type, we are going to manually
assembly it.

¥ This technique, although more complicated to implement should be
preferred to CH# compilation if maintaining a minimal forensic footprint
is your goal or if you are creating dynamic structures that must be
defined at runtime.

¥ Reflection allows you to perform code introspection and code
assembly. Requires a basic understanding of the .NET architecture.

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0
UNPORTED LICENSE.

NET assembly layout

AppDomain

Assembly

Type

Constructor Method Event
Field NestedType Property

* AppDomain— An execution ‘sandbox’ for a set of assemblies

¥ Assembly —The dll or exe containing your code

¥ Module — A container for a logical grouping if types. Most assemblies only have a single module.

* Type— A class definition

¥ Members— The components that make up a type — Constructor, Method, Event, Field, Property, NestedType

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0 19
UNPORTED LICENSE.

Building a DOS header parser
Technique: Reflection (2/2)

¥ The following steps are required to build the DOS header .NET type
using reflection:

Define a dynamic assembly in the current AppDomain.
Define a dynamic module.
Define an enum type to represent e_magic values.

Define a structure type to represent the remainder of the DOS
header.

e_res and e_res2 fields require custom attributes to be defined
since they are arrays.

¥ Once the type is defined, a .NET type representing the DOS header will
be defined and be nearly identical to the type created in CH# previously.

¥ Demo: Source code analysis and script usage

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0 20
UNPORTED LICENSE.

The DOS header parser is complete. Now what?

¥ Let analyze every the DOS header of every PE in Windows!
r With analysiscomplete, we can find commonality across DOS headers and form the
basis for what a ‘normal’ DOS header should look like.

Total PE Files PE Files with non-standard MS-DQS stub programs "Rich” Present "Rich" Absent
6695 2 4431 2264

Extension Count e_lfanew Count e_cblp Count e s5 Count

Il FZ——

.mui _
sys TASR
.exe S350
rc IE
.cpl b_l
.ax [15
winmd |15
rs[13
ilbhz

17 RGN 144 G570
240 [EECHIN 023

232 ool 95 2

243 SN

224 - e_cp Count
256 BB 36670
200 B4 023

216 [lbs 12

192 B1

0 6695

e_crlc Count
0 668595

e_minalloc Count
0 6695

e_csum Count

264 s e_cparhdr Count 0 6695

.ocx [7 128 33 2 ez
.com|[7 272 b8 023 e_ip Count
sorls 64 [23 0 6695
.acm |6- 280 |13 e_maxalloc Count
tspls 296 6 65535 Gor2m e_cs Count
efi 4 288 4 023 0 66595
3 208 3
.drv 3 184 1 e_sp Count e_lfarlc Count
Jime 1 3121 134 GEz2 64 6695
.olb 1 360 1 023
Jdat 1 e_ovno Count
decl e_res Count 0 6695
{0, 0, 0, 0} EE
{0, 0, 22094, 12336} 14 e_oemid Count
e_crlc, e_cparhdr, e_minalloc, e_ss, e_csum, e_ip, e_cs, e_ovno, e_ocemid, e_oeminfo, e_res2 {0, 0, 22094, 12848} 4 0 6695

Fields whose values are always 0x00
Fields whose values are always 64 e_oeminfo Count
e_|farlc 0 6695

While e_Ifanew can be less than 64, normal PEs are never less than 64 e_res2 Count
e_lfanew is always divisible by four {0,0,0,...,0} 6695

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0
UNPORTED LICENSE.

Conclusion

¥ Parsing binary file formats in PowerShell is not a trivial matter.
However, once structure is applied to a binary blob and is stored in an
object, this is where PowerShell really shines.

¥ There are three primary strategies for parsing binary data in
PowerShell: pure PowerShell, C# compilation, and reflection. Each
strategy has their respective pros and cons.

¥ Parsing binary data in PowerShell requires knowledge of C-style
structure definitions and data types.

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0

UNPORTED LICENSE. ez

Thanks!

T Twitter: @mattifestation

¥ Blog: www.exploit-monday.com

¥ Github: PowerSploit

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0
UNPORTED LICENSE.

23

https://twitter.com/mattifestation
http://www.exploit-monday.com/
http://www.exploit-monday.com/

Bonus: Rich Signature (1/2)

¥ Located between the DOS header and the NT header (i.e. PE header)

¥ An XOR encoded blob produced by Microsoft compilers and describes information
about the linker used to link external dependencies.

¥ Not documented bY Microsoft. Daniel Pistelli gives a throuough description here:
http://ntcore.com/files/richsign.htm

¥ Completely useless part of a binary aside from being semi-useful in malware
analysis.

0000h: 90 00 03 00 00 00 04 00 00 00
D010h: BE8 00 00 00 00 0O
0020h: . 0 00
0030h: 00 00 00 00
0040h: O L OE

0050k

O 40 Q0 00 00 00

[

=]

a0 Q00 Q00 00
CD 21 B8 01 4C
72 61 6D 20 63 & 6 6 6 iz program canno
6E 20 &% &E 20 3 20 t be run in D05
24 00 00 00 00 Qo mode....>
..T.ea8.=a8.2a8
c.04.eadc.45=a4
0ROk : .2 Brdasc. @3 . eas
00BOR: c.¥4.eadc.84Dead
00COh: c.04.eadc.04. a8
ooD0kh . 00 00 OO0 OO0 OO0 00 00 Rich.esaa
O0OFEQRh: 00 00 00 00 00 00 00 0 00 a0 oo

O0OFOh: 50 45 00 00 64 86 06 00 96 98 10 50 00 OO0 OO 0O

[
[Tl

-1

]
T

o

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0

UNPORTED LICENSE. 2

http://ntcore.com/files/richsign.htm

Bonus: Rich Signature (2/2)

> After XOR decoding, the Rich signature is comprised of the following:
¥ A Rich signature ‘signature’ — ‘Dan$S’

T Legend hasit, ‘DanS’ is named after Dan Ruder -
http://web.archive.org/web/20111219190947/http://mirror.sweon.net/madchat/vxdevl/vxmag
s/29a-8/Articles/29A-8.009

¥ An array or three fields containinglinker information:
¥ Build Number
¥ Product ldentifier

¥ Link Count

* The word ‘Rich’ to indicate the presence of a Rich signature
T The DWORD XOR used to decode the signature

¥ Let’s extend our DOS header parser to parse the Rich signature...

MATTHEW GRAEBER - CREATIVECOMMONS ATTRIBUTION 3.0

UNPORTED LICENSE. 25

http://web.archive.org/web/20111219190947/http:/mirror.sweon.net/madchat/vxdevl/vxmags/29a-8/Articles/29A-8.009

